mirror of
https://github.com/g-truc/glm.git
synced 2025-04-08 06:43:10 +00:00
Fixed spaces
This commit is contained in:
parent
8cb9328e11
commit
284ba46dae
1 changed files with 120 additions and 121 deletions
|
@ -36,20 +36,20 @@ namespace glm
|
|||
tvec3<T, P> const & b,
|
||||
T ascl, T bscl)
|
||||
{
|
||||
return (a * ascl) + (b * bscl);
|
||||
return (a * ascl) + (b * bscl);
|
||||
}
|
||||
|
||||
template <typename T, precision P>
|
||||
GLM_FUNC_QUALIFIER void v3Scale(tvec3<T, P> & v, T desiredLength)
|
||||
GLM_FUNC_QUALIFIER void v3Scale(tvec3<T, P> & v, T desiredLength)
|
||||
{
|
||||
T len = glm::length(v);
|
||||
if(len != 0)
|
||||
{
|
||||
T l = desiredLength / len;
|
||||
v[0] *= l;
|
||||
v[1] *= l;
|
||||
v[2] *= l;
|
||||
}
|
||||
T len = glm::length(v);
|
||||
if(len != 0)
|
||||
{
|
||||
T l = desiredLength / len;
|
||||
v[0] *= l;
|
||||
v[1] *= l;
|
||||
v[2] *= l;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -64,29 +64,29 @@ namespace glm
|
|||
{
|
||||
tmat4x4<T, P> LocalMatrix(ModelMatrix);
|
||||
|
||||
// Normalize the matrix.
|
||||
if(LocalMatrix[3][3] == static_cast<T>(0))
|
||||
return false;
|
||||
// Normalize the matrix.
|
||||
if(LocalMatrix[3][3] == static_cast<T>(0))
|
||||
return false;
|
||||
|
||||
for(length_t i = 0; i < 4; i++)
|
||||
for(length_t j = 0; j < 4; j++)
|
||||
for(length_t i = 0; i < 4; ++i)
|
||||
for(length_t j = 0; j < 4; ++j)
|
||||
LocalMatrix[i][j] /= LocalMatrix[3][3];
|
||||
|
||||
// perspectiveMatrix is used to solve for perspective, but it also provides
|
||||
// an easy way to test for singularity of the upper 3x3 component.
|
||||
tmat4x4<T, P> PerspectiveMatrix(LocalMatrix);
|
||||
|
||||
for(length_t i = 0; i < 3; i++)
|
||||
PerspectiveMatrix[i][3] = 0;
|
||||
PerspectiveMatrix[3][3] = 1;
|
||||
for(length_t i = 0; i < 3; i++)
|
||||
PerspectiveMatrix[i][3] = 0;
|
||||
PerspectiveMatrix[3][3] = 1;
|
||||
|
||||
/// TODO: Fixme!
|
||||
if(determinant(PerspectiveMatrix) == static_cast<T>(0))
|
||||
return false;
|
||||
/// TODO: Fixme!
|
||||
if(determinant(PerspectiveMatrix) == static_cast<T>(0))
|
||||
return false;
|
||||
|
||||
// First, isolate perspective. This is the messiest.
|
||||
if(LocalMatrix[0][3] != 0 || LocalMatrix[1][3] != 0 || LocalMatrix[2][3] != 0)
|
||||
{
|
||||
// First, isolate perspective. This is the messiest.
|
||||
if(LocalMatrix[0][3] != 0 || LocalMatrix[1][3] != 0 || LocalMatrix[2][3] != 0)
|
||||
{
|
||||
// rightHandSide is the right hand side of the equation.
|
||||
tvec4<T, P> RightHandSide;
|
||||
RightHandSide[0] = LocalMatrix[0][3];
|
||||
|
@ -106,122 +106,121 @@ namespace glm
|
|||
// Clear the perspective partition
|
||||
LocalMatrix[0][3] = LocalMatrix[1][3] = LocalMatrix[2][3] = 0;
|
||||
LocalMatrix[3][3] = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
}
|
||||
else
|
||||
{
|
||||
// No perspective.
|
||||
Perspective = tvec4<T, P>(0, 0, 0, 1);
|
||||
}
|
||||
}
|
||||
|
||||
// Next take care of translation (easy).
|
||||
Translation = tvec3<T, P>(LocalMatrix[3]);
|
||||
LocalMatrix[3] = tvec4<T, P>(0, 0, 0, LocalMatrix[3].w);
|
||||
// Next take care of translation (easy).
|
||||
Translation = tvec3<T, P>(LocalMatrix[3]);
|
||||
LocalMatrix[3] = tvec4<T, P>(0, 0, 0, LocalMatrix[3].w);
|
||||
|
||||
tvec3<T, P> Row[3], Pdum3;
|
||||
tvec3<T, P> Row[3], Pdum3;
|
||||
|
||||
// Now get scale and shear.
|
||||
for(length_t i = 0; i < 3; ++i)
|
||||
Row[i] = LocalMatrix[i];
|
||||
// Now get scale and shear.
