diff --git a/glm/core/func_packing.hpp b/glm/core/func_packing.hpp
index 4ce811a1..221f3aca 100644
--- a/glm/core/func_packing.hpp
+++ b/glm/core/func_packing.hpp
@@ -41,80 +41,80 @@ namespace glm
/// @addtogroup core_func_packing
/// @{
- //! First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values.
- //! Then, the results are packed into the returned 32-bit unsigned integer.
- //!
- //! The conversion for component c of v to fixed point is done as follows:
- //! packUnorm2x16: round(clamp(c, 0, +1) * 65535.0)
- //!
- //! The first component of the vector will be written to the least significant bits of the output;
- //! the last component will be written to the most significant bits.
- //!
+ /// First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values.
+ /// Then, the results are packed into the returned 32-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packUnorm2x16: round(clamp(c, 0, +1) * 65535.0)
+ ///
+ /// The first component of the vector will be written to the least significant bits of the output;
+ /// the last component will be written to the most significant bits.
+ ///
/// @see GLSL packUnorm2x16 man page
/// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
GLM_FUNC_DECL uint32 packUnorm2x16(vec2 const & v);
- //! First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values.
- //! Then, the results are packed into the returned 32-bit unsigned integer.
- //!
- //! The conversion for component c of v to fixed point is done as follows:
- //! packSnorm2x16: round(clamp(v, -1, +1) * 32767.0)
- //!
- //! The first component of the vector will be written to the least significant bits of the output;
- //! the last component will be written to the most significant bits.
- //!
+ /// First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values.
+ /// Then, the results are packed into the returned 32-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packSnorm2x16: round(clamp(v, -1, +1) * 32767.0)
+ ///
+ /// The first component of the vector will be written to the least significant bits of the output;
+ /// the last component will be written to the most significant bits.
+ ///
/// @see GLSL packSnorm2x16 man page
/// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
GLM_FUNC_DECL uint32 packSnorm2x16(vec2 const & v);
- //! First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values.
- //! Then, the results are packed into the returned 32-bit unsigned integer.
- //!
- //! The conversion for component c of v to fixed point is done as follows:
- //! packUnorm4x8: round(clamp(c, 0, +1) * 255.0)
- //!
- //! The first component of the vector will be written to the least significant bits of the output;
- //! the last component will be written to the most significant bits.
- //!
+ /// First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values.
+ /// Then, the results are packed into the returned 32-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packUnorm4x8: round(clamp(c, 0, +1) * 255.0)
+ ///
+ /// The first component of the vector will be written to the least significant bits of the output;
+ /// the last component will be written to the most significant bits.
+ ///
/// @see GLSL packUnorm4x8 man page
/// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
GLM_FUNC_DECL uint32 packUnorm4x8(vec4 const & v);
- //! First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values.
- //! Then, the results are packed into the returned 32-bit unsigned integer.
- //!
- //! The conversion for component c of v to fixed point is done as follows:
- //! packSnorm4x8: round(clamp(c, -1, +1) * 127.0)
- //!
- //! The first component of the vector will be written to the least significant bits of the output;
- //! the last component will be written to the most significant bits.
- //!
+ /// First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values.
+ /// Then, the results are packed into the returned 32-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packSnorm4x8: round(clamp(c, -1, +1) * 127.0)
+ ///
+ /// The first component of the vector will be written to the least significant bits of the output;
+ /// the last component will be written to the most significant bits.
+ ///
/// @see GLSL packSnorm4x8 man page
/// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
GLM_FUNC_DECL uint32 packSnorm4x8(vec4 const & v);
- //! First, unpacks a single 32-bit unsigned integer p into a pair of 16-bit unsigned integers, four 8-bit unsigned integers, or four 8-bit signed integers.
- //! Then, each component is converted to a normalized floating-point value to generate the returned two- or four-component vector.
- //!
- //! The conversion for unpacked fixed-point value f to floating point is done as follows:
- //! unpackUnorm2x16: f / 65535.0
- //!
- //! The first component of the returned vector will be extracted from the least significant bits of the input;
- //! the last component will be extracted from the most significant bits.
