geocore/geometry/covering_utils.hpp

262 lines
8.4 KiB
C++

#pragma once
#include "geometry/point2d.hpp"
#include "geometry/segment2d.hpp"
#include "geometry/triangle2d.hpp"
#include "base/assert.hpp"
#include "base/base.hpp"
#include "base/buffer_vector.hpp"
#include "base/logging.hpp"
#include "base/math.hpp"
#include "base/thread_pool_computational.hpp"
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <utility>
namespace covering
{
// Result of an intersection between object and cell.
enum CellObjectIntersection
{
// No intersection. It is important, that its value is 0, so one can do if (intersection) ... .
CELL_OBJECT_NO_INTERSECTION = 0,
CELL_OBJECT_INTERSECT = 1,
CELL_INSIDE_OBJECT = 2,
OBJECT_INSIDE_CELL = 3
};
template <class CellId>
CellObjectIntersection IntersectCellWithLine(CellId const cell, m2::PointD const & a,
m2::PointD const & b)
{
std::pair<uint32_t, uint32_t> const xy = cell.XY();
uint32_t const r = cell.Radius();
m2::PointD const cellCorners[4] = {
m2::PointD(xy.first - r, xy.second - r), m2::PointD(xy.first - r, xy.second + r),
m2::PointD(xy.first + r, xy.second + r), m2::PointD(xy.first + r, xy.second - r)};
for (int i = 0; i < 4; ++i)
{
if (m2::SegmentsIntersect(a, b, cellCorners[i], cellCorners[i == 0 ? 3 : i - 1]))
return CELL_OBJECT_INTERSECT;
}
if (xy.first - r <= a.x && a.x <= xy.first + r && xy.second - r <= a.y && a.y <= xy.second + r)
return OBJECT_INSIDE_CELL;
return CELL_OBJECT_NO_INTERSECTION;
}
template <class CellId>
CellObjectIntersection IntersectCellWithTriangle(CellId const cell, m2::PointD const & a,
m2::PointD const & b, m2::PointD const & c)
{
CellObjectIntersection const i1 = IntersectCellWithLine(cell, a, b);
if (i1 == CELL_OBJECT_INTERSECT)
return CELL_OBJECT_INTERSECT;
CellObjectIntersection const i2 = IntersectCellWithLine(cell, b, c);
if (i2 == CELL_OBJECT_INTERSECT)
return CELL_OBJECT_INTERSECT;
CellObjectIntersection const i3 = IntersectCellWithLine(cell, c, a);
if (i3 == CELL_OBJECT_INTERSECT)
return CELL_OBJECT_INTERSECT;
// At this point either:
// 1. Triangle is inside cell.
// 2. Cell is inside triangle.
// 3. Cell and triangle do not intersect.
ASSERT_EQUAL(i1, i2, (cell, a, b, c));
ASSERT_EQUAL(i2, i3, (cell, a, b, c));
ASSERT_EQUAL(i3, i1, (cell, a, b, c));
if (i1 == OBJECT_INSIDE_CELL || i2 == OBJECT_INSIDE_CELL || i3 == OBJECT_INSIDE_CELL)
return OBJECT_INSIDE_CELL;
std::pair<uint32_t, uint32_t> const xy = cell.XY();
if (m2::IsPointStrictlyInsideTriangle(m2::PointD(xy.first, xy.second), a, b, c))
return CELL_INSIDE_OBJECT;
return CELL_OBJECT_NO_INTERSECTION;
}
template <class CellId, class CellIdContainerT, typename IntersectF>
void CoverObject(IntersectF const & intersect, uint64_t cellPenaltyArea, CellIdContainerT & out,
int cellDepth, CellId cell)
{
uint64_t const cellArea = std::pow(uint64_t(1 << (cellDepth - 1 - cell.Level())), 2);
CellObjectIntersection const intersection = intersect(cell);
if (intersection == CELL_OBJECT_NO_INTERSECTION)
return;
if (intersection == CELL_INSIDE_OBJECT || cellPenaltyArea >= cellArea)
{
out.push_back(cell);
return;
}
if (cell.Level() == cellDepth - 1)
{
out.push_back(cell);
return;
}
buffer_vector<CellId, 32> subdiv;
for (uint8_t i = 0; i < 4; ++i)
CoverObject(intersect, cellPenaltyArea, subdiv, cellDepth, cell.Child(i));
uint64_t subdivArea = 0;
for (size_t i = 0; i < subdiv.size(); ++i)
subdivArea += std::pow(uint64_t(1 << (cellDepth - 1 - subdiv[i].Level())), 2);
ASSERT(!subdiv.empty(), (cellPenaltyArea, out, cell));
// This criteria is more clear for me. Let's divide if we can save more than cellPenaltyArea.
