[base] Added Skew|DC3 algorithm for suffix array construction.

This commit is contained in:
Yuri Gorshenin 2017-06-28 12:51:51 +03:00
parent 99a9146b69
commit af06dc12ba
7 changed files with 351 additions and 0 deletions

View file

@ -61,6 +61,8 @@ set(
string_utils.hpp
strings_bundle.cpp
strings_bundle.hpp
suffix_array.cpp
suffix_array.hpp
sunrise_sunset.cpp
sunrise_sunset.hpp
thread.cpp

View file

@ -25,6 +25,7 @@ SOURCES += \
string_format.cpp \
string_utils.cpp \
strings_bundle.cpp \
suffix_array.cpp \
sunrise_sunset.cpp \
thread.cpp \
thread_checker.cpp \
@ -81,6 +82,7 @@ HEADERS += \
string_format.hpp \
string_utils.hpp \
strings_bundle.hpp \
suffix_array.hpp \
sunrise_sunset.hpp \
thread.hpp \
thread_checker.hpp \

View file

@ -28,6 +28,7 @@ set(
stl_helpers_test.cpp
string_format_test.cpp
string_utils_test.cpp
suffix_array_tests.cpp
sunrise_sunset_test.cpp
thread_pool_tests.cpp
threaded_list_test.cpp

View file

@ -38,6 +38,7 @@ SOURCES += \
stl_helpers_test.cpp \
string_format_test.cpp \
string_utils_test.cpp \
suffix_array_tests.cpp \
sunrise_sunset_test.cpp \
thread_pool_tests.cpp \
threaded_list_test.cpp \

View file

@ -0,0 +1,78 @@
#include "testing/testing.hpp"
#include "base/suffix_array.hpp"
#include <cstring>
#include <string>
#include <vector>
using namespace base;
using namespace std;
#define TEST_STR_EQUAL(X, Y, msg) TEST_EQUAL(string(X), string(Y), msg)
namespace
{
UNIT_TEST(Skew_Smoke) { Skew(0, nullptr /* s */, nullptr /* sa */); }
UNIT_TEST(Skew_Simple)
{
{
string const s;
vector<size_t> pos;
Skew(s, pos);
TEST_EQUAL(pos.size(), s.size(), ());
}
{
string const s = "a";
vector<size_t> pos;
Skew(s, pos);
TEST_EQUAL(pos.size(), s.size(), ());
TEST_EQUAL(pos[0], 0, ());
}
{
string const s = "aaaa";
vector<size_t> pos;
Skew(s, pos);
TEST_EQUAL(pos.size(), s.size(), ());
TEST_EQUAL(pos[0], 3, ());
TEST_EQUAL(pos[1], 2, ());
TEST_EQUAL(pos[2], 1, ());
TEST_EQUAL(pos[3], 0, ());
}
{
for (size_t length = 0; length < 100; ++length)
{
string const s(length, 'a');
vector<size_t> pos;
Skew(s, pos);
TEST_EQUAL(pos.size(), s.size(), ());
for (size_t i = 0; i < pos.size(); ++i)
TEST_EQUAL(pos[i], pos.size() - i - 1, ());
}
}
}
UNIT_TEST(Skew_Classic)
{
char const * s = "mississippi";
size_t const n = strlen(s);
vector<size_t> pos(n);
Skew(n, reinterpret_cast<const uint8_t *>(s), pos.data());
TEST_STR_EQUAL("i", s + pos[0], ());
TEST_STR_EQUAL("ippi", s + pos[1], ());
TEST_STR_EQUAL("issippi", s + pos[2], ());
TEST_STR_EQUAL("ississippi", s + pos[3], ());
TEST_STR_EQUAL("mississippi", s + pos[4], ());
TEST_STR_EQUAL("pi", s + pos[5], ());
TEST_STR_EQUAL("ppi", s + pos[6], ());
TEST_STR_EQUAL("sippi", s + pos[7], ());
TEST_STR_EQUAL("sissippi", s + pos[8], ());
TEST_STR_EQUAL("ssippi", s + pos[9], ());
TEST_STR_EQUAL("ssissippi", s + pos[10], ());
}
} // namespace