- //!
+ /// First, unpacks a single 32-bit unsigned integer p into a pair of 16-bit unsigned integers, four 8-bit unsigned integers, or four 8-bit signed integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned two- or four-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackUnorm2x16: f / 65535.0
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
/// @see GLSL unpackUnorm2x16 man page
/// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
GLM_FUNC_DECL vec2 unpackUnorm2x16(uint32 const & p);
- //! First, unpacks a single 32-bit unsigned integer p into a pair of 16-bit unsigned integers, four 8-bit unsigned integers, or four 8-bit signed integers.
- //! Then, each component is converted to a normalized floating-point value to generate the returned two- or four-component vector.
- //!
- //! The conversion for unpacked fixed-point value f to floating point is done as follows:
- //! unpackSnorm2x16: clamp(f / 32767.0, -1, +1)
- //!
- //! The first component of the returned vector will be extracted from the least significant bits of the input;
- //! the last component will be extracted from the most significant bits.
- //!
+ /// First, unpacks a single 32-bit unsigned integer p into a pair of 16-bit unsigned integers, four 8-bit unsigned integers, or four 8-bit signed integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned two- or four-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackSnorm2x16: clamp(f / 32767.0, -1, +1)
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
/// @see GLSL unpackSnorm2x16 man page
/// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
GLM_FUNC_DECL vec2 unpackSnorm2x16(uint32 const & p);
diff --git a/glm/gtc/packing.hpp b/glm/gtc/packing.hpp
index 15a2b3e7..9433d54e 100644
--- a/glm/gtc/packing.hpp
+++ b/glm/gtc/packing.hpp
@@ -51,60 +51,423 @@ namespace glm
/// @addtogroup gtc_packing
/// @{
- GLM_FUNC_DECL uint16 packUnorm1x16(float v);
- GLM_FUNC_DECL float unpackUnorm1x16(uint16 v);
+ /// First, converts the normalized floating-point value v into a 8-bit integer value.
+ /// Then, the results are packed into the returned 8-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packUnorm1x8: round(clamp(c, 0, +1) * 255.0)
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packUnorm2x8(vec2 const & v)
+ /// @see uint32 packUnorm4x8(vec4 const & v)
+ /// @see GLSL packUnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL uint8 packUnorm1x8(float const & v);
- GLM_FUNC_DECL uint64 packUnorm4x16(vec4 const & v);
- GLM_FUNC_DECL vec4 unpackUnorm4x16(uint64 const & v);
-
- GLM_FUNC_DECL uint16 packSnorm1x16(float v);
- GLM_FUNC_DECL float unpackSnorm1x16(uint16 v);
-
- GLM_FUNC_DECL uint64 packSnorm4x16(vec4 const & v);
- GLM_FUNC_DECL vec4 unpackSnorm4x16(uint64 const & v);
-
- GLM_FUNC_DECL uint16 packUnorm2x8(vec2 const & v);
- GLM_FUNC_DECL vec2 unpackUnorm2x8(uint16 v);
-
- GLM_FUNC_DECL uint16 packSnorm2x8(vec2 const & v);
- GLM_FUNC_DECL vec2 unpackSnorm2x8(uint16 v);
-
- GLM_FUNC_DECL uint16 packHalf1x16(float const & v);
- GLM_FUNC_DECL float unpackHalf1x16(uint16 const & v);
-
- /// Returns an unsigned integer obtained by converting the components of a two-component floating-point vector
- /// to the 16-bit floating-point representation found in the OpenGL Specification,
- /// and then packing these two 16- bit integers into a 32-bit unsigned integer.
- /// The first vector component specifies the 16 least-significant bits of the result;
- /// the second component specifies the 16 most-significant bits.
+ /// Convert a single 8-bit integer to a normalized floating-point value.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackUnorm4x8: f / 255.0
///
/// @see gtc_packing
+ /// @see vec2 unpackUnorm2x8(uint16 p)
+ /// @see vec4 unpackUnorm4x8(uint32 p)
+ /// @see GLSL unpackUnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL float unpackUnorm1x8(uint8 pdf);
+
+ /// First, converts each component of the normalized floating-point value v into 8-bit integer values.
