[omim] [coding] Compressed bit vectors.

This commit is contained in:
Maxim Pimenov 2015-08-04 20:14:25 +03:00 committed by Sergey Yershov
parent 119ade14dd
commit e8acd6f459
8 changed files with 598 additions and 26 deletions

View file

@ -20,8 +20,8 @@ UNIT_TEST(Popcount32)
{
for (uint32_t i = 0; i < 10000; ++i)
{
TEST_EQUAL(bits::popcount(i), PopCountSimple(i), (i));
TEST_EQUAL(bits::popcount(0xC2000000 | i), PopCountSimple(0xC2000000 | i), (0xC2000000 | i));
TEST_EQUAL(bits::PopCount(i), PopCountSimple(i), (i));
TEST_EQUAL(bits::PopCount(0xC2000000 | i), PopCountSimple(0xC2000000 | i), (0xC2000000 | i));
}
}
@ -36,7 +36,7 @@ UNIT_TEST(PopcountArray32)
uint32_t expectedPopCount = 0;
for (size_t i = 0; i < v.size(); ++i)
expectedPopCount += PopCountSimple(v[i]);
TEST_EQUAL(bits::popcount(v.empty() ? NULL : &v[0], v.size()), expectedPopCount,
TEST_EQUAL(bits::PopCount(v.empty() ? NULL : &v[0], v.size()), expectedPopCount,
(j, v.size(), expectedPopCount));
}
}

View file

@ -8,7 +8,7 @@
namespace bits
{
// Count the number of 1 bits. Implementation: see Hacker's delight book.
inline uint32_t popcount(uint32_t x)
inline uint32_t PopCount(uint32_t x)
{
x -= ((x >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
@ -18,14 +18,14 @@ namespace bits
return x & 0x3F;
}
inline uint32_t popcount(uint8_t x)
inline uint32_t PopCount(uint8_t x)
{
return popcount(static_cast<uint32_t>(x));
return PopCount(static_cast<uint32_t>(x));
}
// Count the number of 1 bits in array p, length n bits.
// There is a better implementation at hackersdelight.org
inline uint32_t popcount(uint32_t const * p, uint32_t n)
inline uint32_t PopCount(uint32_t const * p, uint32_t n)
{
uint32_t s = 0;
for (uint32_t i = 0; i < n; i += 31)
@ -61,10 +61,15 @@ namespace bits
return static_cast<unsigned int>(SELECT1_ERROR);
}
inline uint32_t PopCount(uint64_t x)
{
uint32_t lower = static_cast<uint32_t>(x);
uint32_t higher = static_cast<uint32_t>(x >> 32);
return PopCount(lower) + PopCount(higher);
}
// Will be implemented when needed.
uint64_t popcount(uint64_t x);
// Will be implemented when needed.
uint64_t popcount(uint64_t const * p, uint64_t n);
uint64_t PopCount(uint64_t const * p, uint64_t n);
template <typename T> T RoundLastBitsUpAndShiftRight(T x, T bits)
{

View file

@ -52,6 +52,7 @@ HEADERS += \
byte_stream.hpp \
coder.hpp \
coder_util.hpp \
compressed_bit_vector.hpp \
old_compressed_bit_vector.hpp \
# compressed_varnum_vector.hpp \
constants.hpp \

View file

@ -17,6 +17,7 @@ SOURCES += ../../testing/testingmain.cpp \
bit_streams_test.cpp \
# blob_storage_test.cpp \
coder_util_test.cpp \
compressed_bit_vector_test.cpp \
old_compressed_bit_vector_test.cpp \
# compressed_varnum_vector_test.cpp \
dd_vector_test.cpp \

