forked from organicmaps/organicmaps-tmp
Review fixes.
This commit is contained in:
parent
7688edb302
commit
e80c37d241
3 changed files with 13 additions and 10 deletions
|
@ -183,6 +183,8 @@ int main(int argc, char * argv[])
|
|||
ASSERT_EQUAL(results.size(), relevances.size(), ());
|
||||
for (size_t j = 0; j < results.size(); ++j)
|
||||
{
|
||||
if (results[j].GetResultType() != Result::RESULT_FEATURE)
|
||||
continue;
|
||||
auto const & info = results[j].GetRankingInfo();
|
||||
cout << i << ",";
|
||||
info.ToCSV(cout);
|
||||
|
|
|
@ -64,11 +64,11 @@ def compute_ndcg_for_w(data, w):
|
|||
return np.array(ndcgs)
|
||||
|
||||
|
||||
def gradient_descent(w_init, grad, eps=1e-6, lam=1e-3, num_steps=1000):
|
||||
def gradient_descent(w_init, grad, eps=1e-6, rate=1e-6, lam=1e-3, num_steps=1000):
|
||||
n = len(w_init)
|
||||
w, dw = np.copy(w_init), np.zeros(n)
|
||||
for step in range(1, num_steps):
|
||||
wn = w - eps / step * grad(w) + lam * dw
|
||||
wn = w - rate / step * grad(w) + lam * dw
|
||||
w, dw = wn, wn - w
|
||||
if np.linalg.norm(dw) < eps:
|
||||
break
|
||||
|
@ -107,14 +107,15 @@ class RankingSVMLoss:
|
|||
Simple version of a loss function for a ranked list of features
|
||||
has following form:
|
||||
|
||||
loss(w) = sum{i, j: max(0, 1 - sign(y[j] - y[i]) * dot(w, x[j] - x[i]))} + lam * dot(w, w)
|
||||
loss(w) = sum{i < j: max(0, 1 - sign(y[j] - y[i]) * dot(w, x[j] - x[i]))} + lam * dot(w, w)
|
||||
|
||||
This version is slightly modified, as we dealing with a group of
|
||||
ranked lists, so loss function is actually a weighted sum of loss
|
||||
values for each list, where each weight is a 1 / list size.
|
||||
This version is slightly modified, as we are dealing with a group
|
||||
of ranked lists, so loss function is actually a weighted sum of
|
||||
loss values for each list, where each weight is a 1 / list size.
|
||||
"""
|
||||
|
||||
def sign(self, x):
|
||||
@staticmethod
|
||||
def sign(x):
|
||||
if x < 0:
|
||||
return -1
|
||||
elif x > 0:
|
||||
|
@ -166,11 +167,11 @@ def main():
|
|||
grad = lambda w: loss.gradient(w)
|
||||
|
||||
num_steps = 1000
|
||||
for i in range(1, num_steps + 1):
|
||||
for i in range(num_steps):
|
||||
if ((i * 100) % num_steps == 0):
|
||||
print((i * 100) // num_steps, '%')
|
||||
w_init = np.random.random(len(FEATURES))
|
||||
w = gradient_descent(w_init, grad, eps=0.01)
|
||||
w = gradient_descent(w_init, grad, eps=0.01, rate=0.01)
|
||||
mean = np.mean(compute_ndcg_for_w(data, w))
|
||||
if mean > best_mean:
|
||||
best_mean, best_w = mean, w
|
||||
|
|
|
@ -25,7 +25,7 @@ struct RankingInfo
|
|||
// Score for the feature's name.
|
||||
NameScore m_nameScore = NAME_SCORE_ZERO;
|
||||
|
||||
// Number of tokens from the query matched to a feature name.
|
||||
// Fraction of tokens from the query matched to a feature name.
|
||||
double m_nameCoverage = 0;
|
||||
|
||||
// Search type for the feature.
|
||||
|
|
Loading…
Add table
Reference in a new issue