|
||||
for(length_t i = 0; i < 3; ++i)
|
||||
Row[i] = LocalMatrix[i];
|
||||
|
||||
// Compute X scale factor and normalize first row.
|
||||
Scale.x = length(Row[0]);// v3Length(Row[0]);
|
||||
// Compute X scale factor and normalize first row.
|
||||
Scale.x = length(Row[0]);// v3Length(Row[0]);
|
||||
|
||||
v3Scale(Row[0], 1.0);
|
||||
v3Scale(Row[0], 1.0);
|
||||
|
||||
// Compute XY shear factor and make 2nd row orthogonal to 1st.
|
||||
Skew.z = dot(Row[0], Row[1]);
|
||||
Row[1] = combine(Row[1], Row[0], 1.0, -Skew.z);
|
||||
// Compute XY shear factor and make 2nd row orthogonal to 1st.
|
||||
Skew.z = dot(Row[0], Row[1]);
|
||||
Row[1] = combine(Row[1], Row[0], 1.0, -Skew.z);
|
||||
|
||||
// Now, compute Y scale and normalize 2nd row.
|
||||
Scale.y = length(Row[1]);
|
||||
v3Scale(Row[1], 1.0);
|
||||
Skew.z /= Scale.y;
|
||||
// Now, compute Y scale and normalize 2nd row.
|
||||
Scale.y = length(Row[1]);
|
||||
v3Scale(Row[1], 1.0);
|
||||
Skew.z /= Scale.y;
|
||||
|
||||
// Compute XZ and YZ shears, orthogonalize 3rd row.
|
||||
Skew.y = glm::dot(Row[0], Row[2]);
|
||||
Row[2] = combine(Row[2], Row[0], 1.0, -Skew.y);
|
||||
Skew.x = glm::dot(Row[1], Row[2]);
|
||||
Row[2] = combine(Row[2], Row[1], 1.0, -Skew.x);
|
||||
// Compute XZ and YZ shears, orthogonalize 3rd row.
|
||||
Skew.y = glm::dot(Row[0], Row[2]);
|
||||
Row[2] = combine(Row[2], Row[0], 1.0, -Skew.y);
|
||||
Skew.x = glm::dot(Row[1], Row[2]);
|
||||
Row[2] = combine(Row[2], Row[1], 1.0, -Skew.x);
|
||||
|
||||
// Next, get Z scale and normalize 3rd row.
|
||||
Scale.z = length(Row[2]);
|
||||
v3Scale(Row[2], 1.0);
|
||||
Skew.y /= Scale.z;
|
||||
Skew.x /= Scale.z;
|
||||
// Next, get Z scale and normalize 3rd row.
|
||||
Scale.z = length(Row[2]);
|
||||
v3Scale(Row[2], 1.0);
|
||||
Skew.y /= Scale.z;
|
||||
Skew.x /= Scale.z;
|
||||
|
||||
// At this point, the matrix (in rows[]) is orthonormal.
|
||||
// Check for a coordinate system flip. If the determinant
|
||||
// is -1, then negate the matrix and the scaling factors.
|
||||
Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3);
|
||||
if(dot(Row[0], Pdum3) < 0)
|
||||
{
|
||||
for(length_t i = 0; i < 3; i++)
|
||||
{
|
||||
Scale.x *= static_cast<T>(-1);
|
||||
Row[i] *= static_cast<T>(-1);
|
||||
}
|
||||
}
|
||||
// At this point, the matrix (in rows[]) is orthonormal.
|
||||
// Check for a coordinate system flip. If the determinant
|
||||
// is -1, then negate the matrix and the scaling factors.
|
||||
Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3);
|
||||
if(dot(Row[0], Pdum3) < 0)
|
||||
{
|
||||
for(length_t i = 0; i < 3; i++)
|
||||
{
|
||||
Scale.x *= static_cast<T>(-1);
|
||||
Row[i] *= static_cast<T>(-1);
|
||||
}
|
||||
}
|
||||
|
||||
// Now, get the rotations out, as described in the gem.
|
||||
// Now, get the rotations out, as described in the gem.
|
||||
|
||||
// FIXME - Add the ability to return either quaternions (which are
|
||||
// easier to recompose with) or Euler angles (rx, ry, rz), which
|
||||
// are easier for authors to deal with. The latter will only be useful
|
||||
// when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I
|
||||
// will leave the Euler angle code here for now.
|
||||
// FIXME - Add the ability to return either quaternions (which are
|
||||
// easier to recompose with) or Euler angles (rx, ry, rz), which
|
||||
// are easier for authors to deal with. The latter will only be useful
|
||||
// when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I
|
||||
// will leave the Euler angle code here for now.
