forked from organicmaps/organicmaps
Added scripts for transit data preprocessing.
This commit is contained in:
parent
b5b9437df3
commit
68c25e1b5b
4 changed files with 476 additions and 0 deletions
|
@ -145,6 +145,9 @@
|
|||
<li><a href="http://www.freetype.org">FreeType</a><br>
|
||||
© 2013 The FreeType Project; <a href="#freetype-license" class="license">FTL</a></li>
|
||||
|
||||
<li><a href="https://github.com/empet/Geometric-Modeling">Geometric Modeling</a><br>
|
||||
© 2015 Emilia Petrisor; <a href="#bsd2-license" class="license">BSD License</a></li>
|
||||
|
||||
<Li><a href="https://github.com/bumptech/glide">Glide</a><br>
|
||||
© 2014 Google Inc.; <a href="#bsd3-license" class="license">BSD License;</a> <a href="#mit-license" class="license">MIT License;</a>
|
||||
<a href="#apache2-license" class="license">Apache License</a></li>
|
||||
|
|
89
tools/python/transit/bezier_curves.py
Normal file
89
tools/python/transit/bezier_curves.py
Normal file
|
@ -0,0 +1,89 @@
|
|||
"""Copyright (c) 2015, Emilia Petrisor
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def knot_interval(i_pts, alpha=0.5, closed=False):
|
||||
if len(i_pts) < 4:
|
||||
raise ValueError('CR-curves need at least 4 interpolatory points')
|
||||
# i_pts is the list of interpolatory points P[0], P[1], ... P[n]
|
||||
if closed:
|
||||
i_pts += [i_pts[0], i_pts[1], i_pts[2]]
|
||||
i_pts = np.array(i_pts)
|
||||
dist = np.linalg.norm(i_pts[1:, :] - i_pts[:-1, :], axis=1)
|
||||
return dist ** alpha
|
||||
|
||||
|
||||
def ctrl_bezier(P, d):
|
||||
# Associate to 4 consecutive interpolatory points and the corresponding three d-values,
|
||||
# the Bezier control points
|
||||
if len(P) != len(d) + 1 != 4:
|
||||
raise ValueError('The list of points and knot intervals have inappropriate len ')
|
||||
P = np.array(P)
|
||||
bz = [0] * 4
|
||||
bz[0] = P[1]
|
||||
bz[1] = (d[0] ** 2 * P[2] - d[1] ** 2 * P[0] + (2 * d[0] ** 2 + 3 * d[0] * d[1] + d[1] ** 2) * P[1]) / (
|
||||
3 * d[0] * (d[0] + d[1]))
|
||||
bz[2] = (d[2] ** 2 * P[1] - d[1] ** 2 * P[3] + (2 * d[2] ** 2 + 3 * d[2] * d[1] + d[1] ** 2) * P[2]) / (
|
||||
3 * d[2] * (d[1] + d[2]))
|
||||
bz[3] = P[2]
|
||||
return bz
|
||||
|
||||
|
||||
def Bezier_curve(bz, nr=100):
|
||||
# implements the de Casteljau algorithm to compute nr points on a Bezier curve
|
||||
t = np.linspace(0, 1, nr)
|
||||
N = len(bz)
|
||||
points = [] # the list of points to be computed on the Bezier curve
|