if (subdiv.size() > 1 && cellPenaltyArea >= cellArea - subdivArea)
{
out.push_back(cell);
}
else
{
for (size_t i = 0; i < subdiv.size(); ++i)
out.push_back(subdiv[i]);
}
}
// ObjectCoverer -----------------------------------------------------------------------------------
template <typename CellId, typename IntersectionInspector>
class ObjectCoverer
{
public:
ObjectCoverer(IntersectionInspector const & intersectionInspector, int cellDepth,
base::thread_pool::computational::ThreadPool & threadPool)
: m_intersectionInspector{intersectionInspector}
, m_cellDepth{cellDepth}
, m_threadPool{threadPool}
{ }
std::vector<CellId> Cover() const
{
std::vector<CellId> result;
auto covering = std::vector<ObjectCovering>{{result, CellId::Root(), {}}};
Cover(0, covering);
return result;
}
private:
struct ObjectCovering
{
std::vector<CellId> & m_out;
CellId m_cell;
std::vector<CellId> m_subCells;
};
void Cover(int level, std::vector<ObjectCovering> & levelCovering) const
{
auto const uptoLevel = m_cellDepth - 1;
if (level < uptoLevel)
CoverBySubCells(level, levelCovering);
ForwardLevelCoveringToOut(level, levelCovering);
}
void ForwardLevelCoveringToOut(int level, std::vector<ObjectCovering> & levelCovering) const
{
for (auto & cellCovering : levelCovering)
{
auto & out = cellCovering.m_out;
auto const & subCells = cellCovering.m_subCells;
bool allSubcellsAreChildren =
std::all_of(subCells.begin(), subCells.end(),
[level](auto const & subCell) { return subCell.Level() + 1 == level; });
if (subCells.empty())
out.push_back(cellCovering.m_cell);
else if (allSubcellsAreChildren && subCells.size() == 4)
out.push_back(cellCovering.m_cell);
else
out.insert(out.end(), subCells.begin(), subCells.end());
}
}
void CoverBySubCells(int level, std::vector<ObjectCovering> & levelCovering) const
{
if (level == m_parallelingLevel && levelCovering.size() / m_tasksPerThread > 1)
CoverParallelBySubCells(level, levelCovering);
else
CoverSequencedBySubCells(level, levelCovering.begin(), levelCovering.end());
}
void CoverParallelBySubCells(int level, std::vector<ObjectCovering> & levelCovering) const
{
std::atomic_size_t unprocessedIndex{0};
auto processor = [&]() {
while (true)
{
auto const i = unprocessedIndex++;
if (i >= levelCovering.size())
return;
CoverSequencedBySubCells(level, levelCovering.begin() + i, levelCovering.begin() + i + 1);
}
};
auto const tasksCount = levelCovering.size() / m_tasksPerThread;
m_threadPool.PerformParallelWorks(processor, tasksCount);
}
void CoverSequencedBySubCells(int level, auto levelCoveringBegin, auto levelCoveringEnd) const
{
auto const childrenLevel = level + 1;
auto childrenLevelCovering = std::vector<ObjectCovering>{};
childrenLevelCovering.reserve(std::distance(levelCoveringBegin, levelCoveringEnd));
for (auto cellCovering = levelCoveringBegin; cellCovering != levelCoveringEnd; ++cellCovering)
{
auto & cell = cellCovering->m_cell;
auto & subCells = cellCovering->m_subCells;
for (uint8_t i = 0; i < 4; ++i)
{
auto childCell = cell.Child(i);
CellObjectIntersection const intersection = m_intersectionInspector(childCell);
if (intersection == CELL_OBJECT_NO_INTERSECTION)
continue;
if (intersection == CELL_INSIDE_OBJECT)
{
subCells.push_back(childCell);
continue;
}
if (childrenLevel == m_cellDepth - 1)
subCells.push_back(childCell);
else
childrenLevelCovering.push_back({subCells, childCell, {}});
}
}
if (!childrenLevelCovering.empty())
Cover(childrenLevel, childrenLevelCovering);
}
IntersectionInspector const & m_intersectionInspector;
int m_cellDepth;
base::thread_pool::computational::ThreadPool & m_threadPool;
// |m_parallelingLevel| is checking level for parallelization.
// This level has 87380 subcells (~100'000) and let this number is task unit complexity.
int const m_parallelingLevel{m_cellDepth - std::min(m_cellDepth, 9)};
unsigned const m_tasksPerThread = 10; // ~1'000'000 == 10 * ~100'000 (see |m_parallelingLevel|)
};
template <class CellId, typename IntersectF>
std::vector<CellId> CoverObject(
IntersectF const & intersect, int cellDepth,
base::thread_pool::computational::ThreadPool & threadPool)
{
ObjectCoverer<CellId, IntersectF> coverer{intersect, cellDepth, threadPool};
return coverer.Cover();
}
} // namespace covering