View file

@ -0,0 +1,165 @@
#include "testing/testing.hpp"
#include "coding/compressed_bit_vector.hpp"
#include "coding/writer.hpp"
#include "std/algorithm.hpp"
#include "std/iterator.hpp"
namespace
{
void CheckIntersection(vector<uint64_t> & setBits1, vector<uint64_t> & setBits2,
unique_ptr<coding::CompressedBitVector> const & cbv)
{
TEST(cbv.get(), ());
vector<uint64_t> expected;
sort(setBits1.begin(), setBits1.end());
sort(setBits2.begin(), setBits2.end());
set_intersection(setBits1.begin(), setBits1.end(), setBits2.begin(), setBits2.end(),
back_inserter(expected));
TEST_EQUAL(expected.size(), cbv->PopCount(), ());
for (size_t i = 0; i < expected.size(); ++i)
TEST(cbv->GetBit(expected[i]), ());
}
} // namespace
UNIT_TEST(CompressedBitVector_Smoke) {}
UNIT_TEST(CompressedBitVector_Intersect1)
{
size_t const n = 100;
vector<uint64_t> setBits1;
vector<uint64_t> setBits2;
for (size_t i = 0; i < n; ++i)
{
if (i > 0)
setBits1.push_back(i);
if (i + 1 < n)
setBits2.push_back(i);
}
auto cbv1 = coding::CompressedBitVectorBuilder::Build(setBits1);
auto cbv2 = coding::CompressedBitVectorBuilder::Build(setBits2);
TEST(cbv1.get(), ());
TEST(cbv2.get(), ());
auto cbv3 = coding::CompressedBitVector::Intersect(*cbv1, *cbv2);
TEST_EQUAL(coding::CompressedBitVector::StorageStrategy::Dense, cbv3->GetStorageStrategy(), ());
CheckIntersection(setBits1, setBits2, cbv3);
}
UNIT_TEST(CompressedBitVector_Intersect2)
{
size_t const n = 100;
vector<uint64_t> setBits1;
vector<uint64_t> setBits2;
for (size_t i = 0; i < n; ++i)
{
if (i <= n / 2)
setBits1.push_back(i);
if (i >= n / 2)
setBits2.push_back(i);
}
auto cbv1 = coding::CompressedBitVectorBuilder::Build(setBits1);
auto cbv2 = coding::CompressedBitVectorBuilder::Build(setBits2);
TEST(cbv1.get(), ());
TEST(cbv2.get(), ());
auto cbv3 = coding::CompressedBitVector::Intersect(*cbv1, *cbv2);
TEST_EQUAL(coding::CompressedBitVector::StorageStrategy::Sparse, cbv3->GetStorageStrategy(), ());
CheckIntersection(setBits1, setBits2, cbv3);
}
UNIT_TEST(CompressedBitVector_Intersect3)
{
size_t const n = 100;
vector<uint64_t> setBits1;
vector<uint64_t> setBits2;
for (size_t i = 0; i < n; ++i)
{
if (i % 2 == 0)
setBits1.push_back(i);
if (i % 3 == 0)
setBits2.push_back(i);
}
auto cbv1 = coding::CompressedBitVectorBuilder::Build(setBits1);
auto cbv2 = coding::CompressedBitVectorBuilder::Build(setBits2);
TEST(cbv1.get(), ());
TEST(cbv2.get(), ());
auto cbv3 = coding::CompressedBitVector::Intersect(*cbv1, *cbv2);
TEST_EQUAL(coding::CompressedBitVector::StorageStrategy::Sparse, cbv3->GetStorageStrategy(), ());
for (size_t i = 0; i < n; ++i)
{
bool expected = i % 6 == 0;
TEST_EQUAL(expected, cbv3->GetBit(i), (i));
}
}
UNIT_TEST(CompressedBitVector_Intersect4)
{
size_t const n = 1000;
vector<uint64_t> setBits1;
vector<uint64_t> setBits2;
for (size_t i = 0; i < n; ++i)
{
if (i % 100 == 0)
setBits1.push_back(i);
if (i % 150 == 0)
setBits2.push_back(i);
}
auto cbv1 = coding::CompressedBitVectorBuilder::Build(setBits1);
auto cbv2 = coding::CompressedBitVectorBuilder::Build(setBits2);
TEST(cbv1.get(), ());
TEST(cbv2.get(), ());
auto cbv3 = coding::CompressedBitVector::Intersect(*cbv1, *cbv2);
TEST_EQUAL(coding::CompressedBitVector::StorageStrategy::Sparse, cbv3->GetStorageStrategy(), ());
for (size_t i = 0; i < n; ++i)
{
bool expected = i % 300 == 0;
TEST_EQUAL(expected, cbv3->GetBit(i), (i));
}
}
UNIT_TEST(CompressedBitVector_SerializationDense)
{
int const n = 100;
vector<uint64_t> setBits;
for (size_t i = 0; i < n; ++i)
setBits.push_back(i);
vector<uint8_t> buf;
{
MemWriter<vector<uint8_t>> writer(buf);
auto cbv = coding::CompressedBitVectorBuilder::Build(setBits);
cbv->Serialize(writer);
}
MemReader reader(buf.data(), buf.size());
ReaderSource<MemReader> src(reader);
auto cbv = coding::CompressedBitVectorBuilder::Deserialize(src);
TEST(cbv.get(), ());
TEST_EQUAL(coding::CompressedBitVector::StorageStrategy::Dense, cbv->GetStorageStrategy(), ());
TEST_EQUAL(setBits.size(), cbv->PopCount(), ());
for (size_t i = 0; i < setBits.size(); ++i)
TEST(cbv->GetBit(setBits[i]), ());
}
UNIT_TEST(CompressedBitVector_SerializationSparse)
{
int const n = 100;
vector<uint64_t> setBits;
for (size_t i = 0; i < n; ++i)
{
if (i % 10 == 0)
setBits.push_back(i);
}
vector<uint8_t> buf;
{
MemWriter<vector<uint8_t>> writer(buf);
auto cbv = coding::CompressedBitVectorBuilder::Build(setBits);
cbv->Serialize(writer);
}
MemReader reader(buf.data(), buf.size());
ReaderSource<MemReader> src(reader);
auto cbv = coding::CompressedBitVectorBuilder::Deserialize(src);
TEST(cbv.get(), ());
TEST_EQUAL(coding::CompressedBitVector::StorageStrategy::Sparse, cbv->GetStorageStrategy(), ());
TEST_EQUAL(setBits.size(), cbv->PopCount(), ());
for (size_t i = 0; i < setBits.size(); ++i)
TEST(cbv->GetBit(setBits[i]), ());
}