||||
for i in range(nr): # for each parameter t[i] evaluate a point on the Bezier curve
|
||||
# via De Casteljau algorithm
|
||||
aa = np.copy(bz)
|
||||
for r in range(1, N):
|
||||
aa[:N - r, :] = (1 - t[i]) * aa[:N - r, :] + t[i] * aa[1:N - r + 1, :] # convex combination
|
||||
points.append(aa[0, :])
|
||||
return points
|
||||
|
||||
|
||||
def Catmull_Rom(i_pts, alpha=0.5, closed=False):
|
||||
# returns the list of points computed on the interpolating CR curve
|
||||
# i_pts the list of interpolatory points P[0], P[1], ...P[n]
|
||||
curve_pts = [] # the list of all points to be computed on the CR curve
|
||||
d = knot_interval(i_pts, alpha=alpha, closed=closed)
|
||||
for k in range(len(i_pts) - 3):
|
||||
cb = ctrl_bezier(i_pts[k:k + 4], d[k:k + 3])
|
||||
curve_pts.extend(Bezier_curve(cb, nr=100))
|
||||
|
||||
return np.array(curve_pts)
|
||||
|
||||
|
||||
def segment_to_Catmull_Rom_curve(p1, s1, s2, p2, nr=100, alpha=0.5):
|
||||
i_pts = [p1, s1, s2, p2]
|
||||
# returns the list of points computed on the interpolating CR curve
|
||||
# i_pts the list of interpolatory points P[0], P[1], ...P[n]
|
||||
curve_pts = [] # the list of all points to be computed on the CR curve
|
||||
d = knot_interval(i_pts, alpha=alpha, closed=False)
|
||||
cb = ctrl_bezier(i_pts, d)
|
||||
curve_pts.extend(Bezier_curve(cb, nr=nr))
|
||||
return curve_pts
|
34
tools/python/transit/transit_color_palette.py
Normal file
34
tools/python/transit/transit_color_palette.py
Normal file
|
@ -0,0 +1,34 @@
|
|||
transit_palette = ["000000",
|
||||
"ff0000",
|
||||
"00ff00",
|
||||
"0000ff"]
|
||||
|
||||
|
||||
def to_rgb(color_str):
|
||||
if len(color_str) != 6:
|
||||
return (0, 0, 0)
|
||||
r = int('0x' + color_str[0:2], 16)
|
||||
g = int('0x' + color_str[2:4], 16)
|
||||
b = int('0x' + color_str[4:], 16)
|
||||
return (r, g, b)
|
||||
|
||||
|
||||
class Palette:
|
||||
def __init__(self, colors):
|
||||
self.colors = {}
|
||||
for color in colors:
|
||||
self.colors[color] = to_rgb(color)
|
||||
|
||||
def get_nearest_color(self, color_str):
|
||||
"""Returns the nearest color from the palette."""
|
||||
nearest_color = None
|
||||
color = to_rgb(color_str)
|
||||
min_diff = None
|
||||
for palette_color in self.colors.values():
|
||||
diff = 30 * (palette_color[0] - color[0]) ** 2 +\
|
||||
59 * (palette_color[1] - color[1]) ** 2 +\
|
||||
11 * (palette_color[2] - color[2]) ** 2
|
||||
if min_diff is None or diff < min_diff:
