Swizzle clean-up

This commit is contained in:
athile 2011-09-23 11:51:21 -04:00
parent a762f19861
commit 44bd721a41
2 changed files with 98 additions and 351 deletions

View file

@ -56,9 +56,12 @@ namespace detail
Template parameters:
ValueType = type of scalar values (e.g. float, double)
VecType = class the swizzle is applies to (e.g. vector3f)
VecType = class the swizzle is applies to (e.g. tvec3<float>)
N = number of components in the vector (e.g. 3)
E0...3 = what index the n-th element of this swizzle refers to in the unswizzled vec
DUPLICATE_ELEMENTS = 1 if there is a repeated element, 0 otherwise (used to specialize swizzles
containing duplicate elements so that they cannot be used as r-values).
*/
template <typename DerivedType, typename ValueType, typename VecType, int N, int E0, int E1, int E2, int E3, int DUPLICATE_ELEMENTS>
struct swizzle_base
@ -69,11 +72,8 @@ namespace detail
swizzle_base& operator= (const ValueType& t)
{
static const int offset_dst[4] = { E0, E1, E2, E3 };
for (int i = 0; i < N; ++i)
elem(offset_dst[i]) = t;
(*this)[i] = t;
return *this;
}
@ -118,18 +118,29 @@ namespace detail
_apply_op(that, op());
}
value_type& operator[] (size_t i)
{
static const int offset_dst[4] = { E0, E1, E2, E3 };
return elem(offset_dst[i]);
}
value_type operator[] (size_t) const
{
static const int offset_dst[4] = { E0, E1, E2, E3 };
return elem(offset_dst[i]);
}
protected:
template <typename T>
void _apply_op(const VecType& that, T op)
{
static const int offset_dst[4] = { E0, E1, E2, E3 };
// Make a copy of the data in this == &that
// Make a copy of the data in this == &that.
// The copier should optimize out the copy in cases where the function is
// properly inlined and the copy is not necessary.
ValueType t[N];
for (int i = 0; i < N; ++i)
t[i] = that[i];
for (int i = 0; i < N; ++i)
op( elem(offset_dst[i]), t[i] );
op( (*this)[i], t[i] );
}
value_type& elem (size_t i) { return (reinterpret_cast<value_type*>(_buffer))[i]; }
@ -141,6 +152,7 @@ namespace detail
char _buffer[sizeof(value_type) * N];
};
//! Specialization for swizzles containing duplicate elements. These cannot be modified.
template <typename DerivedType, typename ValueType, typename VecType, int N, int E0, int E1, int E2, int E3>
struct swizzle_base<DerivedType,ValueType,VecType,N,E0,E1,E2,E3,1>
{
@ -150,6 +162,12 @@ namespace detail
struct Stub {};
swizzle_base& operator= (const Stub& that) {}
value_type operator[] (size_t) const
{
static const int offset_dst[4] = { E0, E1, E2, E3 };
return elem(offset_dst[i]);
}
protected:
value_type& elem (size_t i) { return (reinterpret_cast<value_type*>(_buffer))[i]; }
@ -257,6 +275,9 @@ namespace detail
#define _GLM_SWIZZLE_TYPE1 glm::detail::swizzle_base<S0,T,P,N,E0,E1,E2,E3,D0>
#define _GLM_SWIZZLE_TYPE2 glm::detail::swizzle_base<S1,T,P,N,F0,F1,F2,F3,D1>
//
// Wrapper for a binary operator (e.g. u.yy + v.zy)
//
#define _GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(OPERAND)\
_GLM_SWIZZLE_TEMPLATE2 \
typename P operator OPERAND ( const _GLM_SWIZZLE_TYPE1& a, const _GLM_SWIZZLE_TYPE2& b) \
@ -274,6 +295,9 @@ namespace detail
return a OPERAND static_cast<const S0&>(b).cast(); \
}
//
// Wrapper for a operand between a swizzle and a binary (e.g. 1.0f - u.xyz)
//
#define _GLM_SWIZZLE_SCALAR_BINARY_OPERATOR_IMPLEMENTATION(OPERAND)\
_GLM_SWIZZLE_TEMPLATE1 \
typename P operator OPERAND ( const _GLM_SWIZZLE_TYPE1& a, const typename T& b) \
@ -286,6 +310,10 @@ namespace detail
return a OPERAND static_cast<const S0&>(b).cast(); \
}
//
// Macro for wrapping a function taking one argument (e.g. abs())
// Needs to wrap all 12 swizzle types.