View file

@ -0,0 +1,218 @@
#include "coding/compressed_bit_vector.hpp"
#include "coding/writer.hpp"
#include "coding/write_to_sink.hpp"
#include "std/algorithm.hpp"
namespace
{
unique_ptr<coding::CompressedBitVector> IntersectImpl(coding::DenseCBV const & a,
coding::DenseCBV const & b)
{
size_t sizeA = a.NumBitGroups();
size_t sizeB = b.NumBitGroups();
vector<uint64_t> resBits;
for (size_t i = 0; i < min(sizeA, sizeB); ++i)
{
uint64_t bitGroup = a.GetBitGroup(i) & b.GetBitGroup(i);
for (size_t j = 0; j < 64; j++)
if (((bitGroup >> j) & 1) > 0)
resBits.push_back(64 * i + j);
}
return coding::CompressedBitVectorBuilder::Build(resBits);
}
// The intersection of dense and sparse is always sparse.
unique_ptr<coding::CompressedBitVector> IntersectImpl(coding::DenseCBV const & a,
coding::SparseCBV const & b)
{
vector<uint64_t> resPos;
for (size_t i = 0; i < b.PopCount(); ++i)
{
auto pos = b.Select(i);
if (a.GetBit(pos))
resPos.push_back(pos);
}
return make_unique<coding::SparseCBV>(move(resPos));
}
unique_ptr<coding::CompressedBitVector> IntersectImpl(coding::SparseCBV const & a,
coding::DenseCBV const & b)
{
return IntersectImpl(b, a);
}
unique_ptr<coding::CompressedBitVector> IntersectImpl(coding::SparseCBV const & a,
coding::SparseCBV const & b)
{
size_t sizeA = a.PopCount();
size_t sizeB = b.PopCount();
vector<uint64_t> resPos;
size_t i = 0;
size_t j = 0;
while (i < sizeA && j < sizeB)
{
auto posA = a.Select(i);
auto posB = b.Select(j);
if (posA == posB)
{
resPos.push_back(posA);
++i;
++j;
}
else if (posA < posB)
{
++i;
}
else
{
++j;
}
}
return make_unique<coding::SparseCBV>(move(resPos));
}
} // namespace
namespace coding
{
DenseCBV::DenseCBV(vector<uint64_t> const & setBits)
{
if (setBits.empty())
{
m_bits.resize(0);
m_popCount = 0;
return;
}
uint64_t maxBit = setBits[0];
for (size_t i = 1; i < setBits.size(); ++i)
maxBit = max(maxBit, setBits[i]);
size_t sz = (maxBit + 64 - 1) / 64;
m_bits.resize(sz);
m_popCount = static_cast<uint32_t>(setBits.size());
for (uint64_t pos : setBits)
m_bits[pos / 64] |= static_cast<uint64_t>(1) << (pos % 64);
}
uint32_t DenseCBV::PopCount() const { return m_popCount; }
uint32_t SparseCBV::PopCount() const { return m_positions.size(); }
bool DenseCBV::GetBit(uint32_t pos) const
{
uint64_t bitGroup = GetBitGroup(pos / 64);
return ((bitGroup >> (pos % 64)) & 1) > 0;
}
bool SparseCBV::GetBit(uint32_t pos) const
{
auto it = lower_bound(m_positions.begin(), m_positions.end(), pos);
return it != m_positions.end() && *it == pos;
}
CompressedBitVector::StorageStrategy DenseCBV::GetStorageStrategy() const
{
return CompressedBitVector::StorageStrategy::Dense;
}
CompressedBitVector::StorageStrategy SparseCBV::GetStorageStrategy() const
{
