fast_double_parser/include/fast_double_parser.h
2022-12-27 11:23:19 +08:00

1270 lines
49 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#ifndef FAST_DOUBLE_PARSER_H
#define FAST_DOUBLE_PARSER_H
#include <cfloat>
#include <cinttypes>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <locale.h>
#if (defined(sun) || defined(__sun))
#define FAST_DOUBLE_PARSER_SOLARIS
#endif
#if defined(__CYGWIN__) || defined(__MINGW32__) || defined(__MINGW64__)
#define FAST_DOUBLE_PARSER_CYGWIN
#endif
/**
* Determining whether we should import xlocale.h or not is
* a bit of a nightmare.
*/
#if defined(FAST_DOUBLE_PARSER_SOLARIS) || defined(FAST_DOUBLE_PARSER_CYGWIN)
// Anything at all that is related to cygwin, msys, solaris and so forth will
// always use this fallback because we cannot rely on it behaving as normal
// gcc.
#include <locale>
#include <sstream>
// workaround for CYGWIN
static inline double cygwin_strtod_l(const char* start, char** end) {
double d;
std::stringstream ss;
ss.imbue(std::locale::classic());
ss << start;
ss >> d;
if(ss.fail()) { *end = nullptr; }
if(ss.eof()) { ss.clear(); }
auto nread = ss.tellg();
*end = const_cast<char*>(start) + nread;
return d;
}
#else
#ifdef __has_include
// This is the easy case: we have __has_include and can check whether
// xlocale is available. If so, we load it up.
#if __has_include(<xlocale.h>)
#include <xlocale.h>
#endif // __has_include
#else // We do not have __has_include
#ifdef __GLIBC__
#include <features.h>
#if !((__GLIBC__ > 2) || ((__GLIBC__ == 2) && (__GLIBC_MINOR__ > 25)))
#include <xlocale.h> // old glibc
#endif
#else // not glibc
#if !(defined(_WIN32) || (__FreeBSD_version < 1000010))
#include <xlocale.h>
#endif
#endif
#endif // __has_include
#endif // defined(FAST_DOUBLE_PARSER_SOLARIS) || defined(FAST_DOUBLE_PARSER_CYGWIN)
#ifdef _MSC_VER
#include <intrin.h>
#define WARN_UNUSED
#else
#define WARN_UNUSED __attribute__((warn_unused_result))
#endif
namespace fast_double_parser {
/**
* The smallest non-zero float (binary64) is 2^1074.
* We take as input numbers of the form w x 10^q where w < 2^64.
* We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076.
* However, we have that
* (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^1074.
* Thus it is possible for a number of the form w * 10^-342 where
* w is a 64-bit value to be a non-zero floating-point number.
*********
* If we are solely interested in the *normal* numbers then the
* smallest value is 2^-1022. We can generate a value larger
* than 2^-1022 with expressions of the form w * 10^-326.
* Thus we need to pick FASTFLOAT_SMALLEST_POWER >= -326.
*********
* Any number of form w * 10^309 where w>= 1 is going to be
* infinite in binary64 so we never need to worry about powers
* of 5 greater than 308.
*/
#define FASTFLOAT_SMALLEST_POWER -325
#define FASTFLOAT_LARGEST_POWER 308
#ifdef _MSC_VER
#ifndef really_inline
#define really_inline __forceinline
#endif // really_inline
#ifndef unlikely
#define unlikely(x) x
#endif // unlikely
#else // _MSC_VER
#ifndef unlikely
#define unlikely(x) __builtin_expect(!!(x), 0)
#endif // unlikely
#ifndef really_inline
#define really_inline __attribute__((always_inline)) inline
#endif // really_inline
#endif // _MSC_VER
struct value128 {
uint64_t low;
uint64_t high;
};
#ifdef _MSC_VER
#define FAST_DOUBLE_PARSER_VISUAL_STUDIO 1
#ifdef __clang__
// clang under visual studio
#define FAST_DOUBLE_PARSER_CLANG_VISUAL_STUDIO 1
#else
// just regular visual studio (best guess)
#define FAST_DOUBLE_PARSER_REGULAR_VISUAL_STUDIO 1
#endif // __clang__
#endif // _MSC_VER
#if defined(FAST_DOUBLE_PARSER_REGULAR_VISUAL_STUDIO) && \
!defined(_M_X64) && !defined(_M_ARM64)// _umul128 for x86, arm
// this is a slow emulation routine for 32-bit Windows
//
static inline uint64_t __emulu(uint32_t x, uint32_t y) {
return x * (uint64_t)y;
}
static inline uint64_t _umul128(uint64_t ab, uint64_t cd, uint64_t *hi) {
uint64_t ad = __emulu((uint32_t)(ab >> 32), (uint32_t)cd);
uint64_t bd = __emulu((uint32_t)ab, (uint32_t)cd);
uint64_t adbc = ad + __emulu((uint32_t)ab, (uint32_t)(cd >> 32));
uint64_t adbc_carry = !!(adbc < ad);
uint64_t lo = bd + (adbc << 32);
*hi = __emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) +
(adbc_carry << 32) + !!(lo < bd);
return lo;
}
#endif
// We need a backup on old systems.
// credit: https://stackoverflow.com/questions/28868367/getting-the-high-part-of-64-bit-integer-multiplication
really_inline uint64_t Emulate64x64to128(uint64_t& r_hi, const uint64_t x, const uint64_t y) {
const uint64_t x0 = (uint32_t)x, x1 = x >> 32;
const uint64_t y0 = (uint32_t)y, y1 = y >> 32;
const uint64_t p11 = x1 * y1, p01 = x0 * y1;
const uint64_t p10 = x1 * y0, p00 = x0 * y0;
// 64-bit product + two 32-bit values
const uint64_t middle = p10 + (p00 >> 32) + (uint32_t)p01;
// 64-bit product + two 32-bit values
r_hi = p11 + (middle >> 32) + (p01 >> 32);
// Add LOW PART and lower half of MIDDLE PART
return (middle << 32) | (uint32_t)p00;
}
really_inline value128 full_multiplication(uint64_t value1, uint64_t value2) {
value128 answer;
#ifdef FAST_DOUBLE_PARSER_REGULAR_VISUAL_STUDIO
#ifdef _M_ARM64
// ARM64 has native support for 64-bit multiplications, no need to emultate
answer.high = __umulh(value1, value2);
answer.low = value1 * value2;
#else
answer.low = _umul128(value1, value2, &answer.high); // _umul128 not available on ARM64
#endif // _M_ARM64
#else // SIMDJSON_REGULAR_VISUAL_STUDIO
#ifdef __SIZEOF_INT128__ // this is what we have on most 32-bit systems
__uint128_t r = ((__uint128_t)value1) * value2;
answer.low = uint64_t(r);
answer.high = uint64_t(r >> 64);
#else
// fallback
answer.low = Emulate64x64to128(answer.high, value1, value2);
#endif
#endif
return answer;
}
/* result might be undefined when input_num is zero */
inline int leading_zeroes(uint64_t input_num) {
#ifdef _MSC_VER
unsigned long leading_zero = 0;
// Search the mask data from most significant bit (MSB)
// to least significant bit (LSB) for a set bit (1).
#ifdef _WIN64
if (_BitScanReverse64(&leading_zero, input_num))
return (int)(63 - leading_zero);
#else
if (_BitScanReverse(&leading_zero, (uint32_t)(input_num >> 32)))
return (int)(63 - (leading_zero + 32));
if (_BitScanReverse(&leading_zero, (uint32_t)input_num))
return (int)(63 - leading_zero);
#endif // _WIN64
#else
return __builtin_clzll(input_num);
#endif // _MSC_VER
}
static inline bool is_integer(char c) {
return (c >= '0' && c <= '9');
// this gets compiled to (uint8_t)(c - '0') <= 9 on all decent compilers
}
/**
* When mapping numbers from decimal to binary,
* we go from w * 10^q to m * 2^p but we have
* 10^q = 5^q * 2^q, so effectively
* we are trying to match
* w * 2^q * 5^q to m * 2^p. Thus the powers of two
* are not a concern since they can be represented
* exactly using the binary notation, only the powers of five
* affect the binary significand.
*/
// Attempts to compute i * 10^(power) exactly; and if "negative" is
// true, negate the result.
// This function will only work in some cases, when it does not work, success is
// set to false. This should work *most of the time* (like 99% of the time).
