diff --git a/glm/gtx/pca.inl b/glm/gtx/pca.inl index 6bc94222..c2eea458 100644 --- a/glm/gtx/pca.inl +++ b/glm/gtx/pca.inl @@ -70,7 +70,7 @@ namespace glm { GLM_INLINE T transferSign(T const& v, T const& s) { return ((s) >= 0 ? glm::abs(v) : -glm::abs(v)); - }; + } template GLM_INLINE T pythag(T const& a, T const& b) { @@ -86,7 +86,7 @@ namespace glm { absa /= absb; absa *= absa; return absb * glm::sqrt(static_cast(1) + absa); - }; + } } diff --git a/test/gtx/gtx_pca.cpp b/test/gtx/gtx_pca.cpp index 675de2f8..f6000270 100644 --- a/test/gtx/gtx_pca.cpp +++ b/test/gtx/gtx_pca.cpp @@ -6,6 +6,33 @@ #include #include +template +bool vectorEpsilonEqual(glm::vec const& a, glm::vec const& b) +{ + for (int c = 0; c < D; ++c) + if (!glm::epsilonEqual(a[c], b[c], static_cast(0.000001))) + return false; + return true; +} + +template +bool matrixEpsilonEqual(glm::mat const& a, glm::mat const& b) +{ + for (int c = 0; c < D; ++c) + for (int r = 0; r < D; ++r) + if (!glm::epsilonEqual(a[c][r], b[c][r], static_cast(0.000001))) + return false; + return true; +} + +template +T failReport(T line) +{ + printf("Failed in line %d\n", static_cast(line)); + fprintf(stderr, "Failed in line %d\n", static_cast(line)); + return line; +} + // Test data: 1AGA 'agarose double helix' // https://www.rcsb.org/structure/1aga // The fourth coordinate is randomized @@ -147,11 +174,11 @@ namespace _1aga 3.830, 3.522, 5.367, -0.302, 5.150, 4.461, 2.116, -1.615 }; - static const size_t _1agaSize = sizeof(_1aga) / (4 * sizeof(double)); + static const glm::length_t _1agaSize = sizeof(_1aga) / (4 * sizeof(double)); outTestData.resize(_1agaSize); - for(size_t i = 0; i < _1agaSize; ++i) - for(size_t d = 0; d < static_cast(vec::length()); ++d) + for(glm::length_t i = 0; i < _1agaSize; ++i) + for(glm::length_t d = 0; d < static_cast(vec::length()); ++d) outTestData[i][d] = static_cast(_1aga[i * 4 + d]); } @@ -182,10 +209,10 @@ namespace _1aga { const T* expectedCovarData = nullptr; getExpectedCovarDataPtr(expectedCovarData); - for(size_t x = 0; x < D; ++x) - for(size_t y = 0; y < D; ++y) + for(glm::length_t x = 0; x < D; ++x) + for(glm::length_t y = 0; y < D; ++y) if(!glm::equal(covarMat[y][x], expectedCovarData[x * 4 + y], static_cast(0.000001))) - return 1; + return failReport(__LINE__); return 0; } @@ -280,12 +307,12 @@ namespace _1aga for(int i = 0; i < D; ++i) if(!glm::equal(evals[i], expectedEvals[i], static_cast(0.000001))) - return 1; + return failReport(__LINE__); for (int i = 0; i < D; ++i) for (int d = 0; d < D; ++d) if (!glm::equal(evecs[i][d], expectedEvecs[i * D + d], static_cast(0.000001))) - return 1; + return failReport(__LINE__); return 0; } @@ -296,29 +323,20 @@ namespace _1aga template vec computeCenter(const std::vector& testData) { - double c[vec::length()]; + double c[4]; std::fill(c, c + vec::length(), 0.0); - for(vec const& v : testData) - for(size_t d = 0; d < static_cast(vec::length()); ++d) - c[d] += static_cast(v[d]); + typename std::vector::const_iterator e = testData.end(); + for(typename std::vector::const_iterator i = testData.begin(); i != e; ++i) + for(glm::length_t d = 0; d < static_cast(vec::length()); ++d) + c[d] += static_cast((*i)[d]); - vec cVec; - for(size_t d = 0; d < static_cast(vec::length()); ++d) + vec cVec(0); + for(glm::length_t d = 0; d < static_cast(vec::length()); ++d) cVec[d] = static_cast(c[d] / static_cast(testData.size())); return cVec; } -template -bool matrixEpsilonEqual(glm::mat const& a, glm::mat const& b) -{ - for (int c = 0; c < D; ++c) - for (int r = 0; r < D; ++r) - if (!glm::epsilonEqual(a[c][r], b[c][r], static_cast(0.000001))) - return false; - return true; -} - // Test sorting of Eigenvalue&Eigenvector lists. Use exhaustive search. template int testEigenvalueSort() @@ -339,8 +357,7 @@ int testEigenvalueSort() ) ); // Permutations