return CompressedBitVector::StorageStrategy::Sparse;
}
template <typename F>
void DenseCBV::ForEach(F && f) const
{
for (size_t i = 0; i < m_bits.size(); ++i)
for (size_t j = 0; j < 64; ++j)
if (((m_bits[i] >> j) & 1) > 0)
f(64 * i + j);
}
template <typename F>
void SparseCBV::ForEach(F && f) const
{
for (size_t i = 0; i < m_positions.size(); ++i)
f(m_positions[i]);
}
string DebugPrint(CompressedBitVector::StorageStrategy strat)
{
switch (strat)
{
case CompressedBitVector::StorageStrategy::Dense:
return "Dense";
case CompressedBitVector::StorageStrategy::Sparse:
return "Sparse";
}
}
void DenseCBV::Serialize(Writer & writer) const
{
uint8_t header = static_cast<uint8_t>(GetStorageStrategy());
WriteToSink(writer, header);
WriteToSink(writer, static_cast<uint32_t>(NumBitGroups()));
for (size_t i = 0; i < NumBitGroups(); ++i)
WriteToSink(writer, GetBitGroup(i));
}
void SparseCBV::Serialize(Writer & writer) const
{
uint8_t header = static_cast<uint8_t>(GetStorageStrategy());
WriteToSink(writer, header);
WriteToSink(writer, PopCount());
ForEach([&](uint64_t bitPos)
{
WriteToSink(writer, bitPos);
});
}
// static
unique_ptr<CompressedBitVector> CompressedBitVectorBuilder::Build(vector<uint64_t> const & setBits)
{
if (setBits.empty())
return make_unique<SparseCBV>(setBits);
uint64_t maxBit = setBits[0];
for (size_t i = 1; i < setBits.size(); ++i)
maxBit = max(maxBit, setBits[i]);
// 30% occupied is dense enough
if (10 * setBits.size() >= 3 * maxBit)
return make_unique<DenseCBV>(setBits);
return make_unique<SparseCBV>(setBits);
}
// static
unique_ptr<CompressedBitVector> CompressedBitVector::Intersect(CompressedBitVector const & lhs,
CompressedBitVector const & rhs)
{
auto stratA = lhs.GetStorageStrategy();
auto stratB = rhs.GetStorageStrategy();
auto stratDense = CompressedBitVector::StorageStrategy::Dense;
auto stratSparse = CompressedBitVector::StorageStrategy::Sparse;
if (stratA == stratDense && stratB == stratDense)
{
DenseCBV const & a = static_cast<DenseCBV const &>(lhs);
DenseCBV const & b = static_cast<DenseCBV const &>(rhs);
return IntersectImpl(a, b);
}
if (stratA == stratDense && stratB == stratSparse)
{
DenseCBV const & a = static_cast<DenseCBV const &>(lhs);
SparseCBV const & b = static_cast<SparseCBV const &>(rhs);
return IntersectImpl(a, b);
}
if (stratA == stratSparse && stratB == stratDense)
{
SparseCBV const & a = static_cast<SparseCBV const &>(lhs);
DenseCBV const & b = static_cast<DenseCBV const &>(rhs);
return IntersectImpl(a, b);
}
if (stratA == stratSparse && stratB == stratSparse)
{
SparseCBV const & a = static_cast<SparseCBV const &>(lhs);
SparseCBV const & b = static_cast<SparseCBV const &>(rhs);
return IntersectImpl(a, b);
}
return nullptr;
}
} // namespace coding

