Turn generation massive refactoring.

This commit is contained in:
Lev Dragunov 2016-04-18 13:56:33 +03:00
parent 956647dc11
commit ffc40a5710
4 changed files with 336 additions and 347 deletions

View file

@ -50,12 +50,141 @@ double constexpr kMwmLoadedProgress = 10.0f;
double constexpr kPointsFoundProgress = 15.0f;
double constexpr kCrossPathFoundProgress = 50.0f;
double constexpr kPathFoundProgress = 70.0f;
// Osrm multiples seconds to 10, so we need to divide it back.
double constexpr kOSRMWeightToSecondsMultiplier = 1./10.;
double PiMinusTwoVectorsAngle(m2::PointD const & p, m2::PointD const & p1, m2::PointD const & p2)
{
return math::pi - ang::TwoVectorsAngle(p, p1, p2);
}
} // namespace
// TODO (ldragunov) Switch all RawRouteData and incapsulate to own omim types.
using RawRouteData = InternalRouteResult;
class OSRMRoutingResultGraph : public turns::IRoutingResultGraph
{
public:
virtual vector<turns::LoadedPathSegment> const & GetSegments() const override
{
return m_loadedSegments;
}
virtual void GetPossibleTurns(NodeID node, m2::PointD const & ingoingPoint,
m2::PointD const & junctionPoint,
turns::TTurnCandidates & candidates) const override
{
double const kReadCrossEpsilon = 1.0E-4;
double const kFeaturesNearTurnMeters = 3.0;
// Geting nodes by geometry.
vector<NodeID> geomNodes;
helpers::Point2Node p2n(m_routingMapping, geomNodes);
m_index.ForEachInRectForMWM(
p2n, m2::RectD(junctionPoint.x - kReadCrossEpsilon, junctionPoint.y - kReadCrossEpsilon,
junctionPoint.x + kReadCrossEpsilon, junctionPoint.y + kReadCrossEpsilon),
scales::GetUpperScale(), m_routingMapping.GetMwmId());
sort(geomNodes.begin(), geomNodes.end());
geomNodes.erase(unique(geomNodes.begin(), geomNodes.end()), geomNodes.end());
// Filtering virtual edges.
vector<NodeID> adjacentNodes;
for (EdgeID const e : m_routingMapping.m_dataFacade.GetAdjacentEdgeRange(node))
{
QueryEdge::EdgeData const data = m_routingMapping.m_dataFacade.GetEdgeData(e, node);
if (data.forward && !data.shortcut)
{
adjacentNodes.push_back(m_routingMapping.m_dataFacade.GetTarget(e));
ASSERT_NOT_EQUAL(m_routingMapping.m_dataFacade.GetTarget(e), SPECIAL_NODEID, ());
}
}
for (NodeID const adjacentNode : geomNodes)
{
if (adjacentNode == node)
continue;
for (EdgeID const e : m_routingMapping.m_dataFacade.GetAdjacentEdgeRange(adjacentNode))
{
if (m_routingMapping.m_dataFacade.GetTarget(e) != node)
continue;
QueryEdge::EdgeData const data = m_routingMapping.m_dataFacade.GetEdgeData(e, adjacentNode);
if (!data.shortcut && data.backward)
adjacentNodes.push_back(adjacentNode);
}
}
// Preparing candidates.
for (NodeID const targetNode : adjacentNodes)
{
auto const range = m_routingMapping.m_segMapping.GetSegmentsRange(targetNode);
OsrmMappingTypes::FtSeg seg;
m_routingMapping.m_segMapping.GetSegmentByIndex(range.first, seg);
if (!seg.IsValid())
continue;
FeatureType ft;
Index::FeaturesLoaderGuard loader(m_index, m_routingMapping.GetMwmId());
loader.GetFeatureByIndex(seg.m_fid, ft);
ft.ParseGeometry(FeatureType::BEST_GEOMETRY);
m2::PointD const outgoingPoint = ft.GetPoint(
seg.m_pointStart < seg.m_pointEnd ? seg.m_pointStart + 1 : seg.m_pointStart - 1);
ASSERT_LESS(MercatorBounds::DistanceOnEarth(junctionPoint, ft.GetPoint(seg.m_pointStart)),
kFeaturesNearTurnMeters, ());
double const a =
my::RadToDeg(PiMinusTwoVectorsAngle(junctionPoint, ingoingPoint, outgoingPoint));
candidates.emplace_back(a, targetNode, ftypes::GetHighwayClass(ft));
}
sort(candidates.begin(), candidates.end(),
[](turns::TurnCandidate const & t1, turns::TurnCandidate const & t2)
{
return t1.angle < t2.angle;
});
}
virtual double GetShortestPathLength() const override { return m_rawResult.shortestPathLength; }
virtual m2::PointD const & GetStartPoint() const override
{
return m_rawResult.sourceEdge.segmentPoint;
}
virtual m2::PointD const & GetEndPoint() const override
{
return m_rawResult.targetEdge.segmentPoint;
}