// We assume that power is in the [FASTFLOAT_SMALLEST_POWER,
// FASTFLOAT_LARGEST_POWER] interval: the caller is responsible for this check.
really_inline double compute_float_64(int64_t power, uint64_t i, bool negative,
bool *success) {
// Precomputed powers of ten from 10^0 to 10^22. These
// can be represented exactly using the double type.
static const double power_of_ten[] = {
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11,
1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22};
// The mantissas of powers of ten from -308 to 308, extended out to sixty four
// bits. The array contains the powers of ten approximated
// as a 64-bit mantissa. It goes from 10^FASTFLOAT_SMALLEST_POWER to
// 10^FASTFLOAT_LARGEST_POWER (inclusively).
// The mantissa is truncated, and
// never rounded up. Uses about 5KB.
static const uint64_t mantissa_64[] = {
0xa5ced43b7e3e9188, 0xcf42894a5dce35ea,
0x818995ce7aa0e1b2, 0xa1ebfb4219491a1f,
0xca66fa129f9b60a6, 0xfd00b897478238d0,
0x9e20735e8cb16382, 0xc5a890362fddbc62,
0xf712b443bbd52b7b, 0x9a6bb0aa55653b2d,
0xc1069cd4eabe89f8, 0xf148440a256e2c76,
0x96cd2a865764dbca, 0xbc807527ed3e12bc,
0xeba09271e88d976b, 0x93445b8731587ea3,
0xb8157268fdae9e4c, 0xe61acf033d1a45df,
0x8fd0c16206306bab, 0xb3c4f1ba87bc8696,
0xe0b62e2929aba83c, 0x8c71dcd9ba0b4925,
0xaf8e5410288e1b6f, 0xdb71e91432b1a24a,
0x892731ac9faf056e, 0xab70fe17c79ac6ca,
0xd64d3d9db981787d, 0x85f0468293f0eb4e,
0xa76c582338ed2621, 0xd1476e2c07286faa,
0x82cca4db847945ca, 0xa37fce126597973c,
0xcc5fc196fefd7d0c, 0xff77b1fcbebcdc4f,
0x9faacf3df73609b1, 0xc795830d75038c1d,
0xf97ae3d0d2446f25, 0x9becce62836ac577,
0xc2e801fb244576d5, 0xf3a20279ed56d48a,
0x9845418c345644d6, 0xbe5691ef416bd60c,
0xedec366b11c6cb8f, 0x94b3a202eb1c3f39,
0xb9e08a83a5e34f07, 0xe858ad248f5c22c9,
0x91376c36d99995be, 0xb58547448ffffb2d,
0xe2e69915b3fff9f9, 0x8dd01fad907ffc3b,
0xb1442798f49ffb4a, 0xdd95317f31c7fa1d,
0x8a7d3eef7f1cfc52, 0xad1c8eab5ee43b66,
0xd863b256369d4a40, 0x873e4f75e2224e68,
0xa90de3535aaae202, 0xd3515c2831559a83,
0x8412d9991ed58091, 0xa5178fff668ae0b6,
0xce5d73ff402d98e3, 0x80fa687f881c7f8e,
0xa139029f6a239f72, 0xc987434744ac874e,
0xfbe9141915d7a922, 0x9d71ac8fada6c9b5,
0xc4ce17b399107c22, 0xf6019da07f549b2b,
0x99c102844f94e0fb, 0xc0314325637a1939,
0xf03d93eebc589f88, 0x96267c7535b763b5,
0xbbb01b9283253ca2, 0xea9c227723ee8bcb,
0x92a1958a7675175f, 0xb749faed14125d36,
0xe51c79a85916f484, 0x8f31cc0937ae58d2,
0xb2fe3f0b8599ef07, 0xdfbdcece67006ac9,
0x8bd6a141006042bd, 0xaecc49914078536d,
0xda7f5bf590966848, 0x888f99797a5e012d,
0xaab37fd7d8f58178, 0xd5605fcdcf32e1d6,
0x855c3be0a17fcd26, 0xa6b34ad8c9dfc06f,
0xd0601d8efc57b08b, 0x823c12795db6ce57,
0xa2cb1717b52481ed, 0xcb7ddcdda26da268,
0xfe5d54150b090b02, 0x9efa548d26e5a6e1,
0xc6b8e9b0709f109a, 0xf867241c8cc6d4c0,
0x9b407691d7fc44f8, 0xc21094364dfb5636,
0xf294b943e17a2bc4, 0x979cf3ca6cec5b5a,
0xbd8430bd08277231, 0xece53cec4a314ebd,
0x940f4613ae5ed136, 0xb913179899f68584,
0xe757dd7ec07426e5, 0x9096ea6f3848984f,
0xb4bca50b065abe63, 0xe1ebce4dc7f16dfb,
0x8d3360f09cf6e4bd, 0xb080392cc4349dec,
0xdca04777f541c567, 0x89e42caaf9491b60,
0xac5d37d5b79b6239, 0xd77485cb25823ac7,
0x86a8d39ef77164bc, 0xa8530886b54dbdeb,
0xd267caa862a12d66, 0x8380dea93da4bc60,
0xa46116538d0deb78, 0xcd795be870516656,
0x806bd9714632dff6, 0xa086cfcd97bf97f3,
0xc8a883c0fdaf7df0, 0xfad2a4b13d1b5d6c,
0x9cc3a6eec6311a63, 0xc3f490aa77bd60fc,
0xf4f1b4d515acb93b, 0x991711052d8bf3c5,
0xbf5cd54678eef0b6, 0xef340a98172aace4,
0x9580869f0e7aac0e, 0xbae0a846d2195712,
0xe998d258869facd7, 0x91ff83775423cc06,
0xb67f6455292cbf08, 0xe41f3d6a7377eeca,
0x8e938662882af53e, 0xb23867fb2a35b28d,
0xdec681f9f4c31f31, 0x8b3c113c38f9f37e,
0xae0b158b4738705e, 0xd98ddaee19068c76,
0x87f8a8d4cfa417c9, 0xa9f6d30a038d1dbc,
0xd47487cc8470652b, 0x84c8d4dfd2c63f3b,
0xa5fb0a17c777cf09, 0xcf79cc9db955c2cc,
0x81ac1fe293d599bf, 0xa21727db38cb002f,
0xca9cf1d206fdc03b, 0xfd442e4688bd304a,
0x9e4a9cec15763e2e, 0xc5dd44271ad3cdba,
0xf7549530e188c128, 0x9a94dd3e8cf578b9,
0xc13a148e3032d6e7, 0xf18899b1bc3f8ca1,
0x96f5600f15a7b7e5, 0xbcb2b812db11a5de,
0xebdf661791d60f56, 0x936b9fcebb25c995,
0xb84687c269ef3bfb, 0xe65829b3046b0afa,
0x8ff71a0fe2c2e6dc, 0xb3f4e093db73a093,
0xe0f218b8d25088b8, 0x8c974f7383725573,
0xafbd2350644eeacf, 0xdbac6c247d62a583,
0x894bc396ce5da772, 0xab9eb47c81f5114f,
0xd686619ba27255a2, 0x8613fd0145877585,
0xa798fc4196e952e7, 0xd17f3b51fca3a7a0,
0x82ef85133de648c4, 0xa3ab66580d5fdaf5,
0xcc963fee10b7d1b3, 0xffbbcfe994e5c61f,
0x9fd561f1fd0f9bd3, 0xc7caba6e7c5382c8,
0xf9bd690a1b68637b, 0x9c1661a651213e2d,