//
#define _GLM_SWIZZLE_FUNCTION_1_ARGS(RETURN_TYPE,FUNCTION)\
template <typename T, typename P, int E0, int E1> \
typename glm::detail::swizzle2<T,P,E0,E1>::RETURN_TYPE FUNCTION(const glm::detail::swizzle2<T,P,E0,E1>& a) \
@ -333,6 +361,14 @@ namespace detail
return FUNCTION(a.cast()); \
}
//
// Macro for wrapping a function taking two vector arguments (e.g. dot()).
//
// Needs to wrap all 12 swizzle types when the same type is passed as
// both arguments (u.xyz, v.xyz), wrappers for when the arguments are
// different types (u.xyz, v.yyx), and lastly wrappers for swizzle/unswizzled
// combinations (u.xyz, v).
//
#define _GLM_SWIZZLE_FUNCTION_2_ARGS(RETURN_TYPE,FUNCTION)\
_GLM_SWIZZLE_TEMPLATE2\
typename S0::RETURN_TYPE FUNCTION(const typename _GLM_SWIZZLE_TYPE1& a, const typename _GLM_SWIZZLE_TYPE2& b)\
@ -400,6 +436,9 @@ namespace detail
return FUNCTION(a.cast(), b.cast()); \
}
//
// Macro for wrapping a function take 2 vec arguments followed by a scalar (e.g. mix()).
//
#define _GLM_SWIZZLE_FUNCTION_2_ARGS_SCALAR(RETURN_TYPE,FUNCTION)\
_GLM_SWIZZLE_TEMPLATE2\
typename S0::RETURN_TYPE FUNCTION(const typename _GLM_SWIZZLE_TYPE1& a, const typename _GLM_SWIZZLE_TYPE2& b, const typename S0::value_type& c)\
@ -483,16 +522,26 @@ namespace glm
_GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(/)
}
_GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, abs);
_GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, acos);
_GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, acosh);
_GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, all);
_GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, any);
//
// Swizzles are distinct types from the unswizzled type. The below macros will
// provide template specializations for the swizzle types for the given functions
// so that the compiler does not have any ambiguity to choosing how to handle
// the function.
//
// The alternative is to use the operator()() when calling the function in order
// to explicitly convert the swizzled type to the unswizzled type.
//
//_GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, abs);
//_GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, acos);
//_GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, acosh);
//_GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, all);
//_GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, any);
_GLM_SWIZZLE_FUNCTION_2_ARGS(value_type, dot);
_GLM_SWIZZLE_FUNCTION_2_ARGS(vec_type, cross);