OSRMRoutingResultGraph(Index const & index, RoutingMapping & mapping, RawRoutingResult & result)
: m_rawResult(result), m_index(index), m_routingMapping(mapping)
{
for (auto const & pathSegments : m_rawResult.unpackedPathSegments)
{
auto numSegments = pathSegments.size();
m_loadedSegments.reserve(numSegments);
for (size_t segmentIndex = 0; segmentIndex < numSegments; ++segmentIndex)
{
bool isStartNode = (segmentIndex == 0);
bool isEndNode = (segmentIndex == numSegments - 1);
if (isStartNode || isEndNode)
{
m_loadedSegments.emplace_back(m_routingMapping, m_index, pathSegments[segmentIndex],
m_rawResult.sourceEdge, m_rawResult.targetEdge, isStartNode,
isEndNode);
}
else
{
m_loadedSegments.emplace_back(m_routingMapping, m_index, pathSegments[segmentIndex]);
}
}
}
}
~OSRMRoutingResultGraph() {}
private:
vector<turns::LoadedPathSegment> m_loadedSegments;
RawRoutingResult m_rawResult;
Index const & m_index;
RoutingMapping & m_routingMapping;
};
// static
bool OsrmRouter::CheckRoutingAbility(m2::PointD const & startPoint, m2::PointD const & finalPoint,
TCountryFileFn const & countryFileFn, Index * index)
@ -191,7 +320,8 @@ OsrmRouter::ResultCode OsrmRouter::MakeRouteFromCrossesPath(TCheckedPath const &
Route::TTimes mwmTimes;
Route::TStreets mwmStreets;
vector<m2::PointD> mwmPoints;
if (MakeTurnAnnotation(routingResult, mwmMapping, delegate, mwmPoints, mwmTurnsDir, mwmTimes, mwmStreets) != NoError)
OSRMRoutingResultGraph resultGraph(*m_pIndex, *mwmMapping, routingResult);
if (MakeTurnAnnotation(resultGraph, delegate, mwmPoints, mwmTurnsDir, mwmTimes, mwmStreets) != NoError)
{
LOG(LWARNING, ("Can't load road path data from disk for", mwmMapping->GetCountryName()));
return RouteNotFound;
@ -360,7 +490,8 @@ OsrmRouter::ResultCode OsrmRouter::CalculateRoute(m2::PointD const & startPoint,
Route::TStreets streets;
vector<m2::PointD> points;
if (MakeTurnAnnotation(routingResult, startMapping, delegate, points, turnsDir, times, streets) != NoError)
OSRMRoutingResultGraph resultGraph(*m_pIndex, *startMapping, routingResult);
if (MakeTurnAnnotation(resultGraph, delegate, points, turnsDir, times, streets) != NoError)
{
LOG(LWARNING, ("Can't load road path data from disk!"));
return RouteNotFound;
@ -419,149 +550,6 @@ IRouter::ResultCode OsrmRouter::FindPhantomNodes(m2::PointD const & point,
return NoError;
}
// @todo(vbykoianko) This method shall to be refactored. It shall be split into several
// methods. All the functionality shall be moved to the turns_generator unit.
// @todo(vbykoianko) For the time being MakeTurnAnnotation generates the turn annotation
// and the route polyline at the same time. It is better to generate it separately
// to be able to use the route without turn annotation.
OsrmRouter::ResultCode OsrmRouter::MakeTurnAnnotation(
RawRoutingResult const & routingResult, TRoutingMappingPtr const & mapping,
RouterDelegate const & delegate, vector<m2::PointD> & points, Route::TTurns & turnsDir,
Route::TTimes & times, Route::TStreets & streets)
{
ASSERT(mapping, ());
double estimatedTime = 0;
LOG(LDEBUG, ("Shortest path length:", routingResult.shortestPathLength));
#ifdef DEBUG
size_t lastIdx = 0;
#endif
for (auto const & pathSegments : routingResult.unpackedPathSegments)
{
INTERRUPT_WHEN_CANCELLED(delegate);
// Get all computed route coordinates.
size_t const numSegments = pathSegments.size();
// Construct loaded segments.
vector<turns::LoadedPathSegment> loadedSegments;
loadedSegments.reserve(numSegments);
for (size_t segmentIndex = 0; segmentIndex < numSegments; ++segmentIndex)
{
bool isStartNode = (segmentIndex == 0);
bool isEndNode = (segmentIndex == numSegments - 1);
if (isStartNode || isEndNode)
{
loadedSegments.emplace_back(*mapping, *m_pIndex, pathSegments[segmentIndex],
routingResult.sourceEdge, routingResult.targetEdge, isStartNode,
isEndNode);
}
else
{
loadedSegments.emplace_back(*mapping, *m_pIndex, pathSegments[segmentIndex]);
}
}
// Annotate turns.