0xc31bfa0fe5698db8, 0xf3e2f893dec3f126,
0x986ddb5c6b3a76b7, 0xbe89523386091465,
0xee2ba6c0678b597f, 0x94db483840b717ef,
0xba121a4650e4ddeb, 0xe896a0d7e51e1566,
0x915e2486ef32cd60, 0xb5b5ada8aaff80b8,
0xe3231912d5bf60e6, 0x8df5efabc5979c8f,
0xb1736b96b6fd83b3, 0xddd0467c64bce4a0,
0x8aa22c0dbef60ee4, 0xad4ab7112eb3929d,
0xd89d64d57a607744, 0x87625f056c7c4a8b,
0xa93af6c6c79b5d2d, 0xd389b47879823479,
0x843610cb4bf160cb, 0xa54394fe1eedb8fe,
0xce947a3da6a9273e, 0x811ccc668829b887,
0xa163ff802a3426a8, 0xc9bcff6034c13052,
0xfc2c3f3841f17c67, 0x9d9ba7832936edc0,
0xc5029163f384a931, 0xf64335bcf065d37d,
0x99ea0196163fa42e, 0xc06481fb9bcf8d39,
0xf07da27a82c37088, 0x964e858c91ba2655,
0xbbe226efb628afea, 0xeadab0aba3b2dbe5,
0x92c8ae6b464fc96f, 0xb77ada0617e3bbcb,
0xe55990879ddcaabd, 0x8f57fa54c2a9eab6,
0xb32df8e9f3546564, 0xdff9772470297ebd,
0x8bfbea76c619ef36, 0xaefae51477a06b03,
0xdab99e59958885c4, 0x88b402f7fd75539b,
0xaae103b5fcd2a881, 0xd59944a37c0752a2,
0x857fcae62d8493a5, 0xa6dfbd9fb8e5b88e,
0xd097ad07a71f26b2, 0x825ecc24c873782f,
0xa2f67f2dfa90563b, 0xcbb41ef979346bca,
0xfea126b7d78186bc, 0x9f24b832e6b0f436,
0xc6ede63fa05d3143, 0xf8a95fcf88747d94,
0x9b69dbe1b548ce7c, 0xc24452da229b021b,
0xf2d56790ab41c2a2, 0x97c560ba6b0919a5,
0xbdb6b8e905cb600f, 0xed246723473e3813,
0x9436c0760c86e30b, 0xb94470938fa89bce,
0xe7958cb87392c2c2, 0x90bd77f3483bb9b9,
0xb4ecd5f01a4aa828, 0xe2280b6c20dd5232,
0x8d590723948a535f, 0xb0af48ec79ace837,
0xdcdb1b2798182244, 0x8a08f0f8bf0f156b,
0xac8b2d36eed2dac5, 0xd7adf884aa879177,
0x86ccbb52ea94baea, 0xa87fea27a539e9a5,
0xd29fe4b18e88640e, 0x83a3eeeef9153e89,
0xa48ceaaab75a8e2b, 0xcdb02555653131b6,
0x808e17555f3ebf11, 0xa0b19d2ab70e6ed6,
0xc8de047564d20a8b, 0xfb158592be068d2e,
0x9ced737bb6c4183d, 0xc428d05aa4751e4c,
0xf53304714d9265df, 0x993fe2c6d07b7fab,
0xbf8fdb78849a5f96, 0xef73d256a5c0f77c,
0x95a8637627989aad, 0xbb127c53b17ec159,
0xe9d71b689dde71af, 0x9226712162ab070d,
0xb6b00d69bb55c8d1, 0xe45c10c42a2b3b05,
0x8eb98a7a9a5b04e3, 0xb267ed1940f1c61c,
0xdf01e85f912e37a3, 0x8b61313bbabce2c6,
0xae397d8aa96c1b77, 0xd9c7dced53c72255,
0x881cea14545c7575, 0xaa242499697392d2,
0xd4ad2dbfc3d07787, 0x84ec3c97da624ab4,
0xa6274bbdd0fadd61, 0xcfb11ead453994ba,
0x81ceb32c4b43fcf4, 0xa2425ff75e14fc31,
0xcad2f7f5359a3b3e, 0xfd87b5f28300ca0d,
0x9e74d1b791e07e48, 0xc612062576589dda,
0xf79687aed3eec551, 0x9abe14cd44753b52,
0xc16d9a0095928a27, 0xf1c90080baf72cb1,
0x971da05074da7bee, 0xbce5086492111aea,
0xec1e4a7db69561a5, 0x9392ee8e921d5d07,
0xb877aa3236a4b449, 0xe69594bec44de15b,
0x901d7cf73ab0acd9, 0xb424dc35095cd80f,
0xe12e13424bb40e13, 0x8cbccc096f5088cb,
0xafebff0bcb24aafe, 0xdbe6fecebdedd5be,
0x89705f4136b4a597, 0xabcc77118461cefc,
0xd6bf94d5e57a42bc, 0x8637bd05af6c69b5,
0xa7c5ac471b478423, 0xd1b71758e219652b,
0x83126e978d4fdf3b, 0xa3d70a3d70a3d70a,
0xcccccccccccccccc, 0x8000000000000000,
0xa000000000000000, 0xc800000000000000,
0xfa00000000000000, 0x9c40000000000000,
0xc350000000000000, 0xf424000000000000,
0x9896800000000000, 0xbebc200000000000,
0xee6b280000000000, 0x9502f90000000000,
0xba43b74000000000, 0xe8d4a51000000000,
0x9184e72a00000000, 0xb5e620f480000000,
0xe35fa931a0000000, 0x8e1bc9bf04000000,
0xb1a2bc2ec5000000, 0xde0b6b3a76400000,
0x8ac7230489e80000, 0xad78ebc5ac620000,
0xd8d726b7177a8000, 0x878678326eac9000,
0xa968163f0a57b400, 0xd3c21bcecceda100,
0x84595161401484a0, 0xa56fa5b99019a5c8,
0xcecb8f27f4200f3a, 0x813f3978f8940984,
0xa18f07d736b90be5, 0xc9f2c9cd04674ede,
0xfc6f7c4045812296, 0x9dc5ada82b70b59d,
0xc5371912364ce305, 0xf684df56c3e01bc6,
0x9a130b963a6c115c, 0xc097ce7bc90715b3,
0xf0bdc21abb48db20, 0x96769950b50d88f4,
0xbc143fa4e250eb31, 0xeb194f8e1ae525fd,
0x92efd1b8d0cf37be, 0xb7abc627050305ad,
0xe596b7b0c643c719, 0x8f7e32ce7bea5c6f,
0xb35dbf821ae4f38b, 0xe0352f62a19e306e,
0x8c213d9da502de45, 0xaf298d050e4395d6,
0xdaf3f04651d47b4c, 0x88d8762bf324cd0f,
0xab0e93b6efee0053, 0xd5d238a4abe98068,
0x85a36366eb71f041, 0xa70c3c40a64e6c51,
0xd0cf4b50cfe20765, 0x82818f1281ed449f,
0xa321f2d7226895c7, 0xcbea6f8ceb02bb39,
0xfee50b7025c36a08, 0x9f4f2726179a2245,
0xc722f0ef9d80aad6, 0xf8ebad2b84e0d58b,
0x9b934c3b330c8577, 0xc2781f49ffcfa6d5,
0xf316271c7fc3908a, 0x97edd871cfda3a56,
0xbde94e8e43d0c8ec, 0xed63a231d4c4fb27,
0x945e455f24fb1cf8, 0xb975d6b6ee39e436,
0xe7d34c64a9c85d44, 0x90e40fbeea1d3a4a,
0xb51d13aea4a488dd, 0xe264589a4dcdab14,
0x8d7eb76070a08aec, 0xb0de65388cc8ada8,
0xdd15fe86affad912, 0x8a2dbf142dfcc7ab,
0xacb92ed9397bf996, 0xd7e77a8f87daf7fb,
0x86f0ac99b4e8dafd, 0xa8acd7c0222311bc,
0xd2d80db02aabd62b, 0x83c7088e1aab65db,
0xa4b8cab1a1563f52, 0xcde6fd5e09abcf26,