View file

@ -0,0 +1,182 @@
#include "std/vector.hpp"
#include "base/assert.hpp"
#include "base/bits.hpp"
#include "coding/reader.hpp"
#include "coding/writer.hpp"
#include "std/algorithm.hpp"
#include "std/unique_ptr.hpp"
#include "base/assert.hpp"
namespace coding
{
class CompressedBitVector
{
public:
enum class StorageStrategy
{
Dense,
Sparse
};
virtual ~CompressedBitVector() = default;
// Executes f for each bit that is set to one using
// the bit's 0-based position as argument.
template <typename F>
void ForEach(F && f) const;
// Intersects two bit vectors.
static unique_ptr<CompressedBitVector> Intersect(CompressedBitVector const &,
CompressedBitVector const &);
// Returns the number of set bits (population count).
virtual uint32_t PopCount() const = 0;
// todo(@pimenov) How long will 32 bits be enough here?
// Would operator[] look better?
virtual bool GetBit(uint32_t pos) const = 0;
// Returns the strategy used when storing this bit vector.
virtual StorageStrategy GetStorageStrategy() const = 0;
// Writes the contents of a bit vector to writer.
// The first byte is always the header that defines the format.
// Currently the header is 0 or 1 for Dense and Sparse strategies respectively.
// It is easier to dispatch via virtual method calls and not bother
// with template TWriters here as we do in similar places in our code.
// This should not pose too much a problem because commonly
// used writers are inhereted from Writer anyway.
// todo(@pimenov). Think about rewriting Serialize and Deserialize to use the
// code in old_compressed_bit_vector.{c,h}pp.
virtual void Serialize(Writer & writer) const = 0;
};
string DebugPrint(CompressedBitVector::StorageStrategy strat);
class DenseCBV : public CompressedBitVector
{
public:
// Builds a dense CBV from a list of positions of set bits.
DenseCBV(vector<uint64_t> const & setBits);
// Builds a dense CBV from a packed bitmap of set bits.
// todo(@pimenov) This behaviour of & and && constructors is extremely error-prone.
DenseCBV(vector<uint64_t> && bitMasks) : m_bits(move(bitMasks))
{
m_popCount = 0;
for (size_t i = 0; i < m_bits.size(); ++i)
m_popCount += bits::PopCount(m_bits[i]);
}
~DenseCBV() = default;
size_t NumBitGroups() const { return m_bits.size(); }
template <typename F>
void ForEach(F && f) const;
uint64_t GetBitGroup(size_t i) const
{
if (i < m_bits.size())
return m_bits[i];
return 0;
}
// CompressedBitVector overrides:
uint32_t PopCount() const override;
bool GetBit(uint32_t pos) const override;
StorageStrategy GetStorageStrategy() const override;
void Serialize(Writer & writer) const override;
private:
vector<uint64_t> m_bits;
uint32_t m_popCount;
};
class SparseCBV : public CompressedBitVector
{
public:
SparseCBV(vector<uint64_t> const & setBits) : m_positions(setBits)
{
ASSERT(is_sorted(m_positions.begin(), m_positions.end()), ());
}
SparseCBV(vector<uint64_t> && setBits) : m_positions(move(setBits))
{
ASSERT(is_sorted(m_positions.begin(), m_positions.end()), ());
}
~SparseCBV() = default;
// Returns the position of the i'th set bit.
uint64_t Select(size_t i) const
{
ASSERT_LESS(i, m_positions.size(), ());
return m_positions[i];
}
template <typename F>
void ForEach(F && f) const;
// CompressedBitVector overrides:
uint32_t PopCount() const override;
bool GetBit(uint32_t pos) const override;
StorageStrategy GetStorageStrategy() const override;
void Serialize(Writer & writer) const override;
private:
// 0-based positions of the set bits.
vector<uint64_t> m_positions;
};
class CompressedBitVectorBuilder
{
public:
// Chooses a strategy to store the bit vector with bits from setBits set to one
// and returns a pointer to a class that fits best.
static unique_ptr<CompressedBitVector> Build(vector<uint64_t> const & setBits);
// Reads a bit vector from reader which must contain a valid
// bit vector representation (see CompressedBitVector::Serialize for the format).
template <typename TReader>
static unique_ptr<CompressedBitVector> Deserialize(TReader & reader)
{
ReaderSource<TReader> src(reader);
uint8_t header = ReadPrimitiveFromSource<uint8_t>(reader);
CompressedBitVector::StorageStrategy strat =
static_cast<CompressedBitVector::StorageStrategy>(header);
switch (strat)
{
case CompressedBitVector::StorageStrategy::Dense:
{
uint32_t numBitGroups = ReadPrimitiveFromSource<uint32_t>(reader);
vector<uint64_t> bitGroups(numBitGroups);
for (size_t i = 0; i < numBitGroups; ++i)
bitGroups[i] = ReadPrimitiveFromSource<uint64_t>(reader);
return make_unique<DenseCBV>(move(bitGroups));
}
case CompressedBitVector::StorageStrategy::Sparse:
{
uint32_t numBits = ReadPrimitiveFromSource<uint32_t>(reader);
vector<uint64_t> setBits(numBits);
for (size_t i = 0; i < numBits; ++i)
setBits[i] = ReadPrimitiveFromSource<uint64_t>(reader);
return make_unique<SparseCBV>(setBits);
}
}
return nullptr;
}
};
} // namespace coding