|
||||
min_diff = diff
|
||||
nearest_color = palette_color
|
||||
return nearest_color
|
350
tools/python/transit/transit_graph_generator.py
Executable file
350
tools/python/transit/transit_graph_generator.py
Executable file
|
@ -0,0 +1,350 @@
|
|||
#!/usr/bin/env python2.7
|
||||
# Generates transit graph for MWM transit section generator.
|
||||
# Also shows preview of transit scheme lines.
|
||||
import argparse
|
||||
import json
|
||||
import math
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import os.path
|
||||
import sys, io
|
||||
|
||||
import bezier_curves
|
||||
import transit_color_palette
|
||||
|
||||
|
||||
class OsmIdCode:
|
||||
NODE = 0x4000000000000000
|
||||
WAY = 0x8000000000000000
|
||||
RELATION = 0xC000000000000000
|
||||
RESET = ~(NODE | WAY | RELATION)
|
||||
|
||||
|
||||
def get_extended_osm_id(osm_id, type):
|
||||
if type.startswith('n'):
|
||||
return osm_id | OsmIdCode.NODE
|
||||
if type.startswith('r'):
|
||||
return osm_id | OsmIdCode.RELATION
|
||||
if type.startswith('w'):
|
||||
return osm_id | OsmIdCode.WAY
|
||||
print 'Unknown OSM type: ', type, ', osm_id:', osm_id
|
||||
return osm_id
|
||||
|
||||
|
||||
def get_line_id(road_id, line_index):
|
||||
return road_id << 8 | line_index
|
||||
|
||||
|
||||
def get_interchange_node_id(min_stop_id):
|
||||
return 1 << 62 | min_stop_id
|
||||
|
||||
|
||||
def get_mercator_point(lat, lon):
|
||||
if lat > 86.0:
|
||||
lat = 86.0
|
||||
elif lat < -86.0:
|
||||
lat = -86.0
|
||||
sin_x = math.sin(math.radians(lat))
|
||||
y = math.degrees(0.5 * math.log((1.0 + sin_x) / (1.0 - sin_x)))
|
||||
if y > 180:
|
||||
y = 180
|
||||
elif y < -180:
|
||||
y = -180
|
||||
return {'x': lon, 'y': y}
|
||||
|
||||
|
||||
class TransitGraphBuilder:
|
||||
def __init__(self, input_data, points_per_curve=100, alpha=0.5):
|
||||
self.palette = transit_color_palette.Palette(transit_color_palette.transit_palette)
|
||||
self.input_data = input_data
|
||||
self.points_per_curve = points_per_curve
|
||||
self.alpha = alpha
|
||||
self.networks = []
|
||||
self.lines = []
|
||||
self.stops = {}
|
||||
self.interchange_nodes = set()
|
||||
self.transfers = {}
|
||||
self.gates = {}
|
||||
self.edges = []
|
||||
self.segments = {}
|
||||
self.shapes = []
|
||||
self.transit_graph = None
|
||||
|
||||
def __get_average_stops_point(self, stop_ids):
|
||||
"""Returns an average position of the stops."""
|
||||
average_point = [0, 0]
|
||||
for id in stop_ids:
|
||||
point = self.__get_stop(id)['point']
|
||||
average_point[0] += point['x']
|
||||
average_point[1] += point['y']
|
||||
count = len(stop_ids)
|
||||
return [average_point[0] / count, average_point[1] / count]
|
||||
|
||||
def __add_gate(self, osm_id, is_entrance, is_exit, point, weight, stop_id):
|
||||
"""Creates a new gate or adds information to the existing with the same weight."""
|
||||
if (osm_id, weight) in self.gates:
|
||||
gate_ref = self.gates[(osm_id, weight)]
|
||||
if stop_id not in gate_ref['stop_ids']:
|
||||
gate_ref['stop_ids'].append(stop_id)
|
||||
gate_ref['entrance'] |= is_entrance
|
||||
gate_ref['exit'] |= is_exit
|
||||
return
|
||||
gate = {'osm_id': osm_id,
|
||||
'point': point,
|
||||
'weight': weight,
|
||||
'stop_ids': [stop_id],
|
||||
'entrance': is_entrance,
|
||||
'exit': is_exit}
|
||||
self.gates[(osm_id, weight)] = gate
|
||||
|
||||
def __get_interchange_node(self, stop_id):
|
||||
"""Returns the existing interchange node or creates a new one."""
|
||||
for node_stops in self.interchange_nodes:
|
||||
if stop_id in node_stops:
|
||||
return node_stops
|
||||
return (stop_id,)
|
||||
|
||||
def __get_stop(self, stop_id):
|
||||
"""Returns the stop or the interchange node."""
|
||||
if stop_id in self.stops:
|
||||
return self.stops[stop_id]
|
||||
return self.transfers[stop_id]
|
||||
|
||||
def __read_stops(self):
|
||||
"""Reads stops, their exits and entrances."""