of test input data for exhaustive check, based on `D` (1 <= D <= 4) - static const int permutationCount[] - { + static const int permutationCount[] = { 0, 1, 2, @@ -348,8 +365,7 @@ int testEigenvalueSort() 24 }; // The permutations t perform, based on `D` (1 <= D <= 4) - static const glm::ivec4 permutation[] - { + static const glm::ivec4 permutation[] = { { 0, 1, 2, 3 }, { 1, 0, 2, 3 }, // last for D = 2 { 0, 2, 1, 3 }, @@ -377,10 +393,10 @@ int testEigenvalueSort() }; // initial sanity check - if(!glm::all(glm::epsilonEqual(refVal, refVal, static_cast(0.000001)))) - return 1; + if(!vectorEpsilonEqual(refVal, refVal)) + return failReport(__LINE__); if(!matrixEpsilonEqual(refVec, refVec)) - return 1; + return failReport(__LINE__); // Exhaustive search through all permutations for(int p = 0; p < permutationCount[D]; ++p) @@ -395,10 +411,10 @@ int testEigenvalueSort() glm::sortEigenvalues(testVal, testVec); - if (!glm::all(glm::epsilonEqual(testVal, refVal, static_cast(0.000001)))) - return 2 + p * 2; + if (!vectorEpsilonEqual(testVal, refVal)) + return failReport(__LINE__); if (!matrixEpsilonEqual(testVec, refVec)) - return 2 + 1 + p * 2; + return failReport(__LINE__); } return 0; @@ -406,7 +422,7 @@ int testEigenvalueSort() // Test covariance matrix creation functions template -int testCovar(unsigned int dataSize, unsigned int randomEngineSeed) +int testCovar(glm::length_t dataSize, unsigned int randomEngineSeed) { typedef glm::vec vec; typedef glm::mat mat; @@ -420,7 +436,7 @@ int testCovar(unsigned int dataSize, unsigned int randomEngineSeed) mat covarMat = glm::computeCovarianceMatrix(testData.data(), testData.size(), center); if(_1aga::checkCovarMat(covarMat)) - return 1; + return failReport(__LINE__); // #2: test function variant consitency with random data std::default_random_engine rndEng(randomEngineSeed); @@ -428,18 +444,19 @@ int testCovar(unsigned int dataSize, unsigned int randomEngineSeed) testData.resize(dataSize); // some common offset of all data T offset[D]; - for(size_t d = 0; d < D; ++d) + for(glm::length_t d = 0; d < D; ++d) offset[d] = normalDist(rndEng); // init data - for(size_t i = 0; i < dataSize; ++i) - for(size_t d = 0; d < D; ++d) + for(glm::length_t i = 0; i < dataSize; ++i) + for(glm::length_t d = 0; d < D; ++d) testData[i][d] = offset[d] + normalDist(rndEng); center = computeCenter(testData); std::vector centeredTestData; centeredTestData.reserve(testData.size()); - for(vec const& v : testData) - centeredTestData.push_back(v - center); + std::vector::const_iterator e = testData.end(); + for(std::vector::const_iterator i = testData.begin(); i != e; ++i) + centeredTestData.push_back((*i) - center); mat c1 = glm::computeCovarianceMatrix(centeredTestData.data(), centeredTestData.size()); mat c2 = glm::computeCovarianceMatrix(centeredTestData.begin(), centeredTestData.end()); @@ -447,11 +464,11 @@ int testCovar(unsigned int dataSize, unsigned int randomEngineSeed) mat c4 = glm::computeCovarianceMatrix(testData.rbegin(), testData.rend(), center); if(!matrixEpsilonEqual(c1, c2)) - return 1; + return failReport(__LINE__); if(!matrixEpsilonEqual(c1, c3)) - return 1; + return failReport(__LINE__); if(!matrixEpsilonEqual(c1, c4)) - return 1; + return failReport(__LINE__); return 0; } @@ -471,11 +488,11 @@ int testEigenvectors() mat eigenvectors; unsigned int c = glm::findEigenvaluesSymReal(covarMat, eigenvalues, eigenvectors); if(c != D) - return 1; + return failReport(__LINE__); glm::sortEigenvalues(eigenvalues, eigenvectors); if(_1aga::checkEigenvaluesEigenvectors(eigenvalues, eigenvectors) != 0) - return 1; + return failReport(__LINE__); return 0; } @@ -501,7 +518,7 @@ int smokeTest() vec3 eVal; int eCnt = glm::findEigenvaluesSymReal(covar, eVal, eVec); if(eCnt != 3) - return 1; + return failReport(__LINE__); // sort