_GLM_SWIZZLE_FUNCTION_2_ARGS(vec_type, step);
_GLM_SWIZZLE_FUNCTION_2_ARGS_SCALAR(vec_type, mix);
//_GLM_SWIZZLE_FUNCTION_2_ARGS(value_type, dot);
//_GLM_SWIZZLE_FUNCTION_2_ARGS(vec_type, cross);
//_GLM_SWIZZLE_FUNCTION_2_ARGS(vec_type, step);
//_GLM_SWIZZLE_FUNCTION_2_ARGS_SCALAR(vec_type, mix);
}

View file

@ -200,347 +200,45 @@ int test_vec3_swizzle_functions()
{
int Error = 0;
// vec3 - working as expected
//
// NOTE: template functions cannot pick up the implicit conversion from
// a swizzle to the unswizzled type, therefore the operator() must be
// used. E.g.:
//
// glm::dot(u.xy, v.xy); <--- Compile error
// glm::dot(u.xy(), v.xy()); <--- Compiles correctly
//
float r;
// vec2
glm::vec2 a(1, 2);
glm::vec2 b(10, 20);
r = glm::dot(a, b); Error += (int(r) == 50) ? 0 : 1;
r = glm::dot(a.xy(), b.xy()); Error += (int(r) == 50) ? 0 : 1;
r = glm::dot(a.xy(), b.yy()); Error += (int(r) == 60) ? 0 : 1;
// vec3
glm::vec3 q, u, v;
u = glm::vec3(1, 2, 3);
v = glm::vec3(10, 20, 30);
glm::dot(u, v);
glm::dot(u.xyz, v.zyz);
glm::dot(u, v.zyx);
glm::dot(u.xyz, v);
r = glm::dot(u, v); Error += (int(r) == 140) ? 0 : 1;
r = glm::dot(u.xyz(), v.zyz()); Error += (int(r) == 160) ? 0 : 1;
r = glm::dot(u, v.zyx()); Error += (int(r) == 100) ? 0 : 1;
r = glm::dot(u.xyz(), v); Error += (int(r) == 140) ? 0 : 1;
r = glm::dot(u.xy(), v.xy()); Error += (int(r) == 50) ? 0 : 1;
// vec2 - not working! how is vec3 working and not vec2?
glm::vec2 a, b;
glm::dot(a, b);
glm::dot(a.xy, b.yy);
glm::dot(a.xy, b.xy);
glm::dot(u.xy, v.xy);
glm::dot(glm::vec4(1,2,3,4).xyz, v);
glm::vec4 r, s, t;
r = glm::vec4(1, 2, 3, 4);
s = glm::vec4(10, 20, 30, 40);
glm::dot(r, s);
glm::dot(r.xyzw, s.xyzw);
glm::dot(r.xyz, s.xyz);
glm::cross(u, v);
glm::cross(u.zyx, v);
glm::cross(u.xxz, v.yyx);
// vec4
glm::vec4 s, t;
s = glm::vec4(1, 2, 3, 4);
t = glm::vec4(10, 20, 30, 40);
r = glm::dot(s, t); Error += (int(r) == 300) ? 0 : 1;
r = glm::dot(s.xyzw(), t.xyzw()); Error += (int(r) == 300) ? 0 : 1;
r = glm::dot(s.xyz(), t.xyz()); Error += (int(r) == 140) ? 0 : 1;
return Error;
}
#if 1
using namespace glm;
//
// GLSL textureless classic 4D noise "cnoise",
// with an RSL-style periodic variant "pnoise".
// Author: Stefan Gustavson (stefan.gustavson@liu.se)
// Version: 2011-08-22
//
// Many thanks to Ian McEwan of Ashima Arts for the
// ideas for permutation and gradient selection.
//
// Copyright (c) 2011 Stefan Gustavson. All rights reserved.
// Distributed under the MIT license. See LICENSE file.