0x80b05e5ac60b6178, 0xa0dc75f1778e39d6,
0xc913936dd571c84c, 0xfb5878494ace3a5f,
0x9d174b2dcec0e47b, 0xc45d1df942711d9a,
0xf5746577930d6500, 0x9968bf6abbe85f20,
0xbfc2ef456ae276e8, 0xefb3ab16c59b14a2,
0x95d04aee3b80ece5, 0xbb445da9ca61281f,
0xea1575143cf97226, 0x924d692ca61be758,
0xb6e0c377cfa2e12e, 0xe498f455c38b997a,
0x8edf98b59a373fec, 0xb2977ee300c50fe7,
0xdf3d5e9bc0f653e1, 0x8b865b215899f46c,
0xae67f1e9aec07187, 0xda01ee641a708de9,
0x884134fe908658b2, 0xaa51823e34a7eede,
0xd4e5e2cdc1d1ea96, 0x850fadc09923329e,
0xa6539930bf6bff45, 0xcfe87f7cef46ff16,
0x81f14fae158c5f6e, 0xa26da3999aef7749,
0xcb090c8001ab551c, 0xfdcb4fa002162a63,
0x9e9f11c4014dda7e, 0xc646d63501a1511d,
0xf7d88bc24209a565, 0x9ae757596946075f,
0xc1a12d2fc3978937, 0xf209787bb47d6b84,
0x9745eb4d50ce6332, 0xbd176620a501fbff,
0xec5d3fa8ce427aff, 0x93ba47c980e98cdf,
0xb8a8d9bbe123f017, 0xe6d3102ad96cec1d,
0x9043ea1ac7e41392, 0xb454e4a179dd1877,
0xe16a1dc9d8545e94, 0x8ce2529e2734bb1d,
0xb01ae745b101e9e4, 0xdc21a1171d42645d,
0x899504ae72497eba, 0xabfa45da0edbde69,
0xd6f8d7509292d603, 0x865b86925b9bc5c2,
0xa7f26836f282b732, 0xd1ef0244af2364ff,
0x8335616aed761f1f, 0xa402b9c5a8d3a6e7,
0xcd036837130890a1, 0x802221226be55a64,
0xa02aa96b06deb0fd, 0xc83553c5c8965d3d,
0xfa42a8b73abbf48c, 0x9c69a97284b578d7,
0xc38413cf25e2d70d, 0xf46518c2ef5b8cd1,
0x98bf2f79d5993802, 0xbeeefb584aff8603,
0xeeaaba2e5dbf6784, 0x952ab45cfa97a0b2,
0xba756174393d88df, 0xe912b9d1478ceb17,
0x91abb422ccb812ee, 0xb616a12b7fe617aa,
0xe39c49765fdf9d94, 0x8e41ade9fbebc27d,
0xb1d219647ae6b31c, 0xde469fbd99a05fe3,
0x8aec23d680043bee, 0xada72ccc20054ae9,
0xd910f7ff28069da4, 0x87aa9aff79042286,
0xa99541bf57452b28, 0xd3fa922f2d1675f2,
0x847c9b5d7c2e09b7, 0xa59bc234db398c25,
0xcf02b2c21207ef2e, 0x8161afb94b44f57d,
0xa1ba1ba79e1632dc, 0xca28a291859bbf93,
0xfcb2cb35e702af78, 0x9defbf01b061adab,
0xc56baec21c7a1916, 0xf6c69a72a3989f5b,
0x9a3c2087a63f6399, 0xc0cb28a98fcf3c7f,
0xf0fdf2d3f3c30b9f, 0x969eb7c47859e743,
0xbc4665b596706114, 0xeb57ff22fc0c7959,
0x9316ff75dd87cbd8, 0xb7dcbf5354e9bece,
0xe5d3ef282a242e81, 0x8fa475791a569d10,
0xb38d92d760ec4455, 0xe070f78d3927556a,
0x8c469ab843b89562, 0xaf58416654a6babb,
0xdb2e51bfe9d0696a, 0x88fcf317f22241e2,
0xab3c2fddeeaad25a, 0xd60b3bd56a5586f1,
0x85c7056562757456, 0xa738c6bebb12d16c,
0xd106f86e69d785c7, 0x82a45b450226b39c,
0xa34d721642b06084, 0xcc20ce9bd35c78a5,
0xff290242c83396ce, 0x9f79a169bd203e41,
0xc75809c42c684dd1, 0xf92e0c3537826145,
0x9bbcc7a142b17ccb, 0xc2abf989935ddbfe,
0xf356f7ebf83552fe, 0x98165af37b2153de,
0xbe1bf1b059e9a8d6, 0xeda2ee1c7064130c,
0x9485d4d1c63e8be7, 0xb9a74a0637ce2ee1,
0xe8111c87c5c1ba99, 0x910ab1d4db9914a0,
0xb54d5e4a127f59c8, 0xe2a0b5dc971f303a,
0x8da471a9de737e24, 0xb10d8e1456105dad,
0xdd50f1996b947518, 0x8a5296ffe33cc92f,
0xace73cbfdc0bfb7b, 0xd8210befd30efa5a,
0x8714a775e3e95c78, 0xa8d9d1535ce3b396,
0xd31045a8341ca07c, 0x83ea2b892091e44d,
0xa4e4b66b68b65d60, 0xce1de40642e3f4b9,
0x80d2ae83e9ce78f3, 0xa1075a24e4421730,
0xc94930ae1d529cfc, 0xfb9b7cd9a4a7443c,
0x9d412e0806e88aa5, 0xc491798a08a2ad4e,
0xf5b5d7ec8acb58a2, 0x9991a6f3d6bf1765,
0xbff610b0cc6edd3f, 0xeff394dcff8a948e,
0x95f83d0a1fb69cd9, 0xbb764c4ca7a4440f,
0xea53df5fd18d5513, 0x92746b9be2f8552c,
0xb7118682dbb66a77, 0xe4d5e82392a40515,
0x8f05b1163ba6832d, 0xb2c71d5bca9023f8,
0xdf78e4b2bd342cf6, 0x8bab8eefb6409c1a,
0xae9672aba3d0c320, 0xda3c0f568cc4f3e8,
0x8865899617fb1871, 0xaa7eebfb9df9de8d,
0xd51ea6fa85785631, 0x8533285c936b35de,
0xa67ff273b8460356, 0xd01fef10a657842c,
0x8213f56a67f6b29b, 0xa298f2c501f45f42,
0xcb3f2f7642717713, 0xfe0efb53d30dd4d7,
0x9ec95d1463e8a506, 0xc67bb4597ce2ce48,
0xf81aa16fdc1b81da, 0x9b10a4e5e9913128,
0xc1d4ce1f63f57d72, 0xf24a01a73cf2dccf,
0x976e41088617ca01, 0xbd49d14aa79dbc82,
0xec9c459d51852ba2, 0x93e1ab8252f33b45,
0xb8da1662e7b00a17, 0xe7109bfba19c0c9d,
0x906a617d450187e2, 0xb484f9dc9641e9da,
0xe1a63853bbd26451, 0x8d07e33455637eb2,
0xb049dc016abc5e5f, 0xdc5c5301c56b75f7,
0x89b9b3e11b6329ba, 0xac2820d9623bf429,
0xd732290fbacaf133, 0x867f59a9d4bed6c0,
0xa81f301449ee8c70, 0xd226fc195c6a2f8c,
0x83585d8fd9c25db7, 0xa42e74f3d032f525,
0xcd3a1230c43fb26f, 0x80444b5e7aa7cf85,
0xa0555e361951c366, 0xc86ab5c39fa63440,
0xfa856334878fc150, 0x9c935e00d4b9d8d2,
0xc3b8358109e84f07, 0xf4a642e14c6262c8,
0x98e7e9cccfbd7dbd, 0xbf21e44003acdd2c,
0xeeea5d5004981478, 0x95527a5202df0ccb,
0xbaa718e68396cffd, 0xe950df20247c83fd,
0x91d28b7416cdd27e, 0xb6472e511c81471d,
0xe3d8f9e563a198e5, 0x8e679c2f5e44ff8f};
// A complement to mantissa_64
// complete to a 128-bit mantissa.
// Uses about 5KB but is rarely accessed.