+ /// Then, the results are packed into the returned 16-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packUnorm2x8: round(clamp(c, 0, +1) * 255.0)
+ ///
+ /// The first component of the vector will be written to the least significant bits of the output;
+ /// the last component will be written to the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint8 packUnorm1x8(float const & v)
+ /// @see uint32 packUnorm4x8(vec4 const & v)
+ /// @see GLSL packUnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL uint16 packUnorm2x8(vec2 const & v);
+
+ /// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit unsigned integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackUnorm4x8: f / 255.0
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see float unpackUnorm1x8(uint8 v)
+ /// @see vec4 unpackUnorm4x8(uint32 p)
+ /// @see GLSL unpackUnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL vec2 unpackUnorm2x8(uint16 p);
+
+ /// First, converts the normalized floating-point value v into 8-bit integer value.
+ /// Then, the results are packed into the returned 8-bit unsigned integer.
+ ///
+ /// The conversion to fixed point is done as follows:
+ /// packSnorm1x8: round(clamp(s, -1, +1) * 127.0)
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packSnorm2x8(vec2 const & v)
+ /// @see uint32 packSnorm4x8(vec4 const & v)
+ /// @see GLSL packSnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL uint8 packSnorm1x8(float const & s);
+
+ /// First, unpacks a single 8-bit unsigned integer p into a single 8-bit signed integers.
+ /// Then, the value is converted to a normalized floating-point value to generate the returned scalar.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackSnorm1x8: clamp(f / 127.0, -1, +1)
+ ///
+ /// @see gtc_packing
+ /// @see vec2 unpackSnorm2x8(uint16 p)
+ /// @see vec4 unpackSnorm4x8(uint32 p)
+ /// @see GLSL unpackSnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL float unpackSnorm1x8(uint8 p);
+
+ /// First, converts each component of the normalized floating-point value v into 8-bit integer values.
+ /// Then, the results are packed into the returned 16-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packSnorm2x8: round(clamp(c, -1, +1) * 127.0)
+ ///
+ /// The first component of the vector will be written to the least significant bits of the output;
+ /// the last component will be written to the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint8 packSnorm1x8(float const & v)
+ /// @see uint32 packSnorm4x8(vec4 const & v)
+ /// @see GLSL packSnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL uint16 packSnorm2x8(vec2 const & v);
+
+ /// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit signed integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackSnorm2x8: clamp(f / 127.0, -1, +1)
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see float unpackSnorm1x8(uint8 p)
+ /// @see vec4 unpackSnorm4x8(uint32 p)
+ /// @see GLSL unpackSnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL vec2 unpackSnorm2x8(uint16 p);
+
+ /// First, converts the normalized floating-point value v into a 16-bit integer value.
+ /// Then, the results are packed into the returned 16-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packUnorm1x16: round(clamp(c, 0, +1) * 65535.0)
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packSnorm1x16(float const & v)
+ /// @see uint64 packSnorm4x16(vec4 const & v)
+ /// @see GLSL packUnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL uint16 packUnorm1x16(float v);
+
+ /// First, unpacks a single 16-bit unsigned integer p into a of 16-bit unsigned integers.
+ /// Then, the value is converted to a normalized floating-point value to generate the returned scalar.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackUnorm1x16: f / 65535.0
+ ///
+ /// @see gtc_packing
+ /// @see vec2 unpackUnorm2x16(uint32 p)
+ /// @see vec4 unpackUnorm4x16(uint64 p)
+ /// @see GLSL unpackUnorm2x16 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL float unpackUnorm1x16(uint16 p);
+
+ /// First, converts each component of the normalized floating-point value v into 16-bit integer values.