// https://github.com/ashima/webgl-noise
//
vec4 mod289(vec4 x)
{
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 permute(vec4 x)
{
return mod289(((x*34.0)+1.0)*x);
}
vec4 taylorInvSqrt(vec4 r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
vec4 fade(vec4 t) {
return t*t*t*(t*(t*6.0-15.0)+10.0);
}
// Classic Perlin noise
float cnoise(vec4 P)
{
vec4 Pi0 = floor(P); // Integer part for indexing
vec4 Pi1 = Pi0 + 1.0; // Integer part + 1
Pi0 = mod289(Pi0);
Pi1 = mod289(Pi1);
vec4 Pf0 = fract(P); // Fractional part for interpolation
vec4 Pf1 = Pf0 - 1.0; // Fractional part - 1.0
vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec4 iy = vec4(Pi0.yy(), Pi1.yy());
vec4 iz0 = vec4(Pi0.zzzz());
vec4 iz1 = vec4(Pi1.zzzz());
vec4 iw0 = vec4(Pi0.wwww());
vec4 iw1 = vec4(Pi1.wwww);
vec4 ixy = permute(permute(ix) + iy);
vec4 ixy0 = permute(ixy + iz0);
vec4 ixy1 = permute(ixy + iz1);
vec4 ixy00 = permute(ixy0 + iw0);
vec4 ixy01 = permute(ixy0 + iw1);
vec4 ixy10 = permute(ixy1 + iw0);
vec4 ixy11 = permute(ixy1 + iw1);
vec4 gx00 = ixy00 * (1.0 / 7.0);
vec4 gy00 = floor(gx00) * (1.0 / 7.0);
vec4 gz00 = floor(gy00) * (1.0 / 6.0);
gx00 = fract(gx00) - 0.5;
gy00 = fract(gy00) - 0.5;
gz00 = fract(gz00) - 0.5;
vec4 gw00 = vec4(0.75) - abs(gx00) - abs(gy00) - abs(gz00);
vec4 sw00 = step(gw00, vec4(0.0));
gx00 -= sw00 * (step(0.0, gx00) - 0.5);
gy00 -= sw00 * (step(0.0, gy00) - 0.5);
vec4 gx01 = ixy01 * (1.0 / 7.0);
vec4 gy01 = floor(gx01) * (1.0 / 7.0);
vec4 gz01 = floor(gy01) * (1.0 / 6.0);
gx01 = fract(gx01) - 0.5;
gy01 = fract(gy01) - 0.5;
gz01 = fract(gz01) - 0.5;
vec4 gw01 = vec4(0.75) - abs(gx01) - abs(gy01) - abs(gz01);
vec4 sw01 = step(gw01, vec4(0.0));
gx01 -= sw01 * (step(0.0, gx01) - 0.5);
gy01 -= sw01 * (step(0.0, gy01) - 0.5);
vec4 gx10 = ixy10 * (1.0 / 7.0);
vec4 gy10 = floor(gx10) * (1.0 / 7.0);
vec4 gz10 = floor(gy10) * (1.0 / 6.0);
gx10 = fract(gx10) - 0.5;
gy10 = fract(gy10) - 0.5;
gz10 = fract(gz10) - 0.5;
vec4 gw10 = vec4(0.75) - abs(gx10) - abs(gy10) - abs(gz10);
vec4 sw10 = step(gw10, vec4(0.0));
gx10 -= sw10 * (step(0.0, gx10) - 0.5);
gy10 -= sw10 * (step(0.0, gy10) - 0.5);
vec4 gx11 = ixy11 * (1.0 / 7.0);
vec4 gy11 = floor(gx11) * (1.0 / 7.0);
vec4 gz11 = floor(gy11) * (1.0 / 6.0);
gx11 = fract(gx11) - 0.5;
gy11 = fract(gy11) - 0.5;
gz11 = fract(gz11) - 0.5;
vec4 gw11 = vec4(0.75) - abs(gx11) - abs(gy11) - abs(gz11);
vec4 sw11 = step(gw11, vec4(0.0));
gx11 -= sw11 * (step(0.0, gx11) - 0.5);
gy11 -= sw11 * (step(0.0, gy11) - 0.5);
vec4 g0000 = vec4(gx00.x,gy00.x,gz00.x,gw00.x);