|
||||
for stop_item in self.input_data['stops']:
|
||||
stop = {}
|
||||
stop['id'] = stop_item['id']
|
||||
stop['osm_id'] = get_extended_osm_id(stop_item['osm_id'], stop_item['osm_type'])
|
||||
if 'zone_id' in stop_item:
|
||||
stop['zone_id'] = stop_item['zone_id']
|
||||
stop['point'] = get_mercator_point(stop_item['lat'], stop_item['lon'])
|
||||
stop['line_ids'] = []
|
||||
# TODO: Calculate text anchors for stop_item['name'] and stop_item['int_name'].
|
||||
stop['title_anchors'] = []
|
||||
self.stops[stop['id']] = stop
|
||||
|
||||
for entrance_item in stop_item['entrances']:
|
||||
ex_id = get_extended_osm_id(entrance_item['node_id'], 'n')
|
||||
point = get_mercator_point(entrance_item['lat'], entrance_item['lon'])
|
||||
self.__add_gate(ex_id, True, False, point, entrance_item['distance'], stop['id'])
|
||||
|
||||
for exit_item in stop_item['exits']:
|
||||
ex_id = get_extended_osm_id(exit_item['node_id'], 'n')
|
||||
point = get_mercator_point(exit_item['lat'], exit_item['lon'])
|
||||
self.__add_gate(ex_id, False, True, point, exit_item['distance'], stop['id'])
|
||||
|
||||
def __read_transfers(self):
|
||||
"""Reads transfers between stops."""
|
||||
for transfer_item in self.input_data['transfers']:
|
||||
transfer_edge = {'start_stop_id': transfer_item[0],
|
||||
'finish_stop_id': transfer_item[1],
|
||||
'weight': transfer_item[2],
|
||||
'transfer': True}
|
||||
self.edges.append(transfer_edge)
|
||||
|
||||
def __read_networks(self):
|
||||
"""Reads networks and routes."""
|
||||
for network_item in self.input_data['networks']:
|
||||
network_id = network_item['agency_id']
|
||||
network = {'id': network_id,
|
||||
'title': network_item['network']}
|
||||
self.networks.append(network)
|
||||
|
||||
for route_item in network_item['routes']:
|
||||
line_index = 0
|
||||
# Create a line for each itinerary.
|
||||
for line_item in route_item['itineraries']:
|
||||
line_name = route_item['name']
|
||||
if 'name' in line_item:
|
||||
line_name += ' (' + line_item['name'] + ')'
|
||||
line_stops = line_item['stops']
|
||||
line_id = get_line_id(route_item['route_id'], line_index)
|
||||
line = {'id': line_id,
|
||||
'type': route_item['type'],
|
||||
'network_id': network_id,
|
||||
'title': line_name,
|
||||
'number': route_item['ref'],
|
||||
'color': 0,
|
||||
'stop_ids': line_stops}
|
||||
if 'colour' in route_item:
|
||||
rgb = self.palette.get_nearest_color(route_item['colour'])
|
||||
line['color'] = rgb[0] << 24 | rgb[1] << 16 | rgb[2] << 8 | 255
|
||||
|
||||
# TODO: Add processing of line_item['shape'] when this data will be available.
|
||||
# TODO: Add processing of line_item['trip_ids'] when this data will be available.
|
||||
|
||||
# Create an edge for each connection of stops.
|
||||
for i in range(len(line_stops)):
|
||||
self.stops[line_stops[i]]['line_ids'].append(line_id)
|
||||
if i < len(line_stops) - 1:
|
||||
edge = {'start_stop_id': line_stops[i],
|
||||
'finish_stop_id': line_stops[i + 1],
|
||||
'transfer': False,
|
||||
'line_id': line_id,
|
||||
'shape_ids': []}
|
||||
self.edges.append(edge)
|
||||
|
||||
self.lines.append(line)
|
||||
line_index += 1
|
||||
|
||||
def __generate_transfer_nodes(self):
|
||||
"""Merges stops into transfer nodes."""