+ /// Then, the results are packed into the returned 64-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packUnorm4x16: round(clamp(c, 0, +1) * 65535.0)
+ ///
+ /// The first component of the vector will be written to the least significant bits of the output;
+ /// the last component will be written to the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packUnorm1x16(float const & v)
+ /// @see uint32 packUnorm2x16(vec2 const & v)
+ /// @see GLSL packUnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL uint64 packUnorm4x16(vec4 const & v);
+
+ /// First, unpacks a single 64-bit unsigned integer p into four 16-bit unsigned integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackUnormx4x16: f / 65535.0
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see float unpackUnorm1x16(uint16 p)
+ /// @see vec2 unpackUnorm2x16(uint32 p)
+ /// @see GLSL unpackUnorm2x16 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL vec4 unpackUnorm4x16(uint64 const & p);
+
+ /// First, converts the normalized floating-point value v into 16-bit integer value.
+ /// Then, the results are packed into the returned 16-bit unsigned integer.
+ ///
+ /// The conversion to fixed point is done as follows:
+ /// packSnorm1x8: round(clamp(s, -1, +1) * 32767.0)
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packSnorm2x16(vec2 const & v)
+ /// @see uint64 packSnorm4x16(vec4 const & v)
+ /// @see GLSL packSnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL uint16 packSnorm1x16(float v);
+
+ /// First, unpacks a single 16-bit unsigned integer p into a single 16-bit signed integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned scalar.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackSnorm1x16: clamp(f / 32767.0, -1, +1)
+ ///
+ /// @see gtc_packing
+ /// @see vec2 unpackSnorm2x16(uint32 p)
+ /// @see vec4 unpackSnorm4x16(uint64 p)
+ /// @see GLSL unpackSnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL float unpackSnorm1x16(uint16 p);
+
+ /// First, converts each component of the normalized floating-point value v into 16-bit integer values.
+ /// Then, the results are packed into the returned 64-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packSnorm2x8: round(clamp(c, -1, +1) * 32767.0)
+ ///
+ /// The first component of the vector will be written to the least significant bits of the output;
+ /// the last component will be written to the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packSnorm1x16(float const & v)
+ /// @see uint32 packSnorm2x16(vec2 const & v)
+ /// @see GLSL packSnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL uint64 packSnorm4x16(vec4 const & v);
+
+ /// First, unpacks a single 64-bit unsigned integer p into four 16-bit signed integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackSnorm4x16: clamp(f / 32767.0, -1, +1)
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see float unpackSnorm1x16(uint16 p)
+ /// @see vec2 unpackSnorm2x16(uint32 p)
+ /// @see GLSL unpackSnorm4x8 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL vec4 unpackSnorm4x16(uint64 const & p);
+
+ /// Returns an unsigned integer obtained by converting the components of a floating-point scalar
+ /// to the 16-bit floating-point representation found in the OpenGL Specification,
+ /// and then packing this 16-bit value into a 16-bit unsigned integer.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packHalf2x16(vec2 const & v)
+ /// @see uint64 packHalf4x16(vec4 const & v)
+ /// @see GLSL packHalf2x16 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL uint16 packHalf1x16(float const & v);
+
+ /// Returns a floating-point scalar with components obtained by unpacking a 16-bit unsigned integer into a 16-bit value,
+ /// interpreted as a 16-bit floating-point number according to the OpenGL Specification,
+ /// and converting it to 32-bit floating-point values.
+ ///
+ /// @see gtc_packing
+ /// @see vec2 unpackHalf2x16(uint32 const & v)
+ /// @see vec4 unpackHalf4x16(uint64 const & v)
+ /// @see GLSL unpackHalf2x16 man page
+ /// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
+ GLM_FUNC_DECL float unpackHalf1x16(uint16 const & v);
+
+ /// Returns an unsigned integer obtained by converting the components of a four-component floating-point vector
+ /// to the 16-bit floating-point representation found in the OpenGL Specification,
+ /// and then packing these four 16-bit values into a 64-bit unsigned integer.