vec4 g1000 = vec4(gx00.y,gy00.y,gz00.y,gw00.y);
vec4 g0100 = vec4(gx00.z,gy00.z,gz00.z,gw00.z);
vec4 g1100 = vec4(gx00.w,gy00.w,gz00.w,gw00.w);
vec4 g0010 = vec4(gx10.x,gy10.x,gz10.x,gw10.x);
vec4 g1010 = vec4(gx10.y,gy10.y,gz10.y,gw10.y);
vec4 g0110 = vec4(gx10.z,gy10.z,gz10.z,gw10.z);
vec4 g1110 = vec4(gx10.w,gy10.w,gz10.w,gw10.w);
vec4 g0001 = vec4(gx01.x,gy01.x,gz01.x,gw01.x);
vec4 g1001 = vec4(gx01.y,gy01.y,gz01.y,gw01.y);
vec4 g0101 = vec4(gx01.z,gy01.z,gz01.z,gw01.z);
vec4 g1101 = vec4(gx01.w,gy01.w,gz01.w,gw01.w);
vec4 g0011 = vec4(gx11.x,gy11.x,gz11.x,gw11.x);
vec4 g1011 = vec4(gx11.y,gy11.y,gz11.y,gw11.y);
vec4 g0111 = vec4(gx11.z,gy11.z,gz11.z,gw11.z);
vec4 g1111 = vec4(gx11.w,gy11.w,gz11.w,gw11.w);
vec4 norm00 = taylorInvSqrt(vec4(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100)));
g0000 *= norm00.x;
g0100 *= norm00.y;
g1000 *= norm00.z;
g1100 *= norm00.w;
vec4 norm01 = taylorInvSqrt(vec4(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101)));
g0001 *= norm01.x;
g0101 *= norm01.y;
g1001 *= norm01.z;
g1101 *= norm01.w;
vec4 norm10 = taylorInvSqrt(vec4(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110)));
g0010 *= norm10.x;
g0110 *= norm10.y;
g1010 *= norm10.z;
g1110 *= norm10.w;
vec4 norm11 = taylorInvSqrt(vec4(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111)));
g0011 *= norm11.x;
g0111 *= norm11.y;
g1011 *= norm11.z;
g1111 *= norm11.w;
float n0000 = dot(g0000, Pf0);
float n1000 = dot(g1000, vec4(Pf1.x, Pf0.yzw()));
float n0100 = dot(g0100, vec4(Pf0.x, Pf1.y, Pf0.zw()));
float n1100 = dot(g1100, vec4(Pf1.xy(), Pf0.zw()));
float n0010 = dot(g0010, vec4(Pf0.xy(), Pf1.z, Pf0.w));
float n1010 = dot(g1010, vec4(Pf1.x, Pf0.y, Pf1.z, Pf0.w));
float n0110 = dot(g0110, vec4(Pf0.x, Pf1.yz(), Pf0.w));
float n1110 = dot(g1110, vec4(Pf1.xyz(), Pf0.w));
float n0001 = dot(g0001, vec4(Pf0.xyz(), Pf1.w));
float n1001 = dot(g1001, vec4(Pf1.x, Pf0.yz(), Pf1.w));
float n0101 = dot(g0101, vec4(Pf0.x, Pf1.y, Pf0.z, Pf1.w));
float n1101 = dot(g1101, vec4(Pf1.xy(), Pf0.z, Pf1.w));
float n0011 = dot(g0011, vec4(Pf0.xy(), Pf1.zw()));
float n1011 = dot(g1011, vec4(Pf1.x, Pf0.y, Pf1.zw()));
float n0111 = dot(g0111, vec4(Pf0.x, Pf1.yzw()));
float n1111 = dot(g1111, Pf1);
vec4 fade_xyzw = fade(Pf0);
vec4 n_0w = mix(vec4(n0000, n1000, n0100, n1100), vec4(n0001, n1001, n0101, n1101), fade_xyzw.w);
vec4 n_1w = mix(vec4(n0010, n1010, n0110, n1110), vec4(n0011, n1011, n0111, n1111), fade_xyzw.w);
vec4 n_zw = mix(n_0w, n_1w, fade_xyzw.z);
vec2 n_yzw = mix(n_zw.xy, n_zw.zw, fade_xyzw.y);
