From e92f2cf3cfd633c1bcfd4a1cd68cfd870e01bc60 Mon Sep 17 00:00:00 2001 From: Yuri Gorshenin Date: Mon, 15 Aug 2016 16:03:32 +0300 Subject: [PATCH] [search] Implemented clustering. --- base/internal/message.hpp | 6 + map/framework.cpp | 10 + search/nearby_points_sweeper.cpp | 33 ++++ search/nearby_points_sweeper.hpp | 124 ++++++++++++ search/pre_ranker.cpp | 187 +++++++++++++++--- search/pre_ranker.hpp | 19 ++ search/pre_ranking_info.hpp | 5 + search/processor.cpp | 11 ++ search/processor.hpp | 5 + search/search.pro | 2 + .../pre_ranker_test.cpp | 19 +- search/search_params.cpp | 1 + search/search_params.hpp | 4 + .../nearby_points_sweeper_test.cpp | 83 ++++++++ search/search_tests/search_tests.pro | 1 + 15 files changed, 465 insertions(+), 45 deletions(-) create mode 100644 search/nearby_points_sweeper.cpp create mode 100644 search/nearby_points_sweeper.hpp create mode 100644 search/search_tests/nearby_points_sweeper_test.cpp diff --git a/base/internal/message.hpp b/base/internal/message.hpp index a378fdce11..ee6487b9cd 100644 --- a/base/internal/message.hpp +++ b/base/internal/message.hpp @@ -27,6 +27,7 @@ template inline string DebugPrint(pair const & p) template inline string DebugPrint(list const & v); template inline string DebugPrint(vector const & v); template > inline string DebugPrint(set const & v); +template > inline string DebugPrint(multiset const & v); template > inline string DebugPrint(map const & v); template inline string DebugPrint(initializer_list const & v); template inline string DebugPrint(unique_ptr const & v); @@ -109,6 +110,11 @@ template inline string DebugPrint(set const & v) return ::my::impl::DebugPrintSequence(v.begin(), v.end()); } +template inline string DebugPrint(multiset const & v) +{ + return ::my::impl::DebugPrintSequence(v.begin(), v.end()); +} + template inline string DebugPrint(map const & v) { return ::my::impl::DebugPrintSequence(v.begin(), v.end()); diff --git a/map/framework.cpp b/map/framework.cpp index f56eb3ef39..e22f8843b6 100644 --- a/map/framework.cpp +++ b/map/framework.cpp @@ -2,6 +2,7 @@ #include "map/ge0_parser.hpp" #include "map/geourl_process.hpp" #include "map/gps_tracker.hpp" +#include "map/user_mark.hpp" #include "defines.hpp" @@ -1349,6 +1350,15 @@ bool Framework::Search(search::SearchParams const & params) // Cancels previous search request (if any) and initiates new search request. CancelQuery(intent.m_handle); + + { + m2::PointD const defaultMarkSize = GetSearchMarkSize(SearchMarkType::DefaultSearchMark); + m2::PointD const bookingMarkSize = GetSearchMarkSize(SearchMarkType::BookingSearchMark); + double const eps = + max(max(defaultMarkSize.x, defaultMarkSize.y), max(bookingMarkSize.x, bookingMarkSize.y)); + intent.m_params.m_minDistanceOnMapBetweenResults = eps; + } + intent.m_handle = m_searchEngine->Search(intent.m_params, intent.m_viewport); return true; diff --git a/search/nearby_points_sweeper.cpp b/search/nearby_points_sweeper.cpp new file mode 100644 index 0000000000..cc7b92712e --- /dev/null +++ b/search/nearby_points_sweeper.cpp @@ -0,0 +1,33 @@ +#include "search/nearby_points_sweeper.hpp" + +namespace search +{ +// NearbyPointsSweeper::Event ---------------------------------------------------------------------- +NearbyPointsSweeper::Event::Event(Type type, double y, double x, size_t index) + : m_type(type), m_y(y), m_x(x), m_index(index) +{ +} + +bool NearbyPointsSweeper::Event::operator<(Event const & rhs) const +{ + if (m_y != rhs.m_y) + return m_y < rhs.m_y; + + if (m_type != rhs.m_type) + return m_type < rhs.m_type; + + if (m_x != rhs.m_x) + return m_x < rhs.m_x; + + return m_index < rhs.m_index; +} + +// NearbyPointsSweeper ----------------------------------------------------------------------------- +NearbyPointsSweeper::NearbyPointsSweeper(double eps) : m_eps(eps) {} + +void NearbyPointsSweeper::Add(double x, double y, size_t index) +{ + m_events.emplace_back(Event::TYPE_SEGMENT_START, y - m_eps * 0.5, x, index); + m_events.emplace_back(Event::TYPE_SEGMENT_END, y + m_eps * 0.5, x, index); +} +} // namespace search diff --git a/search/nearby_points_sweeper.hpp b/search/nearby_points_sweeper.hpp new file mode 100644 index 0000000000..9fbeef7228 --- /dev/null +++ b/search/nearby_points_sweeper.hpp @@ -0,0 +1,124 @@ +#pragma once + +#include "base/assert.hpp" + +#include "std/algorithm.hpp" +#include "std/cstdint.hpp" +#include "std/limits.hpp" +#include "std/set.hpp" +#include "std/utility.hpp" +#include "std/vector.hpp" + +namespace search +{ +// This class can be used to sweep points on a plane that are too +// close to each other. Two points are considered to be "too close" +// when Manhattan distance between them is less than or equal to some +// preselected epsilon. +class NearbyPointsSweeper +{ +public: + explicit NearbyPointsSweeper(double eps); + + // Adds a new point (|x|, |y|) on the plane. |index| is used to + // identify individual points, and will be reported for survived + // points during the Sweep phase. + void Add(double x, double y, size_t index); + + // Emits indexes of all survived points. Complexity: O(n * log(n)), + // where n is the number of already added points. + template + void Sweep(TEmitter && emitter) + { + sort(m_events.begin(), m_events.end()); + + set> line; + + for (auto const & event : m_events) + { + switch (event.m_type) + { + case Event::TYPE_SEGMENT_START: + { + if (line.empty()) + { + line.emplace(event.m_x, event.m_index); + break; + } + + auto it = line.upper_bound(make_pair(event.m_x, numeric_limits::max())); + + bool add = true; + while (true) + { + if (line.empty()) + break; + + if (it == line.end()) + { + --it; + continue; + } + + double const x = it->first; + if (fabs(x - event.m_x) <= m_eps) + { + add = false; + break; + } + + if (x + m_eps < event.m_x) + break; + + if (it == line.begin()) + break; + + --it; + } + + if (add) + line.emplace(event.m_x, event.m_index); + + break; + } + + case Event::TYPE_SEGMENT_END: + { + auto it = line.find(make_pair(event.m_x, event.m_index)); + if (it != line.end()) + { + emitter(event.m_index); + line.erase(it); + } + break; + } + }; + } + + ASSERT(line.empty(), ("Sweep line must be empty after events processing:", line)); + } + +private: + struct Event + { + enum Type + { + TYPE_SEGMENT_START, + TYPE_SEGMENT_END + }; + + Event(Type type, double y, double x, size_t index); + + bool operator<(Event const & rhs) const; + + Type m_type; + + double m_y; + double m_x; + size_t m_index; + }; + + vector m_events; + double const m_eps; +}; +} // namespace search diff --git a/search/pre_ranker.cpp b/search/pre_ranker.cpp index d0d985bb9e..ed006f9eb3 100644 --- a/search/pre_ranker.cpp +++ b/search/pre_ranker.cpp @@ -2,16 +2,16 @@ #include "search/dummy_rank_table.hpp" #include "search/lazy_centers_table.hpp" +#include "search/nearby_points_sweeper.hpp" #include "search/pre_ranking_info.hpp" #include "indexer/mwm_set.hpp" #include "indexer/rank_table.hpp" +#include "indexer/scales.hpp" #include "base/stl_helpers.hpp" #include "std/iterator.hpp" -#include "std/random.hpp" -#include "std/set.hpp" namespace search { @@ -45,6 +45,40 @@ struct ComparePreResult1 return linfo.m_startToken < rinfo.m_startToken; } }; + +// Selects a fair random subset of size min(|n|, |k|) from [0, 1, 2, ..., n - 1]. +vector RandomSample(size_t n, size_t k, minstd_rand & rng) +{ + vector result(std::min(k, n)); + iota(result.begin(), result.end(), 0); + + for (size_t i = k; i < n; ++i) + { + size_t const j = rng() % (i + 1); + if (j < k) + result[j] = i; + } + + return result; +} + +void SweepNearbyResults(double eps, vector & results) +{ + NearbyPointsSweeper sweeper(eps); + for (size_t i = 0; i < results.size(); ++i) + { + auto const & p = results[i].GetInfo().m_center; + sweeper.Add(p.x, p.y, i); + } + + vector filtered; + sweeper.Sweep([&filtered, &results](size_t i) + { + filtered.push_back(results[i]); + }); + + results.swap(filtered); +} } // namespace PreRanker::PreRanker(Index const & index, Ranker & ranker, size_t limit) @@ -57,6 +91,7 @@ void PreRanker::Init(Params const & params) m_numSentResults = 0; m_results.clear(); m_params = params; + m_currEmit.clear(); } void PreRanker::FillMissingFieldsInPreResults() @@ -98,6 +133,8 @@ void PreRanker::FillMissingFieldsInPreResults() { info.m_distanceToPivot = MercatorBounds::DistanceOnEarth(m_params.m_accuratePivotCenter, center); + info.m_center = center; + info.m_centerLoaded = true; } else { @@ -116,40 +153,52 @@ void PreRanker::Filter(bool viewportSearch) m_results.erase(unique(m_results.begin(), m_results.end(), my::EqualsBy(&PreResult1::GetId)), m_results.end()); - sort(m_results.begin(), m_results.end(), &PreResult1::LessDistance); - if (m_results.size() > BatchSize()) { - // Priority is some kind of distance from the viewport or - // position, therefore if we have a bunch of results with the same - // priority, we have no idea here which results are relevant. To - // prevent bias from previous search routines (like sorting by - // feature id) this code randomly selects tail of the - // sorted-by-priority list of pre-results. + bool const centersLoaded = + all_of(m_results.begin(), m_results.end(), + [](PreResult1 const & result) { return result.GetInfo().m_centerLoaded; }); + if (viewportSearch && centersLoaded) + { + FilterForViewportSearch(); + ASSERT_LESS_OR_EQUAL(m_results.size(), BatchSize(), ()); + for (auto const & result : m_results) + m_currEmit.insert(result.GetId()); + } + else + { + sort(m_results.begin(), m_results.end(), &PreResult1::LessDistance); - double const last = m_results[BatchSize()].GetDistance(); + // Priority is some kind of distance from the viewport or + // position, therefore if we have a bunch of results with the same + // priority, we have no idea here which results are relevant. To + // prevent bias from previous search routines (like sorting by + // feature id) this code randomly selects tail of the + // sorted-by-priority list of pre-results. - auto b = m_results.begin() + BatchSize(); - for (; b != m_results.begin() && b->GetDistance() == last; --b) - ; - if (b->GetDistance() != last) - ++b; + double const last = m_results[BatchSize()].GetDistance(); - auto e = m_results.begin() + BatchSize(); - for (; e != m_results.end() && e->GetDistance() == last; ++e) - ; + auto b = m_results.begin() + BatchSize(); + for (; b != m_results.begin() && b->GetDistance() == last; --b) + ; + if (b->GetDistance() != last) + ++b; - // The main reason of shuffling here is to select a random subset - // from the low-priority results. We're using a linear - // congruential method with default seed because it is fast, - // simple and doesn't need an external entropy source. - // - // TODO (@y, @m, @vng): consider to take some kind of hash from - // features and then select a subset with smallest values of this - // hash. In this case this subset of results will be persistent - // to small changes in the original set. - minstd_rand engine; - shuffle(b, e, engine); + auto e = m_results.begin() + BatchSize(); + for (; e != m_results.end() && e->GetDistance() == last; ++e) + ; + + // The main reason of shuffling here is to select a random subset + // from the low-priority results. We're using a linear + // congruential method with default seed because it is fast, + // simple and doesn't need an external entropy source. + // + // TODO (@y, @m, @vng): consider to take some kind of hash from + // features and then select a subset with smallest values of this + // hash. In this case this subset of results will be persistent + // to small changes in the original set. + shuffle(b, e, m_rng); + } } filtered.insert(m_results.begin(), m_results.begin() + min(m_results.size(), BatchSize())); @@ -162,6 +211,7 @@ void PreRanker::Filter(bool viewportSearch) m_results.reserve(filtered.size()); m_results.clear(); + copy(filtered.begin(), filtered.end(), back_inserter(m_results)); } @@ -173,7 +223,84 @@ void PreRanker::UpdateResults(bool lastUpdate) m_ranker.SetPreResults1(move(m_results)); m_results.clear(); m_ranker.UpdateResults(lastUpdate); + + if (lastUpdate) + m_currEmit.swap(m_prevEmit); } void PreRanker::ClearCaches() { m_pivotFeatures.Clear(); } + +void PreRanker::FilterForViewportSearch() +{ + auto const & viewport = m_params.m_viewport; + + my::EraseIf(m_results, [&viewport](PreResult1 const & result) { + auto const & info = result.GetInfo(); + return !viewport.IsPointInside(info.m_center); + }); + + SweepNearbyResults(m_params.m_minDistanceOnMapBetweenResults, m_results); + + size_t const n = m_results.size(); + + if (n <= BatchSize()) + return; + + size_t const kNumXSlots = 5; + size_t const kNumYSlots = 5; + size_t const kNumBuckets = kNumXSlots * kNumYSlots; + vector buckets[kNumBuckets]; + + double const sizeX = viewport.SizeX(); + double const sizeY = viewport.SizeY(); + + for (size_t i = 0; i < m_results.size(); ++i) + { + auto const & p = m_results[i].GetInfo().m_center; + int dx = static_cast((p.x - viewport.minX()) / sizeX * kNumXSlots); + dx = my::clamp(dx, 0, kNumXSlots - 1); + + int dy = static_cast((p.y - viewport.minY()) / sizeY * kNumYSlots); + dy = my::clamp(dy, 0, kNumYSlots - 1); + + buckets[dx * kNumYSlots + dy].push_back(i); + } + + vector results; + double const density = static_cast(BatchSize()) / static_cast(n); + for (auto & bucket : buckets) + { + size_t const m = std::min(static_cast(ceil(density * bucket.size())), bucket.size()); + + size_t const old = + partition(bucket.begin(), bucket.end(), + [this](size_t i) { return m_prevEmit.count(m_results[i].GetId()) != 0; }) - + bucket.begin(); + + if (m <= old) + { + for (size_t i : RandomSample(old, m, m_rng)) + results.push_back(m_results[bucket[i]]); + } + else + { + for (size_t i = 0; i < old; ++i) + results.push_back(m_results[bucket[i]]); + + for (size_t i : RandomSample(bucket.size() - old, m - old, m_rng)) + results.push_back(m_results[bucket[old + i]]); + } + } + + if (results.size() <= BatchSize()) + { + m_results.swap(results); + } + else + { + m_results.clear(); + for (size_t i : RandomSample(results.size(), BatchSize(), m_rng)) + m_results.push_back(results[i]); + } +} } // namespace search diff --git a/search/pre_ranker.hpp b/search/pre_ranker.hpp index aa2622ef27..1e51574cf2 100644 --- a/search/pre_ranker.hpp +++ b/search/pre_ranker.hpp @@ -7,11 +7,14 @@ #include "indexer/index.hpp" #include "geometry/point2d.hpp" +#include "geometry/rect2d.hpp" #include "base/macros.hpp" #include "std/algorithm.hpp" #include "std/cstdint.hpp" +#include "std/random.hpp" +#include "std/set.hpp" #include "std/utility.hpp" #include "std/vector.hpp" @@ -23,6 +26,9 @@ class PreRanker public: struct Params { + m2::RectD m_viewport; + double m_minDistanceOnMapBetweenResults = 0.0; + // This is different from geocoder's pivot because pivot is // usually a rectangle created by radius and center and, due to // precision loss, its center may differ from @@ -74,6 +80,8 @@ public: void ClearCaches(); private: + void FilterForViewportSearch(); + Index const & m_index; Ranker & m_ranker; vector m_results; @@ -87,6 +95,17 @@ private: // Cache of nested rects used to estimate distance from a feature to the pivot. NestedRectsCache m_pivotFeatures; + // A set of ids for features that are emit during the current search session. + set m_currEmit; + + // A set of ids for features that were emit during the previous + // search session. They're used for filtering of current search in + // viewport results, because we need to give more priority to + // results that were on map previously. + set m_prevEmit; + + minstd_rand m_rng; + DISALLOW_COPY_AND_MOVE(PreRanker); }; } // namespace search diff --git a/search/pre_ranking_info.hpp b/search/pre_ranking_info.hpp index 58b0e07041..43aada03ab 100644 --- a/search/pre_ranking_info.hpp +++ b/search/pre_ranking_info.hpp @@ -2,6 +2,8 @@ #include "search/model.hpp" +#include "geometry/point2d.hpp" + #include "std/cstdint.hpp" namespace search @@ -14,6 +16,9 @@ struct PreRankingInfo // units do not matter here. double m_distanceToPivot = 0; + m2::PointD m_center = m2::PointD::Zero(); + bool m_centerLoaded = false; + // Tokens [m_startToken, m_endToken) match to the feature name or // house number. size_t m_startToken = 0; diff --git a/search/processor.cpp b/search/processor.cpp index 0a7c40b146..4b016ab9c0 100644 --- a/search/processor.cpp +++ b/search/processor.cpp @@ -142,6 +142,7 @@ Processor::Processor(Index const & index, CategoriesHolder const & categories, : m_categories(categories) , m_infoGetter(infoGetter) , m_position(0, 0) + , m_minDistanceOnMapBetweenResults(0.0) , m_mode(Mode::Everywhere) , m_suggestsEnabled(true) , m_preRanker(index, m_ranker, kPreResultsCount) @@ -393,6 +394,8 @@ void Processor::Search(SearchParams const & params, m2::RectD const & viewport) else SetPosition(viewport.Center()); + SetMinDistanceOnMapBetweenResults(params.m_minDistanceOnMapBetweenResults); + SetMode(params.GetMode()); SetSuggestsEnabled(params.GetSuggestsEnabled()); SetInputLocale(params.m_inputLocale); @@ -680,10 +683,18 @@ void Processor::InitGeocoder(Geocoder::Params & params) void Processor::InitPreRanker(Geocoder::Params const & geocoderParams) { + bool const viewportSearch = m_mode == Mode::Viewport; + PreRanker::Params params; + if (viewportSearch) + { + params.m_viewport = GetViewport(); + params.m_minDistanceOnMapBetweenResults = m_minDistanceOnMapBetweenResults; + } params.m_accuratePivotCenter = GetPivotPoint(); params.m_scale = geocoderParams.m_scale; + m_preRanker.Init(params); } diff --git a/search/processor.hpp b/search/processor.hpp index d28c43c4ab..e71d5e1a55 100644 --- a/search/processor.hpp +++ b/search/processor.hpp @@ -84,6 +84,10 @@ public: inline void SetMode(Mode mode) { m_mode = mode; } inline void SetSuggestsEnabled(bool enabled) { m_suggestsEnabled = enabled; } inline void SetPosition(m2::PointD const & position) { m_position = position; } + inline void SetMinDistanceOnMapBetweenResults(double distance) + { + m_minDistanceOnMapBetweenResults = distance; + } inline void SetOnResults(SearchParams::TOnResults const & onResults) { m_onResults = onResults; } inline string const & GetPivotRegion() const { return m_region; } inline m2::PointD const & GetPosition() const { return m_position; } @@ -150,6 +154,7 @@ protected: m2::RectD m_viewport[COUNT_V]; m2::PointD m_pivot; m2::PointD m_position; + double m_minDistanceOnMapBetweenResults; Mode m_mode; bool m_suggestsEnabled; SearchParams::TOnResults m_onResults; diff --git a/search/search.pro b/search/search.pro index 6827455004..1eabe6ec22 100644 --- a/search/search.pro +++ b/search/search.pro @@ -43,6 +43,7 @@ HEADERS += \ mode.hpp \ model.hpp \ mwm_context.hpp \ + nearby_points_sweeper.hpp \ nested_rects_cache.hpp \ pre_ranker.hpp \ pre_ranking_info.hpp \ @@ -102,6 +103,7 @@ SOURCES += \ mode.cpp \ model.cpp \ mwm_context.cpp \ + nearby_points_sweeper.cpp \ nested_rects_cache.cpp \ pre_ranker.cpp \ pre_ranking_info.cpp \ diff --git a/search/search_integration_tests/pre_ranker_test.cpp b/search/search_integration_tests/pre_ranker_test.cpp index 50eb2f5502..d97c79758f 100644 --- a/search/search_integration_tests/pre_ranker_test.cpp +++ b/search/search_integration_tests/pre_ranker_test.cpp @@ -39,17 +39,6 @@ namespace search { namespace { -// Returns the boundary such that at least |size| elements from -// |distance| are less than or equal to the boundary. -double GetBoundary(vector const & distances, size_t size) -{ - CHECK_LESS_OR_EQUAL(size, distances.size(), ()); - my::limited_priority_queue queue(size); - for (auto const & distance : distances) - queue.push(distance); - return queue.empty() ? 0.0 : queue.top(); -} - class TestRanker : public Ranker { public: @@ -96,7 +85,9 @@ UNIT_CLASS_TEST(PreRankerTest, Smoke) // number of results is larger than batch size, and that PreRanker // emits results nearest to the pivot. - m2::PointD const kPivot(0.5, 0.5); + m2::PointD const kPivot(0, 0); + m2::RectD const kViewport(m2::PointD(-5, -5), m2::PointD(5, 5)); + size_t const kBatchSize = 50; vector pois; @@ -122,6 +113,7 @@ UNIT_CLASS_TEST(PreRankerTest, Smoke) PreRanker preRanker(m_engine, ranker, pois.size()); PreRanker::Params params; + params.m_viewport = kViewport; params.m_accuratePivotCenter = kPivot; params.m_scale = scales::GetUpperScale(); params.m_batchSize = kBatchSize; @@ -152,8 +144,6 @@ UNIT_CLASS_TEST(PreRankerTest, Smoke) TEST(ranker.Finished(), ()); TEST_EQUAL(results.size(), kBatchSize, ()); - double const boundary = GetBoundary(distances, kBatchSize); - vector checked(pois.size()); for (size_t i = 0; i < results.size(); ++i) { @@ -161,7 +151,6 @@ UNIT_CLASS_TEST(PreRankerTest, Smoke) TEST_LESS(index, pois.size(), ()); TEST(!checked[index], (index)); - TEST_LESS_OR_EQUAL(results[i].GetDistance(), boundary, ()); TEST(my::AlmostEqualAbs(distances[index], results[i].GetDistance(), 1e-3), (distances[index], results[i].GetDistance())); checked[index] = true; diff --git a/search/search_params.cpp b/search/search_params.cpp index aa8d490dd9..fe9da94d89 100644 --- a/search/search_params.cpp +++ b/search/search_params.cpp @@ -9,6 +9,7 @@ namespace search SearchParams::SearchParams() : m_lat(0.0) , m_lon(0.0) + , m_minDistanceOnMapBetweenResults(0.0) , m_searchRadiusM(-1.0) , m_mode(Mode::Everywhere) , m_forceSearch(false) diff --git a/search/search_params.hpp b/search/search_params.hpp index d3de882ee9..235595998f 100644 --- a/search/search_params.hpp +++ b/search/search_params.hpp @@ -49,6 +49,10 @@ public: double m_lat, m_lon; + // A minimum distance between search results in mercator, needed for + // pre-ranking of viewport search results. + double m_minDistanceOnMapBetweenResults; + friend string DebugPrint(SearchParams const & params); private: diff --git a/search/search_tests/nearby_points_sweeper_test.cpp b/search/search_tests/nearby_points_sweeper_test.cpp new file mode 100644 index 0000000000..9cf99f8c3f --- /dev/null +++ b/search/search_tests/nearby_points_sweeper_test.cpp @@ -0,0 +1,83 @@ +#include "testing/testing.hpp" + +#include "search/nearby_points_sweeper.hpp" + +#include "geometry/point2d.hpp" + +#include "base/stl_add.hpp" + +#include "std/set.hpp" +#include "std/vector.hpp" + +namespace search +{ +namespace +{ +// Multiset is used here to catch situations when some index is reported more than once. +using TIndexSet = multiset; + +UNIT_TEST(NearbyPointsSweeper_Smoke) +{ + { + NearbyPointsSweeper sweeper(0.0); + for (size_t i = 0; i < 10; ++i) + sweeper.Add(10.0, 10.0, i); + + TIndexSet expected = {0}; + + TIndexSet actual; + sweeper.Sweep(MakeInsertFunctor(actual)); + + TEST_EQUAL(expected, actual, ()); + } + + { + vector const coords = {0.0, 0.5, 1.0, 1.5, 1.4, 1.6}; + + { + NearbyPointsSweeper sweeper(0.5); + + for (size_t i = 0; i < coords.size(); ++i) + sweeper.Add(coords[i], 0.0, i); + + TIndexSet expected = {0, 2, 5}; + + TIndexSet actual; + sweeper.Sweep(MakeInsertFunctor(actual)); + + TEST_EQUAL(expected, actual, ()); + } + + { + NearbyPointsSweeper sweeper(0.5); + + for (size_t i = 0; i < coords.size(); ++i) + sweeper.Add(0.0, coords[i], i); + + TIndexSet expected = {0, 2, 5}; + + TIndexSet actual; + sweeper.Sweep(MakeInsertFunctor(actual)); + + TEST_EQUAL(expected, actual, ()); + } + } + + { + vector const points = {m2::PointD(0.0, 0.0), m2::PointD(1.0, 1.0), + m2::PointD(1.5, 0.0), m2::PointD(1.5 + 1.01, 1.5 + 1.0)}; + NearbyPointsSweeper sweeper(1.0); + + for (size_t i = 0; i < points.size(); ++i) + sweeper.Add(points[i].x, points[i].y, i); + + TIndexSet expected = {0, 2, 3}; + + TIndexSet actual; + sweeper.Sweep(MakeInsertFunctor(actual)); + + TEST_EQUAL(expected, actual, ()); + } +} +} // namespace +} // namespace search diff --git a/search/search_tests/search_tests.pro b/search/search_tests/search_tests.pro index 45dfe33dd6..b08d6416e4 100644 --- a/search/search_tests/search_tests.pro +++ b/search/search_tests/search_tests.pro @@ -27,6 +27,7 @@ SOURCES += \ latlon_match_test.cpp \ locality_finder_test.cpp \ locality_scorer_test.cpp \ + nearby_points_sweeper_test.cpp \ query_saver_tests.cpp \ ranking_tests.cpp \ string_intersection_test.cpp \