static const uint64_t mantissa_128[] = {
0x419ea3bd35385e2d, 0x52064cac828675b9,
0x7343efebd1940993, 0x1014ebe6c5f90bf8,
0xd41a26e077774ef6, 0x8920b098955522b4,
0x55b46e5f5d5535b0, 0xeb2189f734aa831d,
0xa5e9ec7501d523e4, 0x47b233c92125366e,
0x999ec0bb696e840a, 0xc00670ea43ca250d,
0x380406926a5e5728, 0xc605083704f5ecf2,
0xf7864a44c633682e, 0x7ab3ee6afbe0211d,
0x5960ea05bad82964, 0x6fb92487298e33bd,
0xa5d3b6d479f8e056, 0x8f48a4899877186c,
0x331acdabfe94de87, 0x9ff0c08b7f1d0b14,
0x7ecf0ae5ee44dd9, 0xc9e82cd9f69d6150,
0xbe311c083a225cd2, 0x6dbd630a48aaf406,
0x92cbbccdad5b108, 0x25bbf56008c58ea5,
0xaf2af2b80af6f24e, 0x1af5af660db4aee1,
0x50d98d9fc890ed4d, 0xe50ff107bab528a0,
0x1e53ed49a96272c8, 0x25e8e89c13bb0f7a,
0x77b191618c54e9ac, 0xd59df5b9ef6a2417,
0x4b0573286b44ad1d, 0x4ee367f9430aec32,
0x229c41f793cda73f, 0x6b43527578c1110f,
0x830a13896b78aaa9, 0x23cc986bc656d553,
0x2cbfbe86b7ec8aa8, 0x7bf7d71432f3d6a9,
0xdaf5ccd93fb0cc53, 0xd1b3400f8f9cff68,
0x23100809b9c21fa1, 0xabd40a0c2832a78a,
0x16c90c8f323f516c, 0xae3da7d97f6792e3,
0x99cd11cfdf41779c, 0x40405643d711d583,
0x482835ea666b2572, 0xda3243650005eecf,
0x90bed43e40076a82, 0x5a7744a6e804a291,
0x711515d0a205cb36, 0xd5a5b44ca873e03,
0xe858790afe9486c2, 0x626e974dbe39a872,
0xfb0a3d212dc8128f, 0x7ce66634bc9d0b99,
0x1c1fffc1ebc44e80, 0xa327ffb266b56220,
0x4bf1ff9f0062baa8, 0x6f773fc3603db4a9,
0xcb550fb4384d21d3, 0x7e2a53a146606a48,
0x2eda7444cbfc426d, 0xfa911155fefb5308,
0x793555ab7eba27ca, 0x4bc1558b2f3458de,
0x9eb1aaedfb016f16, 0x465e15a979c1cadc,
0xbfacd89ec191ec9, 0xcef980ec671f667b,
0x82b7e12780e7401a, 0xd1b2ecb8b0908810,
0x861fa7e6dcb4aa15, 0x67a791e093e1d49a,
0xe0c8bb2c5c6d24e0, 0x58fae9f773886e18,
0xaf39a475506a899e, 0x6d8406c952429603,
0xc8e5087ba6d33b83, 0xfb1e4a9a90880a64,
0x5cf2eea09a55067f, 0xf42faa48c0ea481e,
0xf13b94daf124da26, 0x76c53d08d6b70858,
0x54768c4b0c64ca6e, 0xa9942f5dcf7dfd09,
0xd3f93b35435d7c4c, 0xc47bc5014a1a6daf,
0x359ab6419ca1091b, 0xc30163d203c94b62,
0x79e0de63425dcf1d, 0x985915fc12f542e4,
0x3e6f5b7b17b2939d, 0xa705992ceecf9c42,
0x50c6ff782a838353, 0xa4f8bf5635246428,
0x871b7795e136be99, 0x28e2557b59846e3f,
0x331aeada2fe589cf, 0x3ff0d2c85def7621,
0xfed077a756b53a9, 0xd3e8495912c62894,
0x64712dd7abbbd95c, 0xbd8d794d96aacfb3,
0xecf0d7a0fc5583a0, 0xf41686c49db57244,
0x311c2875c522ced5, 0x7d633293366b828b,
0xae5dff9c02033197, 0xd9f57f830283fdfc,
0xd072df63c324fd7b, 0x4247cb9e59f71e6d,
0x52d9be85f074e608, 0x67902e276c921f8b,
0xba1cd8a3db53b6, 0x80e8a40eccd228a4,
0x6122cd128006b2cd, 0x796b805720085f81,
0xcbe3303674053bb0, 0xbedbfc4411068a9c,
0xee92fb5515482d44, 0x751bdd152d4d1c4a,
0xd262d45a78a0635d, 0x86fb897116c87c34,
0xd45d35e6ae3d4da0, 0x8974836059cca109,
0x2bd1a438703fc94b, 0x7b6306a34627ddcf,
0x1a3bc84c17b1d542, 0x20caba5f1d9e4a93,
0x547eb47b7282ee9c, 0xe99e619a4f23aa43,
0x6405fa00e2ec94d4, 0xde83bc408dd3dd04,
0x9624ab50b148d445, 0x3badd624dd9b0957,
0xe54ca5d70a80e5d6, 0x5e9fcf4ccd211f4c,
0x7647c3200069671f, 0x29ecd9f40041e073,
0xf468107100525890, 0x7182148d4066eeb4,
0xc6f14cd848405530, 0xb8ada00e5a506a7c,
0xa6d90811f0e4851c, 0x908f4a166d1da663,
0x9a598e4e043287fe, 0x40eff1e1853f29fd,
0xd12bee59e68ef47c, 0x82bb74f8301958ce,
0xe36a52363c1faf01, 0xdc44e6c3cb279ac1,
0x29ab103a5ef8c0b9, 0x7415d448f6b6f0e7,
0x111b495b3464ad21, 0xcab10dd900beec34,
0x3d5d514f40eea742, 0xcb4a5a3112a5112,
0x47f0e785eaba72ab, 0x59ed216765690f56,
0x306869c13ec3532c, 0x1e414218c73a13fb,
0xe5d1929ef90898fa, 0xdf45f746b74abf39,
0x6b8bba8c328eb783, 0x66ea92f3f326564,
0xc80a537b0efefebd, 0xbd06742ce95f5f36,
0x2c48113823b73704, 0xf75a15862ca504c5,
0x9a984d73dbe722fb, 0xc13e60d0d2e0ebba,
0x318df905079926a8, 0xfdf17746497f7052,
0xfeb6ea8bedefa633, 0xfe64a52ee96b8fc0,
0x3dfdce7aa3c673b0, 0x6bea10ca65c084e,
0x486e494fcff30a62, 0x5a89dba3c3efccfa,
0xf89629465a75e01c, 0xf6bbb397f1135823,
0x746aa07ded582e2c, 0xa8c2a44eb4571cdc,
0x92f34d62616ce413, 0x77b020baf9c81d17,
0xace1474dc1d122e, 0xd819992132456ba,
0x10e1fff697ed6c69, 0xca8d3ffa1ef463c1,
0xbd308ff8a6b17cb2, 0xac7cb3f6d05ddbde,
0x6bcdf07a423aa96b, 0x86c16c98d2c953c6,
0xe871c7bf077ba8b7, 0x11471cd764ad4972,
0xd598e40d3dd89bcf, 0x4aff1d108d4ec2c3,
0xcedf722a585139ba, 0xc2974eb4ee658828,
0x733d226229feea32, 0x806357d5a3f525f,
0xca07c2dcb0cf26f7, 0xfc89b393dd02f0b5,
0xbbac2078d443ace2, 0xd54b944b84aa4c0d,
0xa9e795e65d4df11, 0x4d4617b5ff4a16d5,
0x504bced1bf8e4e45, 0xe45ec2862f71e1d6,
0x5d767327bb4e5a4c, 0x3a6a07f8d510f86f,
0x890489f70a55368b, 0x2b45ac74ccea842e,
0x3b0b8bc90012929d, 0x9ce6ebb40173744,
0xcc420a6a101d0515, 0x9fa946824a12232d,
0x47939822dc96abf9, 0x59787e2b93bc56f7,
0x57eb4edb3c55b65a, 0xede622920b6b23f1,
0xe95fab368e45eced, 0x11dbcb0218ebb414,
0xd652bdc29f26a119, 0x4be76d3346f0495f,
0x6f70a4400c562ddb, 0xcb4ccd500f6bb952,
0x7e2000a41346a7a7, 0x8ed400668c0c28c8,
0x728900802f0f32fa, 0x4f2b40a03ad2ffb9,
0xe2f610c84987bfa8, 0xdd9ca7d2df4d7c9,
0x91503d1c79720dbb, 0x75a44c6397ce912a,
0xc986afbe3ee11aba, 0xfbe85badce996168,
0xfae27299423fb9c3, 0xdccd879fc967d41a,
0x5400e987bbc1c920, 0x290123e9aab23b68,
0xf9a0b6720aaf6521, 0xf808e40e8d5b3e69,
0xb60b1d1230b20e04, 0xb1c6f22b5e6f48c2,
0x1e38aeb6360b1af3, 0x25c6da63c38de1b0,
0x579c487e5a38ad0e, 0x2d835a9df0c6d851,
0xf8e431456cf88e65, 0x1b8e9ecb641b58ff,
0xe272467e3d222f3f, 0x5b0ed81dcc6abb0f,
0x98e947129fc2b4e9, 0x3f2398d747b36224,
0x8eec7f0d19a03aad, 0x1953cf68300424ac,
0x5fa8c3423c052dd7, 0x3792f412cb06794d,
0xe2bbd88bbee40bd0, 0x5b6aceaeae9d0ec4,
0xf245825a5a445275, 0xeed6e2f0f0d56712,
0x55464dd69685606b, 0xaa97e14c3c26b886,
0xd53dd99f4b3066a8, 0xe546a8038efe4029,
0xde98520472bdd033, 0x963e66858f6d4440,
0xdde7001379a44aa8, 0x5560c018580d5d52,