float n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x);
return 2.2 * n_xyzw;
}
// Classic Perlin noise, periodic version
float pnoise(vec4 P, vec4 rep)
{
vec4 Pi0 = mod(floor(P), rep); // Integer part modulo rep
vec4 Pi1 = mod(Pi0 + 1.0, rep); // Integer part + 1 mod rep
Pi0 = mod289(Pi0);
Pi1 = mod289(Pi1);
vec4 Pf0 = fract(P); // Fractional part for interpolation
vec4 Pf1 = Pf0 - 1.0; // Fractional part - 1.0
vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec4 iy = vec4(Pi0.yy(), Pi1.yy());
vec4 iz0 = vec4(Pi0.zzzz());
vec4 iz1 = vec4(Pi1.zzzz());
vec4 iw0 = vec4(Pi0.wwww());
vec4 iw1 = vec4(Pi1.wwww());
vec4 ixy = permute(permute(ix) + iy);
vec4 ixy0 = permute(ixy + iz0);
vec4 ixy1 = permute(ixy + iz1);
vec4 ixy00 = permute(ixy0 + iw0);
vec4 ixy01 = permute(ixy0 + iw1);
vec4 ixy10 = permute(ixy1 + iw0);
vec4 ixy11 = permute(ixy1 + iw1);
vec4 gx00 = ixy00 * (1.0 / 7.0);
vec4 gy00 = floor(gx00) * (1.0 / 7.0);
vec4 gz00 = floor(gy00) * (1.0 / 6.0);
gx00 = fract(gx00) - 0.5;
gy00 = fract(gy00) - 0.5;
gz00 = fract(gz00) - 0.5;
vec4 gw00 = vec4(0.75) - abs(gx00) - abs(gy00) - abs(gz00);
vec4 sw00 = step(gw00, vec4(0.0));
gx00 -= sw00 * (step(0.0, gx00) - 0.5);
gy00 -= sw00 * (step(0.0, gy00) - 0.5);
vec4 gx01 = ixy01 * (1.0 / 7.0);
vec4 gy01 = floor(gx01) * (1.0 / 7.0);
vec4 gz01 = floor(gy01) * (1.0 / 6.0);
gx01 = fract(gx01) - 0.5;
gy01 = fract(gy01) - 0.5;
gz01 = fract(gz01) - 0.5;
vec4 gw01 = vec4(0.75) - abs(gx01) - abs(gy01) - abs(gz01);
vec4 sw01 = step(gw01, vec4(0.0));
gx01 -= sw01 * (step(0.0, gx01) - 0.5);
gy01 -= sw01 * (step(0.0, gy01) - 0.5);
vec4 gx10 = ixy10 * (1.0 / 7.0);
vec4 gy10 = floor(gx10) * (1.0 / 7.0);
vec4 gz10 = floor(gy10) * (1.0 / 6.0);
gx10 = fract(gx10) - 0.5;
gy10 = fract(gy10) - 0.5;
gz10 = fract(gz10) - 0.5;
vec4 gw10 = vec4(0.75) - abs(gx10) - abs(gy10) - abs(gz10);
vec4 sw10 = step(gw10, vec4(0.0));
gx10 -= sw10 * (step(0.0, gx10) - 0.5);
gy10 -= sw10 * (step(0.0, gy10) - 0.5);
vec4 gx11 = ixy11 * (1.0 / 7.0);
vec4 gy11 = floor(gx11) * (1.0 / 7.0);
vec4 gz11 = floor(gy11) * (1.0 / 6.0);
gx11 = fract(gx11) - 0.5;
gy11 = fract(gy11) - 0.5;
gz11 = fract(gz11) - 0.5;
vec4 gw11 = vec4(0.75) - abs(gx11) - abs(gy11) - abs(gz11);
vec4 sw11 = step(gw11, vec4(0.0));
gx11 -= sw11 * (step(0.0, gx11) - 0.5);
gy11 -= sw11 * (step(0.0, gy11) - 0.5);
vec4 g0000 = vec4(gx00.x,gy00.x,gz00.x,gw00.x);
vec4 g1000 = vec4(gx00.y,gy00.y,gz00.y,gw00.y);
vec4 g0100 = vec4(gx00.z,gy00.z,gz00.z,gw00.z);
vec4 g1100 = vec4(gx00.w,gy00.w,gz00.w,gw00.w);