eVec by decending eVal if(eVal[0] < eVal[1]) @@ -520,12 +537,12 @@ int smokeTest() std::swap(eVec[1], eVec[2]); } - if(!glm::all(glm::equal(glm::abs(eVec[0]), vec3(0, 1, 0)))) - return 2; - if(!glm::all(glm::equal(glm::abs(eVec[1]), vec3(1, 0, 0)))) - return 3; - if(!glm::all(glm::equal(glm::abs(eVec[2]), vec3(0, 0, 1)))) - return 4; + if(!vectorEpsilonEqual(glm::abs(eVec[0]), vec3(0, 1, 0))) + return failReport(__LINE__); + if(!vectorEpsilonEqual(glm::abs(eVec[1]), vec3(1, 0, 0))) + return failReport(__LINE__); + if(!vectorEpsilonEqual(glm::abs(eVec[2]), vec3(0, 0, 1))) + return failReport(__LINE__); return 0; } @@ -586,7 +603,7 @@ int rndTest(unsigned int randomEngineSeed) glm::dmat3 evecs; int evcnt = glm::findEigenvaluesSymReal(covarMat, evals, evecs); if(evcnt != 3) - return 1; + return failReport(__LINE__); glm::sortEigenvalues(evals, evecs); //printf("\n"); @@ -595,11 +612,11 @@ int rndTest(unsigned int randomEngineSeed) //printf("evec1: %.10lf, %.10lf, %.10lf\n", evecs[1].x, evecs[1].y, evecs[1].z); if(glm::length(glm::abs(x) - glm::abs(evecs[0])) > 0.000001) - return 1; + return failReport(__LINE__); if(glm::length(glm::abs(y) - glm::abs(evecs[2])) > 0.000001) - return 1; + return failReport(__LINE__); if(glm::length(glm::abs(z) - glm::abs(evecs[1])) > 0.000001) - return 1; + return failReport(__LINE__); return 0; } @@ -609,56 +626,56 @@ int main() // A small smoke test to fail early with most problems if(smokeTest()) - return __LINE__; + return failReport(__LINE__); // test sorting utility. if(testEigenvalueSort<2, float, glm::defaultp>() != 0) - return __LINE__; + return failReport(__LINE__); if(testEigenvalueSort<2, double, glm::defaultp>() != 0) - return __LINE__; + return failReport(__LINE__); if(testEigenvalueSort<3, float, glm::defaultp>() != 0) - return __LINE__; + return failReport(__LINE__); if(testEigenvalueSort<3, double, glm::defaultp>() != 0) - return __LINE__; + return failReport(__LINE__); if(testEigenvalueSort<4, float, glm::defaultp>() != 0) - return __LINE__; + return failReport(__LINE__); if(testEigenvalueSort<4, double, glm::defaultp>() != 0) - return __LINE__; + return failReport(__LINE__); // Note: the random engine uses a fixed seed to create consistent and reproducible test data // test covariance matrix computation from different data sources if(testCovar<2, float, glm::defaultp>(100, 12345) != 0) - return __LINE__; + return failReport(__LINE__); if(testCovar<2, double, glm::defaultp>(100, 42) != 0) - return __LINE__; + return failReport(__LINE__); if(testCovar<3, float, glm::defaultp>(100, 2021) != 0) - return __LINE__; + return failReport(__LINE__); if(testCovar<3, double, glm::defaultp>(100, 815) != 0) - return __LINE__; + return failReport(__LINE__); if(testCovar<4, float, glm::defaultp>(100, 3141) != 0) - return __LINE__; + return failReport(__LINE__); if(testCovar<4, double, glm::defaultp>(100, 174) != 0) - return __LINE__; + return failReport(__LINE__); // test PCA eigen vector reconstruction if(testEigenvectors<2, float, glm::defaultp>() != 0) - return __LINE__; + return failReport(__LINE__); if(testEigenvectors<2, double, glm::defaultp>() != 0) - return __LINE__; + return failReport(__LINE__); if(testEigenvectors<3, float, glm::defaultp>() != 0) - return __LINE__; + return failReport(__LINE__); if(testEigenvectors<3, double, glm::defaultp>() != 0) - return __LINE__; + return failReport(__LINE__); if (testEigenvectors<4, float, glm::defaultp>() != 0) - return __LINE__; + return failReport(__LINE__); if (testEigenvectors<4, double, glm::defaultp>() != 0) - return __LINE__; + return failReport(__LINE__); // Final tests with randomized data if(rndTest(12345) != 0) - return __LINE__; + return failReport(__LINE__); if(rndTest(42) != 0) - return __LINE__; + return failReport(__LINE__); return 0; }