View file

@ -8,11 +8,14 @@
using std::all_of;
using std::binary_search;
using std::copy;
using std::equal;
using std::equal_range;
using std::fill;
using std::find;
using std::find_if;
using std::find_first_of;
using std::find_if;
using std::for_each;
using std::is_sorted;
using std::lexicographical_compare;
using std::lower_bound;
@ -20,20 +23,17 @@ using std::max;
using std::max_element;
using std::min;
using std::next_permutation;
using std::sort;
using std::stable_sort;
using std::partial_sort;
using std::swap;
using std::upper_bound;
using std::unique;
using std::equal_range;
using std::for_each;
using std::copy;
using std::remove_if;
using std::replace;
using std::reverse;
using std::set_union;
using std::set_intersection;
using std::set_union;
using std::sort;
using std::stable_sort;
using std::swap;
using std::unique;
using std::upper_bound;
// Bug workaround, see http://connect.microsoft.com/VisualStudio/feedbackdetail/view/840578/algorithm-possible-c-compiler-bug-when-using-std-set-difference-with-custom-comperator
#ifdef _MSC_VER
namespace vs_bug
@ -81,14 +81,14 @@ OutputIt set_difference(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputI
#else
using std::set_difference;
#endif
using std::set_symmetric_difference;
using std::transform;
using std::push_heap;
using std::pop_heap;
using std::sort_heap;
using std::distance;
using std::remove_copy_if;
using std::generate;
using std::pop_heap;
using std::push_heap;
using std::remove_copy_if;
using std::set_symmetric_difference;
using std::sort_heap;
using std::transform;
#ifdef DEBUG_NEW
#define new DEBUG_NEW