262 lines
8.4 KiB
C++
262 lines
8.4 KiB
C++
#pragma once
|
|
|
|
#include "geometry/point2d.hpp"
|
|
#include "geometry/segment2d.hpp"
|
|
#include "geometry/triangle2d.hpp"
|
|
|
|
#include "base/assert.hpp"
|
|
#include "base/base.hpp"
|
|
#include "base/buffer_vector.hpp"
|
|
#include "base/logging.hpp"
|
|
#include "base/math.hpp"
|
|
#include "base/thread_pool_computational.hpp"
|
|
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <utility>
|
|
|
|
namespace covering
|
|
{
|
|
// Result of an intersection between object and cell.
|
|
enum CellObjectIntersection
|
|
{
|
|
// No intersection. It is important, that its value is 0, so one can do if (intersection) ... .
|
|
CELL_OBJECT_NO_INTERSECTION = 0,
|
|
CELL_OBJECT_INTERSECT = 1,
|
|
CELL_INSIDE_OBJECT = 2,
|
|
OBJECT_INSIDE_CELL = 3
|
|
};
|
|
|
|
template <class CellId>
|
|
CellObjectIntersection IntersectCellWithLine(CellId const cell, m2::PointD const & a,
|
|
m2::PointD const & b)
|
|
{
|
|
std::pair<uint32_t, uint32_t> const xy = cell.XY();
|
|
uint32_t const r = cell.Radius();
|
|
m2::PointD const cellCorners[4] = {
|
|
m2::PointD(xy.first - r, xy.second - r), m2::PointD(xy.first - r, xy.second + r),
|
|
m2::PointD(xy.first + r, xy.second + r), m2::PointD(xy.first + r, xy.second - r)};
|
|
for (int i = 0; i < 4; ++i)
|
|
{
|
|
if (m2::SegmentsIntersect(a, b, cellCorners[i], cellCorners[i == 0 ? 3 : i - 1]))
|
|
return CELL_OBJECT_INTERSECT;
|
|
}
|
|
if (xy.first - r <= a.x && a.x <= xy.first + r && xy.second - r <= a.y && a.y <= xy.second + r)
|
|
return OBJECT_INSIDE_CELL;
|
|
return CELL_OBJECT_NO_INTERSECTION;
|
|
}
|
|
|
|
template <class CellId>
|
|
CellObjectIntersection IntersectCellWithTriangle(CellId const cell, m2::PointD const & a,
|
|
m2::PointD const & b, m2::PointD const & c)
|
|
{
|
|
CellObjectIntersection const i1 = IntersectCellWithLine(cell, a, b);
|
|
if (i1 == CELL_OBJECT_INTERSECT)
|
|
return CELL_OBJECT_INTERSECT;
|
|
CellObjectIntersection const i2 = IntersectCellWithLine(cell, b, c);
|
|
if (i2 == CELL_OBJECT_INTERSECT)
|
|
return CELL_OBJECT_INTERSECT;
|
|
CellObjectIntersection const i3 = IntersectCellWithLine(cell, c, a);
|
|
if (i3 == CELL_OBJECT_INTERSECT)
|
|
return CELL_OBJECT_INTERSECT;
|
|
// At this point either:
|
|
// 1. Triangle is inside cell.
|
|
// 2. Cell is inside triangle.
|
|
// 3. Cell and triangle do not intersect.