|
||||
for edge in self.edges:
|
||||
if edge['transfer']:
|
||||
node1 = self.__get_interchange_node(edge['start_stop_id'])
|
||||
node2 = self.__get_interchange_node(edge['finish_stop_id'])
|
||||
merged_node = tuple(sorted(set(node1 + node2)))
|
||||
self.interchange_nodes.discard(node1)
|
||||
self.interchange_nodes.discard(node2)
|
||||
self.interchange_nodes.add(merged_node)
|
||||
|
||||
for node_stop_ids in self.interchange_nodes:
|
||||
point = self.__get_average_stops_point(node_stop_ids)
|
||||
transfer = {'id': get_interchange_node_id(self.stops[node_stop_ids[0]]['id']),
|
||||
'stop_ids': list(node_stop_ids),
|
||||
'point': {'x': point[0], 'y': point[1]},
|
||||
'title_anchors': []}
|
||||
for stop_id in node_stop_ids:
|
||||
self.stops[stop_id]['transfer_id'] = transfer['id']
|
||||
self.transfers[transfer['id']] = transfer
|
||||
|
||||
def __generate_shapes(self):
|
||||
"""Generates a curve for each connection of two stops / transfer nodes."""
|
||||
|
||||
# Prepare collection of segments for shapes generation.
|
||||
# Each line divided on segments by its stops and transfer nodes.
|
||||
# Merge equal segments from different lines into a single one and collect adjacent stops of that segment.
|
||||
# Average positions of these stops will be used as guide points for a curve generation.
|
||||
for line in self.lines:
|
||||
prev_seg = None
|
||||
prev_id1 = None
|
||||
for i in range(len(line['stop_ids']) - 1):
|
||||
node1 = self.stops[line['stop_ids'][i]]
|
||||
node2 = self.stops[line['stop_ids'][i + 1]]
|
||||
id1 = node1['transfer_id'] if 'transfer_id' in node1 else node1['id']
|
||||
id2 = node2['transfer_id'] if 'transfer_id' in node2 else node2['id']
|
||||
seg = tuple(sorted([id1, id2]))
|
||||
if seg not in self.segments:
|
||||
self.segments[seg] = {'guide_points': {id1: set(), id2: set()}}
|
||||
if prev_seg is not None:
|
||||
self.segments[seg]['guide_points'][id1].add(prev_id1)
|
||||
self.segments[prev_seg]['guide_points'][id1].add(id2)
|
||||
prev_seg = seg
|
||||
prev_id1 = id1
|
||||
|
||||
# Generate shapes for edges.
|
||||
shape_id = 0
|
||||
for (id1, id2), info in self.segments.items():
|
||||
info['shape_id'] = shape_id
|
||||
shape_id += 1
|
||||
|
||||
point1 = [self.__get_stop(id1)['point']['x'], self.__get_stop(id1)['point']['y']]
|
||||
point2 = [self.__get_stop(id2)['point']['x'], self.__get_stop(id2)['point']['y']]
|
||||
|
||||
if info['guide_points'][id1]:
|
||||
guide1 = self.__get_average_stops_point(info['guide_points'][id1])
|
||||
else:
|
||||
guide1 = [2 * point1[0] - point2[0], 2 * point1[1] - point2[1]]
|
||||
|
||||
if info['guide_points'][id2]:
|
||||
guide2 = self.__get_average_stops_point(info['guide_points'][id2])
|
||||
else:
|
||||
guide2 = [2 * point2[0] - point1[0], 2 * point2[1] - point1[1]]
|
||||
|
||||
curve_points = bezier_curves.segment_to_Catmull_Rom_curve(guide1, point1, point2, guide2,
|
||||
self.points_per_curve, self.alpha)
|
||||
info['curve'] = np.array(curve_points)
|
||||
|
||||
polyline = []
|
||||
for point in curve_points:
|
||||
polyline.append({'x': point[0], 'y': point[1]})
|
||||
|
||||
shape = {'id': shape_id,
|
||||
'stop1_id': id1,