size_t skipTurnSegments = 0;
for (size_t segmentIndex = 0; segmentIndex < numSegments; ++segmentIndex)
{
auto const & loadedSegment = loadedSegments[segmentIndex];
// ETA information.
double const nodeTimeSeconds = loadedSegment.m_weight * kOSRMWeightToSecondsMultiplier;
// Street names. I put empty names too, to avoid freezing old street name while riding on
// unnamed street.
streets.emplace_back(max(points.size(), static_cast<size_t>(1)) - 1, loadedSegment.m_name);
// Turns information.
if (segmentIndex > 0 && !points.empty() && skipTurnSegments == 0)
{
turns::TurnItem turnItem;
turnItem.m_index = static_cast<uint32_t>(points.size() - 1);
skipTurnSegments = CheckUTurnOnRoute(loadedSegments, segmentIndex, turnItem);
turns::TurnInfo turnInfo(loadedSegments[segmentIndex - 1], loadedSegments[segmentIndex]);
if (turnItem.m_turn == turns::TurnDirection::NoTurn)
turns::GetTurnDirection(*m_pIndex, *mapping, turnInfo, turnItem);
#ifdef DEBUG
double distMeters = 0.0;
for (size_t k = lastIdx + 1; k < points.size(); ++k)
distMeters += MercatorBounds::DistanceOnEarth(points[k - 1], points[k]);
LOG(LDEBUG, ("Speed:", 3.6 * distMeters / nodeTimeSeconds, "kmph; Dist:", distMeters, "Time:",
nodeTimeSeconds, "s", lastIdx, "e", points.size(), "source:", turnItem.m_sourceName,
"target:", turnItem.m_targetName));
lastIdx = points.size();
#endif
times.push_back(Route::TTimeItem(points.size(), estimatedTime));
// Lane information.
if (turnItem.m_turn != turns::TurnDirection::NoTurn)
{
turnItem.m_lanes = turnInfo.m_ingoing.m_lanes;
turnsDir.push_back(move(turnItem));
}
}
estimatedTime += nodeTimeSeconds;
if (skipTurnSegments > 0)
--skipTurnSegments;
// Path geometry.
points.insert(points.end(), loadedSegment.m_path.begin(), loadedSegment.m_path.end());
}
}
// Path found. Points will be replaced by start and end edges points.
if (points.size() == 1)
points.push_back(points.front());
if (points.size() < 2)
return RouteNotFound;
if (routingResult.sourceEdge.segment.IsValid())
points.front() = routingResult.sourceEdge.segmentPoint;
if (routingResult.targetEdge.segment.IsValid())
points.back() = routingResult.targetEdge.segmentPoint;
times.push_back(Route::TTimeItem(points.size() - 1, estimatedTime));
if (routingResult.targetEdge.segment.IsValid())
{
turnsDir.emplace_back(
turns::TurnItem(static_cast<uint32_t>(points.size()) - 1, turns::TurnDirection::ReachedYourDestination));
}
turns::FixupTurns(points, turnsDir);
#ifdef DEBUG
for (auto t : turnsDir)
{
LOG(LDEBUG, (turns::GetTurnString(t.m_turn), ":", t.m_index, t.m_sourceName, "-", t.m_targetName, "exit:", t.m_exitNum));
}
size_t last = 0;
double lastTime = 0;
for (Route::TTimeItem & t : times)
{
double dist = 0;
for (size_t i = last + 1; i <= t.first; ++i)
dist += MercatorBounds::DistanceOnEarth(points[i - 1], points[i]);
double time = t.second - lastTime;
LOG(LDEBUG, ("distance:", dist, "start:", last, "end:", t.first, "Time:", time, "Speed:", 3.6 * dist / time));
last = t.first;
lastTime = t.second;
}
#endif
LOG(LDEBUG, ("Estimated time:", estimatedTime, "s"));
return OsrmRouter::NoError;
}
} // namespace routing

View file

@ -6,7 +6,6 @@
#include "routing/router.hpp"
#include "routing/routing_mapping.hpp"
namespace feature { class TypesHolder; }
class Index;
@ -73,22 +72,6 @@ protected:
m2::PointD const & direction, TFeatureGraphNodeVec & res,
size_t maxCount, TRoutingMappingPtr const & mapping);
/*!
* \brief Compute turn and time estimation structs for OSRM raw route.
* \param routingResult OSRM routing result structure to annotate.
* \param mapping Feature mappings.
* \param delegate Routing callbacks delegate.
* \param points Storage for unpacked points of the path.
* \param turnsDir output turns annotation storage.
* \param times output times annotation storage.
* \param streets output street names along the path.
* \return routing operation result code.