0xaab8f01e6e10b4a6, 0xcab3961304ca70e8,
0x3d607b97c5fd0d22, 0x8cb89a7db77c506a,
0x77f3608e92adb242, 0x55f038b237591ed3,
0x6b6c46dec52f6688, 0x2323ac4b3b3da015,
0xabec975e0a0d081a, 0x96e7bd358c904a21,
0x7e50d64177da2e54, 0xdde50bd1d5d0b9e9,
0x955e4ec64b44e864, 0xbd5af13bef0b113e,
0xecb1ad8aeacdd58e, 0x67de18eda5814af2,
0x80eacf948770ced7, 0xa1258379a94d028d,
0x96ee45813a04330, 0x8bca9d6e188853fc,
0x775ea264cf55347d, 0x95364afe032a819d,
0x3a83ddbd83f52204, 0xc4926a9672793542,
0x75b7053c0f178293, 0x5324c68b12dd6338,
0xd3f6fc16ebca5e03, 0x88f4bb1ca6bcf584,
0x2b31e9e3d06c32e5, 0x3aff322e62439fcf,
0x9befeb9fad487c2, 0x4c2ebe687989a9b3,
0xf9d37014bf60a10, 0x538484c19ef38c94,
0x2865a5f206b06fb9, 0xf93f87b7442e45d3,
0xf78f69a51539d748, 0xb573440e5a884d1b,
0x31680a88f8953030, 0xfdc20d2b36ba7c3d,
0x3d32907604691b4c, 0xa63f9a49c2c1b10f,
0xfcf80dc33721d53, 0xd3c36113404ea4a8,
0x645a1cac083126e9, 0x3d70a3d70a3d70a3,
0xcccccccccccccccc, 0x0,
0x0, 0x0,
0x0, 0x0,
0x0, 0x0,
0x0, 0x0,
0x0, 0x0,
0x0, 0x0,
0x0, 0x0,
0x0, 0x0,
0x0, 0x0,
0x0, 0x0,
0x0, 0x0,
0x0, 0x0,
0x0, 0x0,
0x0, 0x4000000000000000,
0x5000000000000000, 0xa400000000000000,
0x4d00000000000000, 0xf020000000000000,
0x6c28000000000000, 0xc732000000000000,
0x3c7f400000000000, 0x4b9f100000000000,
0x1e86d40000000000, 0x1314448000000000,
0x17d955a000000000, 0x5dcfab0800000000,
0x5aa1cae500000000, 0xf14a3d9e40000000,
0x6d9ccd05d0000000, 0xe4820023a2000000,
0xdda2802c8a800000, 0xd50b2037ad200000,
0x4526f422cc340000, 0x9670b12b7f410000,
0x3c0cdd765f114000, 0xa5880a69fb6ac800,
0x8eea0d047a457a00, 0x72a4904598d6d880,
0x47a6da2b7f864750, 0x999090b65f67d924,
0xfff4b4e3f741cf6d, 0xbff8f10e7a8921a4,
0xaff72d52192b6a0d, 0x9bf4f8a69f764490,
0x2f236d04753d5b4, 0x1d762422c946590,
0x424d3ad2b7b97ef5, 0xd2e0898765a7deb2,
0x63cc55f49f88eb2f, 0x3cbf6b71c76b25fb,
0x8bef464e3945ef7a, 0x97758bf0e3cbb5ac,
0x3d52eeed1cbea317, 0x4ca7aaa863ee4bdd,
0x8fe8caa93e74ef6a, 0xb3e2fd538e122b44,
0x60dbbca87196b616, 0xbc8955e946fe31cd,
0x6babab6398bdbe41, 0xc696963c7eed2dd1,
0xfc1e1de5cf543ca2, 0x3b25a55f43294bcb,
0x49ef0eb713f39ebe, 0x6e3569326c784337,
0x49c2c37f07965404, 0xdc33745ec97be906,
0x69a028bb3ded71a3, 0xc40832ea0d68ce0c,
0xf50a3fa490c30190, 0x792667c6da79e0fa,
0x577001b891185938, 0xed4c0226b55e6f86,
0x544f8158315b05b4, 0x696361ae3db1c721,
0x3bc3a19cd1e38e9, 0x4ab48a04065c723,
0x62eb0d64283f9c76, 0x3ba5d0bd324f8394,
0xca8f44ec7ee36479, 0x7e998b13cf4e1ecb,
0x9e3fedd8c321a67e, 0xc5cfe94ef3ea101e,
0xbba1f1d158724a12, 0x2a8a6e45ae8edc97,
0xf52d09d71a3293bd, 0x593c2626705f9c56,
0x6f8b2fb00c77836c, 0xb6dfb9c0f956447,
0x4724bd4189bd5eac, 0x58edec91ec2cb657,
0x2f2967b66737e3ed, 0xbd79e0d20082ee74,
0xecd8590680a3aa11, 0xe80e6f4820cc9495,
0x3109058d147fdcdd, 0xbd4b46f0599fd415,
0x6c9e18ac7007c91a, 0x3e2cf6bc604ddb0,
0x84db8346b786151c, 0xe612641865679a63,
0x4fcb7e8f3f60c07e, 0xe3be5e330f38f09d,
0x5cadf5bfd3072cc5, 0x73d9732fc7c8f7f6,
0x2867e7fddcdd9afa, 0xb281e1fd541501b8,
0x1f225a7ca91a4226, 0x3375788de9b06958,
0x52d6b1641c83ae, 0xc0678c5dbd23a49a,
0xf840b7ba963646e0, 0xb650e5a93bc3d898,
0xa3e51f138ab4cebe, 0xc66f336c36b10137,
0xb80b0047445d4184, 0xa60dc059157491e5,
0x87c89837ad68db2f, 0x29babe4598c311fb,
0xf4296dd6fef3d67a, 0x1899e4a65f58660c,
0x5ec05dcff72e7f8f, 0x76707543f4fa1f73,
0x6a06494a791c53a8, 0x487db9d17636892,
0x45a9d2845d3c42b6, 0xb8a2392ba45a9b2,
0x8e6cac7768d7141e, 0x3207d795430cd926,
0x7f44e6bd49e807b8, 0x5f16206c9c6209a6,
0x36dba887c37a8c0f, 0xc2494954da2c9789,
0xf2db9baa10b7bd6c, 0x6f92829494e5acc7,
0xcb772339ba1f17f9, 0xff2a760414536efb,
0xfef5138519684aba, 0x7eb258665fc25d69,
0xef2f773ffbd97a61, 0xaafb550ffacfd8fa,
0x95ba2a53f983cf38, 0xdd945a747bf26183,
0x94f971119aeef9e4, 0x7a37cd5601aab85d,
0xac62e055c10ab33a, 0x577b986b314d6009,
0xed5a7e85fda0b80b, 0x14588f13be847307,
0x596eb2d8ae258fc8, 0x6fca5f8ed9aef3bb,
0x25de7bb9480d5854, 0xaf561aa79a10ae6a,
0x1b2ba1518094da04, 0x90fb44d2f05d0842,
0x353a1607ac744a53, 0x42889b8997915ce8,
0x69956135febada11, 0x43fab9837e699095,
0x94f967e45e03f4bb, 0x1d1be0eebac278f5,
0x6462d92a69731732, 0x7d7b8f7503cfdcfe,
0x5cda735244c3d43e, 0x3a0888136afa64a7,
0x88aaa1845b8fdd0, 0x8aad549e57273d45,
0x36ac54e2f678864b, 0x84576a1bb416a7dd,
0x656d44a2a11c51d5, 0x9f644ae5a4b1b325,
0x873d5d9f0dde1fee, 0xa90cb506d155a7ea,
0x9a7f12442d588f2, 0xc11ed6d538aeb2f,
0x8f1668c8a86da5fa, 0xf96e017d694487bc,
0x37c981dcc395a9ac, 0x85bbe253f47b1417,
0x93956d7478ccec8e, 0x387ac8d1970027b2,
0x6997b05fcc0319e, 0x441fece3bdf81f03,
0xd527e81cad7626c3, 0x8a71e223d8d3b074,
0xf6872d5667844e49, 0xb428f8ac016561db,
0xe13336d701beba52, 0xecc0024661173473,
0x27f002d7f95d0190, 0x31ec038df7b441f4,
0x7e67047175a15271, 0xf0062c6e984d386,
0x52c07b78a3e60868, 0xa7709a56ccdf8a82,
0x88a66076400bb691, 0x6acff893d00ea435,
0x583f6b8c4124d43, 0xc3727a337a8b704a,
0x744f18c0592e4c5c, 0x1162def06f79df73,
0x8addcb5645ac2ba8, 0x6d953e2bd7173692,
0xc8fa8db6ccdd0437, 0x1d9c9892400a22a2,
0x2503beb6d00cab4b, 0x2e44ae64840fd61d,
0x5ceaecfed289e5d2, 0x7425a83e872c5f47,
0xd12f124e28f77719, 0x82bd6b70d99aaa6f,
0x636cc64d1001550b, 0x3c47f7e05401aa4e,
0x65acfaec34810a71, 0x7f1839a741a14d0d,
0x1ede48111209a050, 0x934aed0aab460432,
0xf81da84d5617853f, 0x36251260ab9d668e,
0xc1d72b7c6b426019, 0xb24cf65b8612f81f,
0xdee033f26797b627, 0x169840ef017da3b1,
0x8e1f289560ee864e, 0xf1a6f2bab92a27e2,
0xae10af696774b1db, 0xacca6da1e0a8ef29,
0x17fd090a58d32af3, 0xddfc4b4cef07f5b0,
0x4abdaf101564f98e, 0x9d6d1ad41abe37f1,
0x84c86189216dc5ed, 0x32fd3cf5b4e49bb4,
0x3fbc8c33221dc2a1, 0xfabaf3feaa5334a,
0x29cb4d87f2a7400e, 0x743e20e9ef511012,
0x914da9246b255416, 0x1ad089b6c2f7548e,