|
||||
'stop2_id': id2,
|
||||
'polyline': polyline}
|
||||
self.shapes.append(shape)
|
||||
|
||||
for edge in self.edges:
|
||||
if not edge['transfer']:
|
||||
stop1 = self.stops[edge['start_stop_id']]
|
||||
stop2 = self.stops[edge['finish_stop_id']]
|
||||
id1 = stop1['transfer_id'] if 'transfer_id' in stop1 else stop1['id']
|
||||
id2 = stop2['transfer_id'] if 'transfer_id' in stop2 else stop2['id']
|
||||
seg = tuple(sorted([id1, id2]))
|
||||
if seg in self.segments:
|
||||
edge['shape_ids'].append(self.segments[seg]['shape_id'])
|
||||
|
||||
def build(self):
|
||||
if self.transit_graph is not None:
|
||||
return self.transit_graph
|
||||
|
||||
self.__read_stops()
|
||||
self.__read_transfers()
|
||||
self.__read_networks()
|
||||
self.__generate_transfer_nodes()
|
||||
self.__generate_shapes()
|
||||
|
||||
self.transit_graph = {'networks': self.networks,
|
||||
'lines': self.lines,
|
||||
'gates': self.gates.values(),
|
||||
'stops': self.stops,
|
||||
'transfers': self.transfers.values(),
|
||||
'shapes': self.shapes,
|
||||
'edges': self.edges}
|
||||
return self.transit_graph
|
||||
|
||||
def show_preview(self):
|
||||
for (s1, s2), info in self.segments.items():
|
||||
plt.plot(info['curve'][:, 0], info['curve'][:, 1], 'g')
|
||||
for stop in self.stops.values():
|
||||
if 'transfer_id' in stop:
|
||||
point = self.transfers[stop['transfer_id']]['point']
|
||||
size = 60
|
||||
color = 'r'
|
||||
else:
|
||||
point = stop['point']
|
||||
if len(stop['line_ids']) > 2:
|
||||
size = 40
|
||||
color = 'b'
|
||||
else:
|
||||
size = 20
|
||||
color = 'g'
|
||||
plt.scatter([point['x']], [point['y']], size, color)
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('input_file', help='input file name of transit data')
|
||||
parser.add_argument('output_file', nargs='?', help='output file name of generated graph')
|
||||
parser.add_argument('-p', '--preview', action="store_true", default=False,
|
||||
help="show preview of the transit scheme")
|
||||
parser.add_argument('-a', '--alpha', type=float, default=0.5, help='the curves generator parameter value ALPHA',
|
||||
metavar='ALPHA')
|
||||
parser.add_argument('-n', '--num', type=int, default=100, help='the number NUM of points in a generated curve',
|
||||
metavar='NUM')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
if not os.path.isfile(args.input_file):
|
||||
print 'File', args.input_file, 'not found'
|
||||
sys.exit(1)
|
||||
|
||||
with open(args.input_file, 'r') as f:
|
||||
data = json.load(f)
|
||||
transit = TransitGraphBuilder(data, args.num, args.alpha)
|
||||
result = transit.build()
|
||||
|
||||
output_file = args.output_file
|
||||
if output_file is None:
|
||||
head, tail = os.path.split(os.path.abspath(args.input_file))
|
||||
output_file = head + '/transit_graph_' + tail
|
||||
with io.open(output_file, 'w', encoding='utf8') as json_file:
|
||||
result_data = json.dumps(result, ensure_ascii=False, indent=4, sort_keys=True)
|
||||
json_file.write(unicode(result_data))
|
||||
print 'Transit graph generated:', output_file
|
||||
|
||||
if args.preview:
|
||||
transit.show_preview()
|
Loading…
Add table
Reference in a new issue