*/
ResultCode MakeTurnAnnotation(RawRoutingResult const & routingResult,
TRoutingMappingPtr const & mapping, RouterDelegate const & delegate,
vector<m2::PointD> & points, Route::TTurns & turnsDir,
Route::TTimes & times, Route::TStreets & streets);
private:
/*!
* \brief Makes route (points turns and other annotations) from the map cross structs and submits

View file

@ -30,6 +30,9 @@ double constexpr kMinDistMeters = 200.;
size_t constexpr kNotSoCloseMaxPointsCount = 3;
double constexpr kNotSoCloseMinDistMeters = 30.;
// Osrm multiples seconds to 10, so we need to divide it back.
double constexpr kOSRMWeightToSecondsMultiplier = 1. / 10.;
typedef vector<double> TGeomTurnCandidate;
double PiMinusTwoVectorsAngle(m2::PointD const & p, m2::PointD const & p1, m2::PointD const & p2)
@ -37,27 +40,6 @@ double PiMinusTwoVectorsAngle(m2::PointD const & p, m2::PointD const & p1, m2::P
return math::pi - ang::TwoVectorsAngle(p, p1, p2);
}
/*!
* \brief The TurnCandidate struct contains information about possible ways from a junction.
*/
struct TurnCandidate
{
/*!
* angle is an angle of the turn in degrees. It means angle is 180 minus
* an angle between the current edge and the edge of the candidate. A counterclockwise rotation.
* The current edge is an edge which belongs the route and located before the junction.
* angle belongs to the range [-180; 180];
*/
double angle;
/*!
* node is a possible node (a possible way) from the juction.
*/
NodeID node;
TurnCandidate(double a, NodeID n) : angle(a), node(n) {}
};
using TTurnCandidates = vector<TurnCandidate>;
/*!
* \brief The Point2Geometry class is responsable for looking for all adjacent to junctionPoint
* road network edges. Including the current edge.
@ -103,31 +85,6 @@ public:
DISALLOW_COPY_AND_MOVE(Point2Geometry);
};
OsrmMappingTypes::FtSeg GetSegment(NodeID node, RoutingMapping const & routingMapping,
TGetIndexFunction GetIndex)
{
auto const segmentsRange = routingMapping.m_segMapping.GetSegmentsRange(node);
OsrmMappingTypes::FtSeg seg;
routingMapping.m_segMapping.GetSegmentByIndex(GetIndex(segmentsRange), seg);
return seg;
}
ftypes::HighwayClass GetOutgoingHighwayClass(NodeID outgoingNode,
RoutingMapping const & routingMapping,
Index const & index)
{
OsrmMappingTypes::FtSeg const seg =
GetSegment(outgoingNode, routingMapping, GetFirstSegmentPointIndex);
if (!seg.IsValid())
return ftypes::HighwayClass::Error;
Index::FeaturesLoaderGuard loader(index, routingMapping.GetMwmId());
FeatureType ft;
loader.GetFeatureByIndex(seg.m_fid, ft);
return ftypes::GetHighwayClass(ft);
}
/*!
* \brief Returns false when
* - the route leads from one big road to another one;
@ -135,8 +92,7 @@ ftypes::HighwayClass GetOutgoingHighwayClass(NodeID outgoingNode,
* - and the turn is GoStraight or TurnSlight*.
*/
bool KeepTurnByHighwayClass(TurnDirection turn, TTurnCandidates const & possibleTurns,
TurnInfo const & turnInfo, Index const & index,
RoutingMapping & mapping)
TurnInfo const & turnInfo)
{
if (!IsGoStraightOrSlightTurn(turn))
return true; // The road significantly changes its direction here. So this turn shall be kept.
@ -150,7 +106,7 @@ bool KeepTurnByHighwayClass(TurnDirection turn, TTurnCandidates const & possible
{
if (t.node == turnInfo.m_outgoing.m_nodeId)
continue;
ftypes::HighwayClass const highwayClass = GetOutgoingHighwayClass(t.node, mapping, index);
ftypes::HighwayClass const highwayClass = t.highwayClass;
if (static_cast<int>(highwayClass) > static_cast<int>(maxClassForPossibleTurns))
maxClassForPossibleTurns = highwayClass;
}
@ -183,15 +139,13 @@ bool KeepTurnByHighwayClass(TurnDirection turn, TTurnCandidates const & possible
* \brief Returns false when other possible turns leads to service roads;
*/
bool KeepRoundaboutTurnByHighwayClass(TurnDirection turn, TTurnCandidates const & possibleTurns,
TurnInfo const & turnInfo, Index const & index,
RoutingMapping & mapping)
TurnInfo const & turnInfo)
{
for (auto const & t : possibleTurns)
{
if (t.node == turnInfo.m_outgoing.m_nodeId)
continue;
ftypes::HighwayClass const highwayClass = GetOutgoingHighwayClass(t.node, mapping, index);
if (static_cast<int>(highwayClass) != static_cast<int>(ftypes::HighwayClass::Service))
if (static_cast<int>(t.highwayClass) != static_cast<int>(ftypes::HighwayClass::Service))
return true;
}
return false;
@ -206,51 +160,10 @@ bool DiscardTurnByIngoingAndOutgoingEdges(TurnDirection intermediateDirection,
turn.m_sourceName == turn.m_targetName;
}
/*!