0xa184ac2473b529b1, 0xc9e5d72d90a2741e,
0x7e2fa67c7a658892, 0xddbb901b98feeab7,
0x552a74227f3ea565, 0xd53a88958f87275f,
0x8a892abaf368f137, 0x2d2b7569b0432d85,
0x9c3b29620e29fc73, 0x8349f3ba91b47b8f,
0x241c70a936219a73, 0xed238cd383aa0110,
0xf4363804324a40aa, 0xb143c6053edcd0d5,
0xdd94b7868e94050a, 0xca7cf2b4191c8326,
0xfd1c2f611f63a3f0, 0xbc633b39673c8cec,
0xd5be0503e085d813, 0x4b2d8644d8a74e18,
0xddf8e7d60ed1219e, 0xcabb90e5c942b503,
0x3d6a751f3b936243, 0xcc512670a783ad4,
0x27fb2b80668b24c5, 0xb1f9f660802dedf6,
0x5e7873f8a0396973, 0xdb0b487b6423e1e8,
0x91ce1a9a3d2cda62, 0x7641a140cc7810fb,
0xa9e904c87fcb0a9d, 0x546345fa9fbdcd44,
0xa97c177947ad4095, 0x49ed8eabcccc485d,
0x5c68f256bfff5a74, 0x73832eec6fff3111,
0xc831fd53c5ff7eab, 0xba3e7ca8b77f5e55,
0x28ce1bd2e55f35eb, 0x7980d163cf5b81b3,
0xd7e105bcc332621f, 0x8dd9472bf3fefaa7,
0xb14f98f6f0feb951, 0x6ed1bf9a569f33d3,
0xa862f80ec4700c8, 0xcd27bb612758c0fa,
0x8038d51cb897789c, 0xe0470a63e6bd56c3,
0x1858ccfce06cac74, 0xf37801e0c43ebc8,
0xd30560258f54e6ba, 0x47c6b82ef32a2069,
0x4cdc331d57fa5441, 0xe0133fe4adf8e952,
0x58180fddd97723a6, 0x570f09eaa7ea7648,};
// we start with a fast path
// It was described in
// Clinger WD. How to read floating point numbers accurately.
// ACM SIGPLAN Notices. 1990
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
// we do not trust the divisor
if (0 <= power && power <= 22 && i <= 9007199254740991) {
#else
if (-22 <= power && power <= 22 && i <= 9007199254740991) {
#endif
// convert the integer into a double. This is lossless since
// 0 <= i <= 2^53 - 1.
double d = double(i);
//
// The general idea is as follows.
// If 0 <= s < 2^53 and if 10^0 <= p <= 10^22 then
// 1) Both s and p can be represented exactly as 64-bit floating-point
// values
// (binary64).
// 2) Because s and p can be represented exactly as floating-point values,
// then s * p
// and s / p will produce correctly rounded values.
//
if (power < 0) {
d = d / power_of_ten[-power];
} else {
d = d * power_of_ten[power];
}
if (negative) {
d = -d;
}
*success = true;
return d;
}
// When 22 < power && power < 22 + 16, we could
// hope for another, secondary fast path. It wa
// described by David M. Gay in "Correctly rounded
// binary-decimal and decimal-binary conversions." (1990)
// If you need to compute i * 10^(22 + x) for x < 16,
// first compute i * 10^x, if you know that result is exact
// (e.g., when i * 10^x < 2^53),
// then you can still proceed and do (i * 10^x) * 10^22.
// Is this worth your time?
// You need 22 < power *and* power < 22 + 16 *and* (i * 10^(x-22) < 2^53)
// for this second fast path to work.
// If you you have 22 < power *and* power < 22 + 16, and then you
// optimistically compute "i * 10^(x-22)", there is still a chance that you
// have wasted your time if i * 10^(x-22) >= 2^53. It makes the use cases of
// this optimization maybe less common than we would like. Source:
// http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
// also used in RapidJSON: https://rapidjson.org/strtod_8h_source.html
// The fast path has now failed, so we are failing back on the slower path.
// In the slow path, we need to adjust i so that it is > 1<<63 which is always
// possible, except if i == 0, so we handle i == 0 separately.
if(i == 0) {
return negative ? -0.0 : 0.0;
}
// We are going to need to do some 64-bit arithmetic to get a more precise product.
// We use a table lookup approach.
// It is safe because
// power >= FASTFLOAT_SMALLEST_POWER
// and power <= FASTFLOAT_LARGEST_POWER
// We recover the mantissa of the power, it has a leading 1. It is always
// rounded down.
uint64_t factor_mantissa = mantissa_64[power - FASTFLOAT_SMALLEST_POWER];
// The exponent is 1024 + 63 + power
// + floor(log(5**power)/log(2)).
// The 1024 comes from the ieee64 standard.
// The 63 comes from the fact that we use a 64-bit word.
//
// Computing floor(log(5**power)/log(2)) could be
// slow. Instead we use a fast function.
//
// For power in (-400,350), we have that
// (((152170 + 65536) * power ) >> 16);
// is equal to
// floor(log(5**power)/log(2)) + power when power >= 0
// and it is equal to
// ceil(log(5**-power)/log(2)) + power when power < 0
//
//
// The 65536 is (1<<16) and corresponds to
// (65536 * power) >> 16 ---> power
//
// ((152170 * power ) >> 16) is equal to
// floor(log(5**power)/log(2))
//
// Note that this is not magic: 152170/(1<<16) is
// approximatively equal to log(5)/log(2).
// The 1<<16 value is a power of two; we could use a
// larger power of 2 if we wanted to.
//
int64_t exponent = (((152170 + 65536) * power) >> 16) + 1024 + 63;
// We want the most significant bit of i to be 1. Shift if needed.
int lz = leading_zeroes(i);
i <<= lz;
// We want the most significant 64 bits of the product. We know
// this will be non-zero because the most significant bit of i is
// 1.
value128 product = full_multiplication(i, factor_mantissa);
uint64_t lower = product.low;
uint64_t upper = product.high;
// We know that upper has at most one leading zero because
// both i and factor_mantissa have a leading one. This means
// that the result is at least as large as ((1<<63)*(1<<63))/(1<<64).
// As long as the first 9 bits of "upper" are not "1", then we
// know that we have an exact computed value for the leading
// 55 bits because any imprecision would play out as a +1, in
// the worst case.
// Having 55 bits is necessary because
// we need 53 bits for the mantissa but we have to have one rounding bit and
// we can waste a bit if the most significant bit of the product is zero.
// We expect this next branch to be rarely taken (say 1% of the time).