252
base/suffix_array.cpp Normal file
View file

@ -0,0 +1,252 @@
#include "base/suffix_array.hpp"
#include "base/assert.hpp"
#include <limits>
using namespace std;
namespace
{
bool LEQ(size_t a1, size_t a2, size_t b1, size_t b2)
{
if (a1 != b1)
return a1 < b1;
return a2 <= b2;
}
bool LEQ(size_t a1, size_t a2, size_t a3, size_t b1, size_t b2, size_t b3)
{
if (a1 != b1)
return a1 < b1;
return LEQ(a2, a3, b2, b3);
}
template <typename Values>
void RadixSort(size_t n, size_t const * keys, size_t maxValue, Values const & values,
size_t * resultKeys)
{
std::vector<size_t> count(maxValue);
for (size_t i = 0; i < n; ++i)
++count[values[keys[i]]];
for (size_t i = 1; i < maxValue; ++i)
count[i] += count[i - 1];
for (size_t i = n - 1; i < n; --i)
resultKeys[--count[values[keys[i]]]] = keys[i];
}
bool InLeftHalf(size_t n0, size_t pos) { return pos < n0; }
size_t RestoreIndex(size_t n0, size_t pos)
{
return InLeftHalf(n0, pos) ? pos * 3 + 1 : (pos - n0) * 3 + 2;
}
struct SkewWrapper
{
SkewWrapper(size_t n, uint8_t const * s) : m_n(n), m_s(s) {}
size_t size() const { return m_n; }
size_t operator[](size_t i) const
{
if (i < m_n)
return static_cast<size_t>(m_s[i]) + 1;
ASSERT_LESS(i, m_n + 3, ());
return 0;
}
size_t const m_n;
uint8_t const * const m_s;
};
template <typename Container>
struct Slice
{
Slice(Container const & c, size_t n, size_t offset) : m_c(c), m_n(n), m_offset(offset) {}
size_t operator[](size_t i) const { return m_c[i + m_offset]; }
const Container & m_c;
const size_t m_n;
const size_t m_offset;
};
template <typename Container>
Slice<Container> MakeSlice(Container const & c, size_t offset)
{
return Slice<Container>(c, c.size(), offset);
}
// Builds suffix array over the string s, where for all i < n: 0 < s[i] <= k.
//
// Result is written to the array |SA|, where SA[i] is the offset of
// the i-th ranked suffix.
//
// For implementation simplicity, it's assumed that s[n] = s[n + 1] = s[n + 2] =
// 0.
//
// Idea and implementation was inspired by "Simple Linear Work Suffix
// Array Construction" by Juha K¨arkk¨ainen and Peter Sanders.
template <typename S>
void RawSkew(size_t n, size_t maxValue, S const & s, size_t * sa)
{
size_t const kInvalidId = std::numeric_limits<size_t>::max();
if (n == 0)
return;
if (n == 1)
{
sa[0] = 0;
return;
}
// The number of =1 (mod 3) suffixes is the same as the number of =0
// (mod 3) suffixes.
const size_t n0 = (n + 2) / 3; // Number of =0 (mod 3) suffixes.
const size_t n1 = (n + 1) / 3; // Number of =1 (mod 3) suffixes.
const size_t n2 = n / 3; // Number of =2 (mod 3) suffixes.
const size_t n02 = n0 + n2;
const bool fake1 = n0 != n1;
ASSERT_EQUAL(n1 + fake1, n0, ());
ASSERT_EQUAL(fake1, (n % 3 == 1), ());
// Generate positions of =(1|2) (mod 3) suffixes.
std::vector<size_t> s12(n02 + 3);
std::vector<size_t> sa12(n02 + 3);
// (n0 - n1) is needed in case when n == 0 (mod 3). We need a fake
// =1 (mod 3) suffix for proper sorting of =0 (mod 3) suffixes.
// Therefore we force here that the number of =1 (mod 3) suffixes
// should be the same as the number of =0 (mod 3) suffixes. That's
// why we need that s[n] = s[n + 1] = s[n + 2] = 0.
for (size_t i = 0, j = 0; i < n + fake1; ++i)
{
if (i % 3 != 0)
s12[j++] = i;
}