* \brief GetTurnGeometry looks for all the road network edges near ingoingPoint.
* GetTurnGeometry fills candidates with angles of all the incoming and outgoint segments.
* \warning GetTurnGeometry should be used carefully because it's a time-consuming function.
* \warning In multilevel crossroads there is an insignificant possibility that candidates
* is filled with redundant segments of roads of different levels.
*/
void GetTurnGeometry(m2::PointD const & junctionPoint, m2::PointD const & ingoingPoint,
TGeomTurnCandidate & candidates, RoutingMapping const & mapping,
Index const & index)
{
Point2Geometry getter(junctionPoint, ingoingPoint, candidates);
index.ForEachInRectForMWM(
getter, MercatorBounds::RectByCenterXYAndSizeInMeters(junctionPoint, kFeaturesNearTurnMeters),
scales::GetUpperScale(), mapping.GetMwmId());
}
/*!
* \param junctionPoint is a point of the junction.
* \param ingoingPointOneSegment is a point one segment before the junction along the route.
* \param mapping is a route mapping.
* \return number of all the segments which joins junctionPoint. That means
* the number of ingoing segments plus the number of outgoing segments.
* \warning NumberOfIngoingAndOutgoingSegments should be used carefully because
* it's a time-consuming function.
* \warning In multilevel crossroads there is an insignificant possibility that the returned value
* contains redundant segments of roads of different levels.
*/
size_t NumberOfIngoingAndOutgoingSegments(m2::PointD const & junctionPoint,
m2::PointD const & ingoingPointOneSegment,
RoutingMapping const & mapping, Index const & index)
{
TGeomTurnCandidate geoNodes;
// TODO(vbykoianko) It is repeating of a time consumption operation. The first time
// the geometry is extracted in GetPossibleTurns and the second time here.
// It shall be fixed. For the time being this repeating time consumption method
// is called relevantly seldom.
GetTurnGeometry(junctionPoint, ingoingPointOneSegment, geoNodes, mapping, index);
return geoNodes.size();
}
bool KeepTurnByIngoingEdges(m2::PointD const & junctionPoint,
m2::PointD const & ingoingPointOneSegment,
m2::PointD const & outgoingPoint, bool hasMultiTurns,
RoutingMapping const & routingMapping, Index const & index)
TTurnCandidates const & nodes)
{
double const turnAngle =
my::RadToDeg(PiMinusTwoVectorsAngle(junctionPoint, ingoingPointOneSegment, outgoingPoint));
@ -259,9 +172,7 @@ bool KeepTurnByIngoingEdges(m2::PointD const & junctionPoint,
// The code below is resposible for cases when there is only one way to leave the junction.
// Such junction has to be kept as a turn when it's not a slight turn and it has ingoing edges
// (one or more);
return hasMultiTurns || (!isGoStraightOrSlightTurn &&
NumberOfIngoingAndOutgoingSegments(junctionPoint, ingoingPointOneSegment,
routingMapping, index) > 2);
return hasMultiTurns || (!isGoStraightOrSlightTurn && nodes.size() > 2);
}
bool FixupLaneSet(TurnDirection turn, vector<SingleLaneInfo> & lanes,
@ -375,81 +286,6 @@ m2::PointD GetPointForTurn(vector<m2::PointD> const & path, m2::PointD const & j
return nextPoint;
}
// OSRM graph contains preprocessed edges without proper information about adjecency.
// So, to determine we must read the nearest geometry and check its adjacency by OSRM road graph.
void GetPossibleTurns(Index const & index, NodeID node, m2::PointD const & ingoingPoint,
m2::PointD const & junctionPoint, RoutingMapping & routingMapping,
TTurnCandidates & candidates)
{
double const kReadCrossEpsilon = 1.0E-4;
// Geting nodes by geometry.
vector<NodeID> geomNodes;
helpers::Point2Node p2n(routingMapping, geomNodes);
index.ForEachInRectForMWM(
p2n, m2::RectD(junctionPoint.x - kReadCrossEpsilon, junctionPoint.y - kReadCrossEpsilon,
junctionPoint.x + kReadCrossEpsilon, junctionPoint.y + kReadCrossEpsilon),
scales::GetUpperScale(), routingMapping.GetMwmId());
sort(geomNodes.begin(), geomNodes.end());
geomNodes.erase(unique(geomNodes.begin(), geomNodes.end()), geomNodes.end());
// Filtering virtual edges.