// When (upper & 0x1FF) == 0x1FF, it can be common for
// lower + i < lower to be true (proba. much higher than 1%).
if (unlikely((upper & 0x1FF) == 0x1FF) && (lower + i < lower)) {
uint64_t factor_mantissa_low =
mantissa_128[power - FASTFLOAT_SMALLEST_POWER];
// next, we compute the 64-bit x 128-bit multiplication, getting a 192-bit
// result (three 64-bit values)
product = full_multiplication(i, factor_mantissa_low);
uint64_t product_low = product.low;
uint64_t product_middle2 = product.high;
uint64_t product_middle1 = lower;
uint64_t product_high = upper;
uint64_t product_middle = product_middle1 + product_middle2;
if (product_middle < product_middle1) {
product_high++; // overflow carry
}
// we want to check whether mantissa *i + i would affect our result
// This does happen, e.g. with 7.3177701707893310e+15
if (((product_middle + 1 == 0) && ((product_high & 0x1FF) == 0x1FF) &&
(product_low + i < product_low))) { // let us be prudent and bail out.
*success = false;
return 0;
}
upper = product_high;
lower = product_middle;
}
// The final mantissa should be 53 bits with a leading 1.
// We shift it so that it occupies 54 bits with a leading 1.
///////
uint64_t upperbit = upper >> 63;
uint64_t mantissa = upper >> (upperbit + 9);
lz += int(1 ^ upperbit);
// Here we have mantissa < (1<<54).
// We have to round to even. The "to even" part
// is only a problem when we are right in between two floats
// which we guard against.
// If we have lots of trailing zeros, we may fall right between two
// floating-point values.
if (unlikely((lower == 0) && ((upper & 0x1FF) == 0) &&
((mantissa & 3) == 1))) {
// if mantissa & 1 == 1 we might need to round up.
//
// Scenarios:
// 1. We are not in the middle. Then we should round up.
//
// 2. We are right in the middle. Whether we round up depends
// on the last significant bit: if it is "one" then we round
// up (round to even) otherwise, we do not.
//
// So if the last significant bit is 1, we can safely round up.
// Hence we only need to bail out if (mantissa & 3) == 1.
// Otherwise we may need more accuracy or analysis to determine whether
// we are exactly between two floating-point numbers.
// It can be triggered with 1e23.
// Note: because the factor_mantissa and factor_mantissa_low are
// almost always rounded down (except for small positive powers),
// almost always should round up.
*success = false;
return 0;
}
mantissa += mantissa & 1;
mantissa >>= 1;
// Here we have mantissa < (1<<53), unless there was an overflow
if (mantissa >= (1ULL << 53)) {
//////////
// This will happen when parsing values such as 7.2057594037927933e+16
////////
mantissa = (1ULL << 52);
lz--; // undo previous addition
}
mantissa &= ~(1ULL << 52);
uint64_t real_exponent = exponent - lz;
// we have to check that real_exponent is in range, otherwise we bail out
if (unlikely((real_exponent < 1) || (real_exponent > 2046))) {
*success = false;
return 0;
}
mantissa |= real_exponent << 52;
mantissa |= (((uint64_t)negative) << 63);
double d;
memcpy(&d, &mantissa, sizeof(d));
*success = true;
return d;
}
// Return the null pointer on error
static const char * parse_float_strtod(const char *ptr, double *outDouble) {
char *endptr;
#if defined(FAST_DOUBLE_PARSER_SOLARIS) || defined(FAST_DOUBLE_PARSER_CYGWIN)
// workround for cygwin, solaris
*outDouble = cygwin_strtod_l(ptr, &endptr);
#elif defined(_WIN32)
static _locale_t c_locale = _create_locale(LC_ALL, "C");
*outDouble = _strtod_l(ptr, &endptr, c_locale);
#elif defined(__PASE__)
*outDouble = strtod(ptr, &endptr);
#else
static locale_t c_locale = newlocale(LC_ALL_MASK, "C", NULL);
*outDouble = strtod_l(ptr, &endptr, c_locale);
#endif
// Some libraries will set errno = ERANGE when the value is subnormal,
// yet we may want to be able to parse subnormal values.
// However, we do not want to tolerate NAN or infinite values.
// There isno realistic application where you might need values so large than
// they can't fit in binary64. The maximal value is about 1.7976931348623157
// × 10^308 It is an unimaginable large number. There will never be any piece
// of engineering involving as many as 10^308 parts. It is estimated that
// there are about 10^80 atoms in the universe. The estimate for the total
// number of electrons is similar. Using a double-precision floating-point
// value, we can represent easily the number of atoms in the universe. We
// could also represent the number of ways you can pick any three individual
// atoms at random in the universe.
if (!std::isfinite(*outDouble)) {
return nullptr;
}
return endptr;
}
// parse the number at p
// return the null pointer on error
WARN_UNUSED
really_inline const char * parse_number(const char *p, double *outDouble) {
const char *pinit = p;
bool found_minus = (*p == '-');
bool negative = false;
if (found_minus) {
++p;
negative = true;
if (!is_integer(*p)) { // a negative sign must be followed by an integer
return nullptr;
}
}
const char *const start_digits = p;
uint64_t i; // an unsigned int avoids signed overflows (which are bad)
if (*p == '0') { // 0 cannot be followed by an integer
++p;
if (is_integer(*p)) {
return nullptr;
}
i = 0;
} else {
if (!(is_integer(*p))) { // must start with an integer
return nullptr;
}
unsigned char digit = *p - '0';
i = digit;
p++;
// the is_made_of_eight_digits_fast routine is unlikely to help here because
// we rarely see large integer parts like 123456789
while (is_integer(*p)) {
digit = *p - '0';
// a multiplication by 10 is cheaper than an arbitrary integer
// multiplication
i = 10 * i + digit; // might overflow, we will handle the overflow later
++p;
}
}
int64_t exponent = 0;
const char *first_after_period = NULL;
if (*p == '.') {
++p;
first_after_period = p;
if (is_integer(*p)) {
unsigned char digit = *p - '0';
++p;
i = i * 10 + digit; // might overflow + multiplication by 10 is likely
// cheaper than arbitrary mult.
// we will handle the overflow later
} else {
return nullptr;
}
while (is_integer(*p)) {
unsigned char digit = *p - '0';
++p;
i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
// because we have parse_highprecision_float later.
}
exponent = first_after_period - p;
}
int digit_count =
int(p - start_digits - 1); // used later to guard against overflows
if (('e' == *p) || ('E' == *p)) {
++p;
bool neg_exp = false;
if ('-' == *p) {
neg_exp = true;
++p;
} else if ('+' == *p) {
++p;
}
if (!is_integer(*p)) {
return nullptr;
}
unsigned char digit = *p - '0';
int64_t exp_number = digit;
p++;
if (is_integer(*p)) {
digit = *p - '0';
exp_number = 10 * exp_number + digit;
++p;
}
if (is_integer(*p)) {
digit = *p - '0';
exp_number = 10 * exp_number + digit;
++p;
}
while (is_integer(*p)) {
digit = *p - '0';
if (exp_number < 0x100000000) { // we need to check for overflows
exp_number = 10 * exp_number + digit;
}
++p;
}
exponent += (neg_exp ? -exp_number : exp_number);
}
// If we frequently had to deal with long strings of digits,
// we could extend our code by using a 128-bit integer instead
// of a 64-bit integer. However, this is uncommon.
if (unlikely((digit_count >= 19))) { // this is uncommon
// It is possible that the integer had an overflow.
// We have to handle the case where we have 0.0000somenumber.
const char *start = start_digits;
while (*start == '0' || (*start == '.')) {
start++;
}
// we over-decrement by one when there is a decimal separator
digit_count -= int(start - start_digits);
if (digit_count >= 19) {
// Chances are good that we had an overflow!
// We start anew.
// This will happen in the following examples:
// 10000000000000000000000000000000000000000000e+308
// 3.1415926535897932384626433832795028841971693993751
//
return parse_float_strtod(pinit, outDouble);
}
}
if (unlikely(exponent < FASTFLOAT_SMALLEST_POWER) ||
(exponent > FASTFLOAT_LARGEST_POWER)) {
// this is almost never going to get called!!!
// exponent could be as low as 325
return parse_float_strtod(pinit, outDouble);
}
// from this point forward, exponent >= FASTFLOAT_SMALLEST_POWER and
// exponent <= FASTFLOAT_LARGEST_POWER
bool success = true;
*outDouble = compute_float_64(exponent, i, negative, &success);
if (!success) {
// we are almost never going to get here.
return parse_float_strtod(pinit, outDouble);
}
return p;
}
} // namespace fast_double_parser
#endif