RadixSort(n02, s12.data(), maxValue + 1, MakeSlice(s, 2), sa12.data());
RadixSort(n02, sa12.data(), maxValue + 1, MakeSlice(s, 1), s12.data());
RadixSort(n02, s12.data(), maxValue + 1, s, sa12.data());
// Generate lexicographic names for all =(1|2) (mod 3) triples.
size_t name = 0;
size_t c0 = kInvalidId;
size_t c1 = kInvalidId;
size_t c2 = kInvalidId;
for (size_t i = 0; i < n02; ++i)
{
auto const pos = sa12[i];
if (s[pos] != c0 || s[pos + 1] != c1 || s[pos + 2] != c2)
{
c0 = s[pos];
c1 = s[pos + 1];
c2 = s[pos + 2];
++name;
}
// Puts all =1 (mod 3) suffixes to the left part of s12, puts all
// =2 (mod 3) suffixes to the right part.
if (pos % 3 == 1)
s12[pos / 3] = name;
else
s12[pos / 3 + n0] = name;
}
if (name < n02)
{
// When not all triples unique, we need to build a suffix array
// for them.
RawSkew(n02, name, s12, sa12.data());
for (size_t i = 0; i < n02; ++i)
s12[sa12[i]] = i + 1;
}
else
{
// When all triples are unique, it's easy to build a suffix array.
for (size_t i = 0; i < n02; ++i)
sa12[s12[i] - 1] = i;
}
// SA12 is the suffix array for the string s12 now, and all symbols
// in s12 are unique.
// Need to do a stable sort for all =0 (mod 3) suffixes.
std::vector<size_t> s0(n0);
std::vector<size_t> sa0(n0);
for (size_t i = 0, j = 0; i < n02; ++i)
{
if (sa12[i] < n0)
s0[j++] = 3 * sa12[i];
}
// s0 is pre-sorted now in accordance with their tails (=1 (mod 3)
// suffixes). For full sorting we need to do a stable sort =0 (mod
// 3) suffixes in accordance with their first characters.
RadixSort(n0, s0.data(), maxValue + 1, s, sa0.data());
// SA0 is the suffix array for the string s0 now, and all symbols in
// s0 are unique.
// Okay, need to merge sorted =0 (mod 3) suffixes and =(1|2) (mod 3)
// suffixes.
size_t i0 = 0;
size_t i12 = fake1;
size_t k = 0;
while (i12 != n02 && i0 != n0)
{
const size_t p0 = sa0[i0];
const size_t p12 = RestoreIndex(n0, sa12[i12]);
ASSERT_LESS(p12 / 3, n0, ());
if (InLeftHalf(n0, sa12[i12]))
{
if (LEQ(s[p12], s12[sa12[i12] + n0], s[p0], s12[p0 / 3]))
{
// Suffix =(1|2) (mod 3) is smaller.
sa[k++] = p12;
++i12;
}
else
{
sa[k++] = p0;
++i0;
}
}
else
{
if (LEQ(s[p12], s[p12 + 1], s12[sa12[i12] - n0 + 1], s[p0], s[p0 + 1], s12[p0 / 3 + n0]))
{
// Suffix =(1|2) (mod 3) is smaller.
sa[k++] = p12;
++i12;
}
else
{
sa[k++] = p0;
++i0;
}
}
}
for (; i12 != n02; ++k, ++i12)
sa[k] = RestoreIndex(n0, sa12[i12]);
for (; i0 != n0; ++k, ++i0)
sa[k] = sa0[i0];
ASSERT_EQUAL(k, n, ());
}
} // namespace
namespace base
{
void Skew(size_t n, uint8_t const * s, size_t * sa)
{
RawSkew(n, 0xFF /* maxValue */, SkewWrapper(n, s), sa);
}
void Skew(std::string const & s, std::vector<size_t> & sa)
{
auto const n = s.size();
sa.assign(n, 0);
Skew(n, reinterpret_cast<const uint8_t *>(s.data()), sa.data());
}
} // namespace base

15
base/suffix_array.hpp Normal file
View file

@ -0,0 +1,15 @@
#pragma once
#include <cstdint>
#include <string>
#include <vector>
namespace base
{
// Builds suffix array for the string |s| and stores result in the
// |sa| array. Size of |sa| must be not less than |n|.
//
// Time complexity: O(n)
void Skew(size_t n, uint8_t const * s, size_t * sa);
void Skew(std::string const & s, std::vector<size_t> & sa);
} // namespace base