|
|
ASSERT_EQUAL(i1, i2, (cell, a, b, c));
|
|
ASSERT_EQUAL(i2, i3, (cell, a, b, c));
|
|
ASSERT_EQUAL(i3, i1, (cell, a, b, c));
|
|
if (i1 == OBJECT_INSIDE_CELL || i2 == OBJECT_INSIDE_CELL || i3 == OBJECT_INSIDE_CELL)
|
|
return OBJECT_INSIDE_CELL;
|
|
std::pair<uint32_t, uint32_t> const xy = cell.XY();
|
|
if (m2::IsPointStrictlyInsideTriangle(m2::PointD(xy.first, xy.second), a, b, c))
|
|
return CELL_INSIDE_OBJECT;
|
|
return CELL_OBJECT_NO_INTERSECTION;
|
|
}
|
|
|
|
template <class CellId, class CellIdContainerT, typename IntersectF>
|
|
void CoverObject(IntersectF const & intersect, uint64_t cellPenaltyArea, CellIdContainerT & out,
|
|
int cellDepth, CellId cell)
|
|
{
|
|
uint64_t const cellArea = std::pow(uint64_t(1 << (cellDepth - 1 - cell.Level())), 2);
|
|
CellObjectIntersection const intersection = intersect(cell);
|
|
|
|
if (intersection == CELL_OBJECT_NO_INTERSECTION)
|
|
return;
|
|
if (intersection == CELL_INSIDE_OBJECT || cellPenaltyArea >= cellArea)
|
|
{
|
|
out.push_back(cell);
|
|
return;
|
|
}
|
|
|
|
if (cell.Level() == cellDepth - 1)
|
|
{
|
|
out.push_back(cell);
|
|
return;
|
|
}
|
|
|
|
buffer_vector<CellId, 32> subdiv;
|
|
for (uint8_t i = 0; i < 4; ++i)
|
|
CoverObject(intersect, cellPenaltyArea, subdiv, cellDepth, cell.Child(i));
|
|
|
|
uint64_t subdivArea = 0;
|
|
for (size_t i = 0; i < subdiv.size(); ++i)
|
|
subdivArea += std::pow(uint64_t(1 << (cellDepth - 1 - subdiv[i].Level())), 2);
|
|
|
|
ASSERT(!subdiv.empty(), (cellPenaltyArea, out, cell));
|
|
|
|
// This criteria is more clear for me. Let's divide if we can save more than cellPenaltyArea.
|
|
if (subdiv.size() > 1 && cellPenaltyArea >= cellArea - subdivArea)
|
|
{
|
|
out.push_back(cell);
|
|
}
|
|
else
|
|
{
|
|
for (size_t i = 0; i < subdiv.size(); ++i)
|
|
out.push_back(subdiv[i]);
|
|
}
|
|
}
|
|
|
|
// ObjectCoverer -----------------------------------------------------------------------------------
|
|
template <typename CellId, typename IntersectionInspector>
|
|
class ObjectCoverer
|
|
{
|
|
public:
|
|
ObjectCoverer(IntersectionInspector const & intersectionInspector, int cellDepth,
|
|
base::thread_pool::computational::ThreadPool & threadPool)
|
|
: m_intersectionInspector{intersectionInspector}
|
|
, m_cellDepth{cellDepth}
|
|
, m_threadPool{threadPool}
|
|
{ }
|
|
|
|
std::vector<CellId> Cover() const
|
|
{
|
|
std::vector<CellId> result;
|
|
|
|
auto covering = std::vector<ObjectCovering>{{result, CellId::Root(), {}}};
|
|
Cover(0, covering);
|
|
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
struct ObjectCovering
|
|
{
|
|
std::vector<CellId> & m_out;
|
|
CellId m_cell;
|
|
std::vector<CellId> m_subCells;
|
|
};
|
|
|
|
void Cover(int level, std::vector<ObjectCovering> & levelCovering) const
|
|
{
|
|
auto const uptoLevel = m_cellDepth - 1;
|
|
if (level < uptoLevel)
|
|
CoverBySubCells(level, levelCovering);
|
|
|
|
ForwardLevelCoveringToOut(level, levelCovering);
|
|
}
|
|
|
|
void ForwardLevelCoveringToOut(int level, std::vector<ObjectCovering> & levelCovering) const
|
|
{
|
|
for (auto & cellCovering : levelCovering)
|
|
{
|
|
auto & out = cellCovering.m_out;
|
|
|
|
auto const & subCells = cellCovering.m_subCells;
|
|
|
|
bool allSubcellsAreChildren =