vector<NodeID> adjacentNodes;
for (EdgeID const e : routingMapping.m_dataFacade.GetAdjacentEdgeRange(node))
{
QueryEdge::EdgeData const data = routingMapping.m_dataFacade.GetEdgeData(e, node);
if (data.forward && !data.shortcut)
{
adjacentNodes.push_back(routingMapping.m_dataFacade.GetTarget(e));
ASSERT_NOT_EQUAL(routingMapping.m_dataFacade.GetTarget(e), SPECIAL_NODEID, ());
}
}
for (NodeID const adjacentNode : geomNodes)
{
if (adjacentNode == node)
continue;
for (EdgeID const e : routingMapping.m_dataFacade.GetAdjacentEdgeRange(adjacentNode))
{
if (routingMapping.m_dataFacade.GetTarget(e) != node)
continue;
QueryEdge::EdgeData const data = routingMapping.m_dataFacade.GetEdgeData(e, adjacentNode);
if (!data.shortcut && data.backward)
adjacentNodes.push_back(adjacentNode);
}
}
// Preparing candidates.
for (NodeID const targetNode : adjacentNodes)
{
auto const range = routingMapping.m_segMapping.GetSegmentsRange(targetNode);
OsrmMappingTypes::FtSeg seg;
routingMapping.m_segMapping.GetSegmentByIndex(range.first, seg);
if (!seg.IsValid())
continue;
FeatureType ft;
Index::FeaturesLoaderGuard loader(index, routingMapping.GetMwmId());
loader.GetFeatureByIndex(seg.m_fid, ft);
ft.ParseGeometry(FeatureType::BEST_GEOMETRY);
m2::PointD const outgoingPoint = ft.GetPoint(
seg.m_pointStart < seg.m_pointEnd ? seg.m_pointStart + 1 : seg.m_pointStart - 1);
ASSERT_LESS(MercatorBounds::DistanceOnEarth(junctionPoint, ft.GetPoint(seg.m_pointStart)),
kFeaturesNearTurnMeters, ());
double const a = my::RadToDeg(PiMinusTwoVectorsAngle(junctionPoint, ingoingPoint, outgoingPoint));
candidates.emplace_back(a, targetNode);
}
sort(candidates.begin(), candidates.end(), [](TurnCandidate const & t1, TurnCandidate const & t2)
{
return t1.angle < t2.angle;
});
}
size_t GetIngoingPointIndex(const size_t start, const size_t end, const size_t i)
{
return end > start ? end - i : end + i;
@ -472,7 +308,7 @@ LoadedPathSegment::LoadedPathSegment(RoutingMapping & mapping, Index const & ind
: m_highwayClass(ftypes::HighwayClass::Undefined)
, m_onRoundabout(false)
, m_isLink(false)
, m_weight(osrmPathSegment.segmentWeight)
, m_weight(osrmPathSegment.segmentWeight * kOSRMWeightToSecondsMultiplier)
, m_nodeId(osrmPathSegment.node)
{
buffer_vector<TSeg, 8> buffer;
@ -625,6 +461,7 @@ LoadedPathSegment::LoadedPathSegment(RoutingMapping & mapping, Index const & ind
size_t endIndex = isEndNode ? findIntersectingSeg(endGraphNode.segment) + 1 : buffer.size();
LoadPathGeometry(buffer, startIndex, endIndex, index, mapping, startGraphNode, endGraphNode, isStartNode,
isEndNode);
m_weight *= kOSRMWeightToSecondsMultiplier;
}
bool TurnInfo::IsSegmentsValid() const
@ -637,6 +474,123 @@ bool TurnInfo::IsSegmentsValid() const
return true;
}
// @todo(vbykoianko) This method shall to be refactored. It shall be split into several
// methods. All the functionality shall be moved to the turns_generator unit.
// @todo(vbykoianko) For the time being MakeTurnAnnotation generates the turn annotation
// and the route polyline at the same time. It is better to generate it separately
// to be able to use the route without turn annotation.
IRouter::ResultCode MakeTurnAnnotation(turns::IRoutingResultGraph const & result,
RouterDelegate const & delegate, vector<m2::PointD> & points,
Route::TTurns & turnsDir, Route::TTimes & times,
Route::TStreets & streets)
{
double estimatedTime = 0;
LOG(LDEBUG, ("Shortest th length:", result.GetShortestPathLength()));
#ifdef DEBUG
size_t lastIdx = 0;
#endif
if (delegate.IsCancelled())
return IRouter::Cancelled;
// Annotate turns.
size_t skipTurnSegments = 0;
auto const & loadedSegments = result.GetSegments();
for (auto loadedSegmentIt = loadedSegments.cbegin(); loadedSegmentIt != loadedSegments.cend();
++loadedSegmentIt)
{
// ETA information.