|
||||
|
||||
// ret.rotateY = asin(-Row[0][2]);
|
||||
// if (cos(ret.rotateY) != 0) {
|
||||
// ret.rotateX = atan2(Row[1][2], Row[2][2]);
|
||||
// ret.rotateZ = atan2(Row[0][1], Row[0][0]);
|
||||
// } else {
|
||||
// ret.rotateX = atan2(-Row[2][0], Row[1][1]);
|
||||
// ret.rotateZ = 0;
|
||||
// }
|
||||
// ret.rotateY = asin(-Row[0][2]);
|
||||
// if (cos(ret.rotateY) != 0) {
|
||||
// ret.rotateX = atan2(Row[1][2], Row[2][2]);
|
||||
// ret.rotateZ = atan2(Row[0][1], Row[0][0]);
|
||||
// } else {
|
||||
// ret.rotateX = atan2(-Row[2][0], Row[1][1]);
|
||||
// ret.rotateZ = 0;
|
||||
// }
|
||||
|
||||
T s, t, x, y, z, w;
|
||||
T s, t, x, y, z, w;
|
||||
|
||||
t = Row[0][0] + Row[1][1] + Row[2][2] + 1.0;
|
||||
t = Row[0][0] + Row[1][1] + Row[2][2] + 1.0;
|
||||
|
||||
if(t > 1e-4)
|
||||
{
|
||||
s = 0.5 / sqrt(t);
|
||||
w = 0.25 / s;
|
||||
x = (Row[2][1] - Row[1][2]) * s;
|
||||
y = (Row[0][2] - Row[2][0]) * s;
|
||||
z = (Row[1][0] - Row[0][1]) * s;
|
||||
}
|
||||
else if(Row[0][0] > Row[1][1] && Row[0][0] > Row[2][2])
|
||||
{
|
||||
s = sqrt (1.0 + Row[0][0] - Row[1][1] - Row[2][2]) * 2.0; // S=4*qx
|
||||
x = 0.25 * s;
|
||||
y = (Row[0][1] + Row[1][0]) / s;
|
||||
z = (Row[0][2] + Row[2][0]) / s;
|
||||
w = (Row[2][1] - Row[1][2]) / s;
|
||||
}
|
||||
else if(Row[1][1] > Row[2][2])
|
||||
{
|
||||
s = sqrt (1.0 + Row[1][1] - Row[0][0] - Row[2][2]) * 2.0; // S=4*qy
|
||||
x = (Row[0][1] + Row[1][0]) / s;
|
||||
y = 0.25 * s;
|
||||
z = (Row[1][2] + Row[2][1]) / s;
|
||||
w = (Row[0][2] - Row[2][0]) / s;
|
||||
}
|
||||
else
|
||||
{
|
||||
s = sqrt(1.0 + Row[2][2] - Row[0][0] - Row[1][1]) * 2.0; // S=4*qz
|
||||
x = (Row[0][2] + Row[2][0]) / s;
|
||||
y = (Row[1][2] + Row[2][1]) / s;
|
||||
z = 0.25 * s;
|
||||
w = (Row[1][0] - Row[0][1]) / s;
|
||||
}
|
||||
if(t > 1e-4)
|
||||
{
|
||||
s = 0.5 / sqrt(t);
|
||||
w = 0.25 / s;
|
||||
x = (Row[2][1] - Row[1][2]) * s;
|
||||
y = (Row[0][2] - Row[2][0]) * s;
|
||||
z = (Row[1][0] - Row[0][1]) * s;
|
||||
}
|
||||
else if(Row[0][0] > Row[1][1] && Row[0][0] > Row[2][2])
|
||||
{
|
||||
s = sqrt (1.0 + Row[0][0] - Row[1][1] - Row[2][2]) * 2.0; // S=4*qx
|
||||
x = 0.25 * s;
|
||||
y = (Row[0][1] + Row[1][0]) / s;
|
||||
z = (Row[0][2] + Row[2][0]) / s;
|
||||
w = (Row[2][1] - Row[1][2]) / s;
|
||||
}
|
||||
else if(Row[1][1] > Row[2][2])
|
||||
{
|
||||
s = sqrt (1.0 + Row[1][1] - Row[0][0] - Row[2][2]) * 2.0; // S=4*qy
|
||||
x = (Row[0][1] + Row[1][0]) / s;
|
||||
y = 0.25 * s;
|
||||
z = (Row[1][2] + Row[2][1]) / s;
|
||||
w = (Row[0][2] - Row[2][0]) / s;
|
||||
}
|
||||
else
|
||||
{
|
||||
s = sqrt(1.0 + Row[2][2] - Row[0][0] - Row[1][1]) * 2.0; // S=4*qz
|
||||
x = (Row[0][2] + Row[2][0]) / s;
|
||||
y = (Row[1][2] + Row[2][1]) / s;
|
||||
z = 0.25 * s;
|
||||
w = (Row[1][0] - Row[0][1]) / s;
|
||||
}
|
||||
|
||||
Orientation.x = x;
|
||||
Orientation.y = y;
|
||||
Orientation.z = z;
|
||||
Orientation.w = w;
|
||||
|
||||
return true;
|
||||
Orientation.x = x;
|
||||
Orientation.y = y;
|
||||
Orientation.z = z;
|
||||
Orientation.w = w;
|
||||
|
||||
return true;
|
||||
}
|
||||
}//namespace glm
|
||||
|
|
Loading…
Add table
Reference in a new issue