vec4 g0010 = vec4(gx10.x,gy10.x,gz10.x,gw10.x);
vec4 g1010 = vec4(gx10.y,gy10.y,gz10.y,gw10.y);
vec4 g0110 = vec4(gx10.z,gy10.z,gz10.z,gw10.z);
vec4 g1110 = vec4(gx10.w,gy10.w,gz10.w,gw10.w);
vec4 g0001 = vec4(gx01.x,gy01.x,gz01.x,gw01.x);
vec4 g1001 = vec4(gx01.y,gy01.y,gz01.y,gw01.y);
vec4 g0101 = vec4(gx01.z,gy01.z,gz01.z,gw01.z);
vec4 g1101 = vec4(gx01.w,gy01.w,gz01.w,gw01.w);
vec4 g0011 = vec4(gx11.x,gy11.x,gz11.x,gw11.x);
vec4 g1011 = vec4(gx11.y,gy11.y,gz11.y,gw11.y);
vec4 g0111 = vec4(gx11.z,gy11.z,gz11.z,gw11.z);
vec4 g1111 = vec4(gx11.w,gy11.w,gz11.w,gw11.w);
vec4 norm00 = taylorInvSqrt(vec4(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100)));
g0000 *= norm00.x;
g0100 *= norm00.y;
g1000 *= norm00.z;
g1100 *= norm00.w;
vec4 norm01 = taylorInvSqrt(vec4(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101)));
g0001 *= norm01.x;
g0101 *= norm01.y;
g1001 *= norm01.z;
g1101 *= norm01.w;
vec4 norm10 = taylorInvSqrt(vec4(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110)));
g0010 *= norm10.x;
g0110 *= norm10.y;
g1010 *= norm10.z;
g1110 *= norm10.w;
vec4 norm11 = taylorInvSqrt(vec4(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111)));
g0011 *= norm11.x;
g0111 *= norm11.y;
g1011 *= norm11.z;
g1111 *= norm11.w;
float n0000 = dot(g0000, Pf0);
float n1000 = dot(g1000, vec4(Pf1.x, Pf0.yzw()));
float n0100 = dot(g0100, vec4(Pf0.x, Pf1.y, Pf0.zw()));
float n1100 = dot(g1100, vec4(Pf1.xy(), Pf0.zw()));
float n0010 = dot(g0010, vec4(Pf0.xy(), Pf1.z, Pf0.w));
float n1010 = dot(g1010, vec4(Pf1.x, Pf0.y, Pf1.z, Pf0.w));
float n0110 = dot(g0110, vec4(Pf0.x, Pf1.yz(), Pf0.w));
float n1110 = dot(g1110, vec4(Pf1.xyz(), Pf0.w));
float n0001 = dot(g0001, vec4(Pf0.xyz(), Pf1.w));
float n1001 = dot(g1001, vec4(Pf1.x, Pf0.yz(), Pf1.w));
float n0101 = dot(g0101, vec4(Pf0.x, Pf1.y, Pf0.z, Pf1.w));
float n1101 = dot(g1101, vec4(Pf1.xy(), Pf0.z, Pf1.w));
float n0011 = dot(g0011, vec4(Pf0.xy(), Pf1.zw()));
float n1011 = dot(g1011, vec4(Pf1.x, Pf0.y, Pf1.zw()));
float n0111 = dot(g0111, vec4(Pf0.x, Pf1.yzw()));
float n1111 = dot(g1111, Pf1);
vec4 fade_xyzw = fade(Pf0);
vec4 n_0w = mix(vec4(n0000, n1000, n0100, n1100), vec4(n0001, n1001, n0101, n1101), fade_xyzw.w);
vec4 n_1w = mix(vec4(n0010, n1010, n0110, n1110), vec4(n0011, n1011, n0111, n1111), fade_xyzw.w);
vec4 n_zw = mix(n_0w, n_1w, fade_xyzw.z);
vec2 n_yzw = mix(n_zw.xy, n_zw.zw, fade_xyzw.y);
float n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x);
return 2.2 * n_xyzw;
}
#endif
int main()
{
int Error = 0;