double const nodeTimeSeconds = loadedSegmentIt->m_weight;
// Street names. I put empty names too, to avoid freezing old street name while riding on
// unnamed street.
streets.emplace_back(max(points.size(), static_cast<size_t>(1)) - 1, loadedSegmentIt->m_name);
// Turns information.
if (!points.empty() && skipTurnSegments == 0)
{
turns::TurnItem turnItem;
turnItem.m_index = static_cast<uint32_t>(points.size() - 1);
size_t segmentIndex = distance(loadedSegments.begin(), loadedSegmentIt);
skipTurnSegments = CheckUTurnOnRoute(loadedSegments, segmentIndex, turnItem);
turns::TurnInfo turnInfo(loadedSegments[segmentIndex - 1], *loadedSegmentIt);
if (turnItem.m_turn == turns::TurnDirection::NoTurn)
turns::GetTurnDirection(result, turnInfo, turnItem);
#ifdef DEBUG
double distMeters = 0.0;
for (size_t k = lastIdx + 1; k < points.size(); ++k)
distMeters += MercatorBounds::DistanceOnEarth(points[k - 1], points[k]);
LOG(LDEBUG, ("Speed:", 3.6 * distMeters / nodeTimeSeconds, "kmph; Dist:", distMeters, "Time:",
nodeTimeSeconds, "s", lastIdx, "e", points.size(), "source:",
turnItem.m_sourceName, "target:", turnItem.m_targetName));
lastIdx = points.size();
#endif
times.push_back(Route::TTimeItem(points.size(), estimatedTime));
// Lane information.
if (turnItem.m_turn != turns::TurnDirection::NoTurn)
{
turnItem.m_lanes = turnInfo.m_ingoing.m_lanes;
turnsDir.push_back(move(turnItem));
}
}
estimatedTime += nodeTimeSeconds;
if (skipTurnSegments > 0)
--skipTurnSegments;
// Path geometry.
points.insert(points.end(), loadedSegmentIt->m_path.begin(), loadedSegmentIt->m_path.end());
}
// Path found. Points will be replaced by start and end edges points.
if (points.size() == 1)
points.push_back(points.front());
if (points.size() < 2)
return IRouter::ResultCode::RouteNotFound;
points.front() = result.GetStartPoint();
points.back() = result.GetEndPoint();
times.push_back(Route::TTimeItem(points.size() - 1, estimatedTime));
turnsDir.emplace_back(turns::TurnItem(static_cast<uint32_t>(points.size()) - 1,
turns::TurnDirection::ReachedYourDestination));
turns::FixupTurns(points, turnsDir);
#ifdef DEBUG
for (auto t : turnsDir)
{
LOG(LDEBUG, (turns::GetTurnString(t.m_turn), ":", t.m_index, t.m_sourceName, "-",
t.m_targetName, "exit:", t.m_exitNum));
}
size_t last = 0;
double lastTime = 0;
for (Route::TTimeItem & t : times)
{
double dist = 0;
for (size_t i = last + 1; i <= t.first; ++i)
dist += MercatorBounds::DistanceOnEarth(points[i - 1], points[i]);
double time = t.second - lastTime;
LOG(LDEBUG, ("distance:", dist, "start:", last, "end:", t.first, "Time:", time, "Speed:",
3.6 * dist / time));
last = t.first;
lastTime = t.second;
}
#endif
LOG(LDEBUG, ("Estimated time:", estimatedTime, "s"));
return IRouter::ResultCode::NoError;
}
double CalculateMercatorDistanceAlongPath(uint32_t startPointIndex, uint32_t endPointIndex,
vector<m2::PointD> const & points)
{
@ -835,8 +789,7 @@ TurnDirection IntermediateDirection(const double angle)
return FindDirectionByAngle(kLowerBounds, angle);
}
void GetTurnDirection(Index const & index, RoutingMapping & mapping, TurnInfo & turnInfo,
TurnItem & turn)
void GetTurnDirection(IRoutingResultGraph const & result, TurnInfo & turnInfo, TurnItem & turn)
{
if (!turnInfo.IsSegmentsValid())
return;
@ -867,8 +820,8 @@ void GetTurnDirection(Index const & index, RoutingMapping & mapping, TurnInfo &
ASSERT_GREATER(turnInfo.m_ingoing.m_path.size(), 1, ());
m2::PointD const ingoingPointOneSegment = turnInfo.m_ingoing.m_path[turnInfo.m_ingoing.m_path.size() - 2];
TTurnCandidates nodes;
GetPossibleTurns(index, turnInfo.m_ingoing.m_nodeId, ingoingPointOneSegment, junctionPoint,
mapping, nodes);
result.GetPossibleTurns(turnInfo.m_ingoing.m_nodeId, ingoingPointOneSegment, junctionPoint,
nodes);
size_t const numNodes = nodes.size();
bool const hasMultiTurns = numNodes > 1;
@ -892,14 +845,15 @@ void GetTurnDirection(Index const & index, RoutingMapping & mapping, TurnInfo &
if (turnInfo.m_ingoing.m_onRoundabout || turnInfo.m_outgoing.m_onRoundabout)
{