|
|
std::all_of(subCells.begin(), subCells.end(),
|
|
[level](auto const & subCell) { return subCell.Level() + 1 == level; });
|
|
|
|
if (subCells.empty())
|
|
out.push_back(cellCovering.m_cell);
|
|
else if (allSubcellsAreChildren && subCells.size() == 4)
|
|
out.push_back(cellCovering.m_cell);
|
|
else
|
|
out.insert(out.end(), subCells.begin(), subCells.end());
|
|
}
|
|
}
|
|
|
|
void CoverBySubCells(int level, std::vector<ObjectCovering> & levelCovering) const
|
|
{
|
|
if (level == m_parallelingLevel && levelCovering.size() / m_tasksPerThread > 1)
|
|
CoverParallelBySubCells(level, levelCovering);
|
|
else
|
|
CoverSequencedBySubCells(level, levelCovering.begin(), levelCovering.end());
|
|
}
|
|
|
|
void CoverParallelBySubCells(int level, std::vector<ObjectCovering> & levelCovering) const
|
|
{
|
|
std::atomic_size_t unprocessedIndex{0};
|
|
auto processor = [&]() {
|
|
while (true)
|
|
{
|
|
auto const i = unprocessedIndex++;
|
|
if (i >= levelCovering.size())
|
|
return;
|
|
|
|
CoverSequencedBySubCells(level, levelCovering.begin() + i, levelCovering.begin() + i + 1);
|
|
}
|
|
};
|
|
|
|
auto const tasksCount = levelCovering.size() / m_tasksPerThread;
|
|
m_threadPool.PerformParallelWorks(processor, tasksCount);
|
|
}
|
|
|
|
void CoverSequencedBySubCells(int level, auto levelCoveringBegin, auto levelCoveringEnd) const
|
|
{
|
|
auto const childrenLevel = level + 1;
|
|
|
|
auto childrenLevelCovering = std::vector<ObjectCovering>{};
|
|
childrenLevelCovering.reserve(std::distance(levelCoveringBegin, levelCoveringEnd));
|
|
for (auto cellCovering = levelCoveringBegin; cellCovering != levelCoveringEnd; ++cellCovering)
|
|
{
|
|
auto & cell = cellCovering->m_cell;
|
|
auto & subCells = cellCovering->m_subCells;
|
|
|
|
for (uint8_t i = 0; i < 4; ++i)
|
|
{
|
|
auto childCell = cell.Child(i);
|
|
|
|
CellObjectIntersection const intersection = m_intersectionInspector(childCell);
|
|
|
|
if (intersection == CELL_OBJECT_NO_INTERSECTION)
|
|
continue;
|
|
|
|
if (intersection == CELL_INSIDE_OBJECT)
|
|
{
|
|
subCells.push_back(childCell);
|
|
continue;
|
|
}
|
|
|
|
if (childrenLevel == m_cellDepth - 1)
|
|
subCells.push_back(childCell);
|
|
else
|
|
childrenLevelCovering.push_back({subCells, childCell, {}});
|
|
}
|
|
}
|
|
|
|
if (!childrenLevelCovering.empty())
|
|
Cover(childrenLevel, childrenLevelCovering);
|
|
}
|
|
|
|
IntersectionInspector const & m_intersectionInspector;
|
|
int m_cellDepth;
|
|
base::thread_pool::computational::ThreadPool & m_threadPool;
|
|
// |m_parallelingLevel| is checking level for parallelization.
|
|
// This level has 87380 subcells (~100'000) and let this number is task unit complexity.
|
|
int const m_parallelingLevel{m_cellDepth - std::min(m_cellDepth, 9)};
|
|
unsigned const m_tasksPerThread = 10; // ~1'000'000 == 10 * ~100'000 (see |m_parallelingLevel|)
|
|
};
|
|
|
|
template <class CellId, typename IntersectF>
|
|
std::vector<CellId> CoverObject(
|
|
IntersectF const & intersect, int cellDepth,
|
|
base::thread_pool::computational::ThreadPool & threadPool)
|
|
{
|
|
ObjectCoverer<CellId, IntersectF> coverer{intersect, cellDepth, threadPool};
|
|
return coverer.Cover();
|
|
}
|
|
|
|
} // namespace covering
|