Review fixes.

This commit is contained in:
Yuri Gorshenin 2016-03-11 16:34:30 +03:00 committed by Sergey Yershov
parent 7688edb302
commit e80c37d241
3 changed files with 13 additions and 10 deletions

View file

@ -183,6 +183,8 @@ int main(int argc, char * argv[])
ASSERT_EQUAL(results.size(), relevances.size(), ());
for (size_t j = 0; j < results.size(); ++j)
{
if (results[j].GetResultType() != Result::RESULT_FEATURE)
continue;
auto const & info = results[j].GetRankingInfo();
cout << i << ",";
info.ToCSV(cout);

View file

@ -64,11 +64,11 @@ def compute_ndcg_for_w(data, w):
return np.array(ndcgs)
def gradient_descent(w_init, grad, eps=1e-6, lam=1e-3, num_steps=1000):
def gradient_descent(w_init, grad, eps=1e-6, rate=1e-6, lam=1e-3, num_steps=1000):
n = len(w_init)
w, dw = np.copy(w_init), np.zeros(n)
for step in range(1, num_steps):
wn = w - eps / step * grad(w) + lam * dw
wn = w - rate / step * grad(w) + lam * dw
w, dw = wn, wn - w
if np.linalg.norm(dw) < eps:
break
@ -107,14 +107,15 @@ class RankingSVMLoss:
Simple version of a loss function for a ranked list of features
has following form:
loss(w) = sum{i, j: max(0, 1 - sign(y[j] - y[i]) * dot(w, x[j] - x[i]))} + lam * dot(w, w)
loss(w) = sum{i < j: max(0, 1 - sign(y[j] - y[i]) * dot(w, x[j] - x[i]))} + lam * dot(w, w)
This version is slightly modified, as we dealing with a group of
ranked lists, so loss function is actually a weighted sum of loss
values for each list, where each weight is a 1 / list size.
This version is slightly modified, as we are dealing with a group
of ranked lists, so loss function is actually a weighted sum of
loss values for each list, where each weight is a 1 / list size.
"""
def sign(self, x):
@staticmethod
def sign(x):
if x < 0:
return -1
elif x > 0:
@ -166,11 +167,11 @@ def main():
grad = lambda w: loss.gradient(w)
num_steps = 1000
for i in range(1, num_steps + 1):
for i in range(num_steps):
if ((i * 100) % num_steps == 0):
print((i * 100) // num_steps, '%')
w_init = np.random.random(len(FEATURES))
w = gradient_descent(w_init, grad, eps=0.01)
w = gradient_descent(w_init, grad, eps=0.01, rate=0.01)
mean = np.mean(compute_ndcg_for_w(data, w))
if mean > best_mean:
best_mean, best_w = mean, w

View file

@ -25,7 +25,7 @@ struct RankingInfo
// Score for the feature's name.
NameScore m_nameScore = NAME_SCORE_ZERO;
// Number of tokens from the query matched to a feature name.
// Fraction of tokens from the query matched to a feature name.
double m_nameCoverage = 0;
// Search type for the feature.