bool const keepTurnByHighwayClass = KeepRoundaboutTurnByHighwayClass(turn.m_turn, nodes, turnInfo, index, mapping);
bool const keepTurnByHighwayClass =
KeepRoundaboutTurnByHighwayClass(turn.m_turn, nodes, turnInfo);
turn.m_turn = GetRoundaboutDirection(turnInfo.m_ingoing.m_onRoundabout,
turnInfo.m_outgoing.m_onRoundabout, hasMultiTurns,
keepTurnByHighwayClass);
return;
}
bool const keepTurnByHighwayClass = KeepTurnByHighwayClass(turn.m_turn, nodes, turnInfo, index, mapping);
bool const keepTurnByHighwayClass = KeepTurnByHighwayClass(turn.m_turn, nodes, turnInfo);
if (!turn.m_keepAnyway && !keepTurnByHighwayClass)
{
turn.m_turn = TurnDirection::NoTurn;
@ -911,7 +865,7 @@ void GetTurnDirection(Index const & index, RoutingMapping & mapping, TurnInfo &
kNotSoCloseMinDistMeters, GetIngoingPointIndex);
if (!KeepTurnByIngoingEdges(junctionPoint, notSoCloseToTheTurnPoint, outgoingPoint, hasMultiTurns,
mapping, index))
nodes))
{
turn.m_turn = TurnDirection::NoTurn;
return;

View file

@ -3,6 +3,7 @@
#include "routing/osrm2feature_map.hpp"
#include "routing/osrm_engine.hpp"
#include "routing/route.hpp"
#include "routing/router.hpp"
#include "routing/turns.hpp"
#include "std/function.hpp"
@ -61,6 +62,69 @@ private:
FeatureGraphNode const & endGraphNode, bool isStartNode, bool isEndNode);
};
/*!
* \brief The TurnCandidate struct contains information about possible ways from a junction.
*/
struct TurnCandidate
{
/*!
* angle is an angle of the turn in degrees. It means angle is 180 minus
* an angle between the current edge and the edge of the candidate. A counterclockwise rotation.
* The current edge is an edge which belongs the route and located before the junction.
* angle belongs to the range [-180; 180];
*/
double angle;
/*!
* node is a possible node (a possible way) from the juction.
* May be NodeId for OSRM router or FeatureId::index for graph router.
*/
uint32_t node;
/*!
* \brief highwayClass field for the road class caching. Because feature reading is a long
* function.
*/
ftypes::HighwayClass highwayClass;
TurnCandidate(double a, uint32_t n, ftypes::HighwayClass c) : angle(a), node(n), highwayClass(c)
{
}
};
using TTurnCandidates = vector<TurnCandidate>;
/*!
* \brief The IRoutingResultGraph interface for the routing result. Uncouple router from the
* annotation code that describes turns. See routers for detail implementations.
*/
class IRoutingResultGraph
{
public:
virtual vector<LoadedPathSegment> const & GetSegments() const = 0;
virtual void GetPossibleTurns(NodeID node, m2::PointD const & ingoingPoint,
m2::PointD const & junctionPoint,
TTurnCandidates & candidates) const = 0;
virtual double GetShortestPathLength() const = 0;
virtual m2::PointD const & GetStartPoint() const = 0;
virtual m2::PointD const & GetEndPoint() const = 0;
virtual ~IRoutingResultGraph() {}
};
/*!
* \brief Compute turn and time estimation structs for the abstract route result.
* \param routingResult abstract routing result to annotate.
* \param delegate Routing callbacks delegate.
* \param points Storage for unpacked points of the path.
* \param turnsDir output turns annotation storage.
* \param times output times annotation storage.
* \param streets output street names along the path.
* \return routing operation result code.
*/
IRouter::ResultCode MakeTurnAnnotation(turns::IRoutingResultGraph const & result,
RouterDelegate const & delegate, vector<m2::PointD> & points,
Route::TTurns & turnsDir, Route::TTimes & times,
Route::TStreets & streets);
/*!
* \brief The TurnInfo struct is a representation of a junction.
* It has ingoing and outgoing edges and method to check if these edges are valid.
@ -141,7 +205,7 @@ TurnDirection GetRoundaboutDirection(bool isIngoingEdgeRoundabout, bool isOutgoi
* \param turnInfo is used for cashing some information while turn calculation.
* \param turn is used for keeping the result of turn calculation.
*/
void GetTurnDirection(Index const & index, RoutingMapping & mapping, turns::TurnInfo & turnInfo,
void GetTurnDirection(IRoutingResultGraph const & result, turns::TurnInfo & turnInfo,
TurnItem & turn);
/*!