+ /// The first vector component specifies the 16 least-significant bits of the result;
+ /// the forth component specifies the 16 most-significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint16 packHalf1x16(float const & v)
+ /// @see uint32 packHalf2x16(vec2 const & v)
/// @see GLSL packHalf2x16 man page
/// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
GLM_FUNC_DECL uint64 packHalf4x16(vec4 const & v);
- /// Returns a two-component floating-point vector with components obtained by unpacking a 32-bit unsigned integer into a pair of 16-bit values,
+ /// Returns a four-component floating-point vector with components obtained by unpacking a 64-bit unsigned integer into four 16-bit values,
/// interpreting those values as 16-bit floating-point numbers according to the OpenGL Specification,
/// and converting them to 32-bit floating-point values.
/// The first component of the vector is obtained from the 16 least-significant bits of v;
- /// the second component is obtained from the 16 most-significant bits of v.
+ /// the forth component is obtained from the 16 most-significant bits of v.
///
/// @see gtc_packing
+ /// @see float unpackHalf1x16(uint16 const & v)
+ /// @see vec2 unpackHalf2x16(uint32 const & v)
/// @see GLSL unpackHalf2x16 man page
/// @see GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions
- GLM_FUNC_DECL vec4 unpackHalf4x16(uint64 const & v);
+ GLM_FUNC_DECL vec4 unpackHalf4x16(uint64 const & p);
- GLM_FUNC_DECL uint32 packI10I10I10I2(ivec4 const & v);
- GLM_FUNC_DECL ivec4 unpackI10I10I10I2(uint32 const & v);
+ /// Returns an unsigned integer obtained by converting the components of a four-component signed integer vector
+ /// to the 10-10-10-2-bit signed integer representation found in the OpenGL Specification,
+ /// and then packing these four values into a 32-bit unsigned integer.
+ /// The first vector component specifies the 10 least-significant bits of the result;
+ /// the forth component specifies the 2 most-significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packI3x10_1x2(uvec4 const & v)
+ /// @see uint32 packSnorm3x10_1x2(vec4 const & v)
+ /// @see uint32 packUnorm3x10_1x2(vec4 const & v)
+ /// @see ivec4 unpackI3x10_1x2(uint32 const & p)
+ GLM_FUNC_DECL uint32 packI3x10_1x2(ivec4 const & v);
- GLM_FUNC_DECL uint32 packU10U10U10U2(uvec4 const & v);
- GLM_FUNC_DECL uvec4 unpackU10U10U10U2(uint32 const & v);
+ /// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit signed integers.
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packU3x10_1x2(uvec4 const & v)
+ /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p);
+ /// @see uvec4 unpackI3x10_1x2(uint32 const & p);
+ GLM_FUNC_DECL ivec4 unpackI3x10_1x2(uint32 const & p);
+ /// Returns an unsigned integer obtained by converting the components of a four-component unsigned integer vector
+ /// to the 10-10-10-2-bit unsigned integer representation found in the OpenGL Specification,
+ /// and then packing these four values into a 32-bit unsigned integer.
+ /// The first vector component specifies the 10 least-significant bits of the result;
+ /// the forth component specifies the 2 most-significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packI3x10_1x2(ivec4 const & v)
+ /// @see uint32 packSnorm3x10_1x2(vec4 const & v)
+ /// @see uint32 packUnorm3x10_1x2(vec4 const & v)
+ /// @see ivec4 unpackU3x10_1x2(uint32 const & p)
+ GLM_FUNC_DECL uint32 packU3x10_1x2(uvec4 const & v);
+
+ /// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit unsigned integers.
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packU3x10_1x2(uvec4 const & v)
+ /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p);
+ /// @see uvec4 unpackI3x10_1x2(uint32 const & p);
+ GLM_FUNC_DECL uvec4 unpackU3x10_1x2(uint32 const & p);
+
+ /// First, converts the first three components of the normalized floating-point value v into 10-bit signed integer values.
+ /// Then, converts the forth component of the normalized floating-point value v into 2-bit signed integer values.
+ /// Then, the results are packed into the returned 32-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packSnorm3x10_1x2(xyz): round(clamp(c, -1, +1) * 511.0)
+ /// packSnorm3x10_1x2(w): round(clamp(c, -1, +1) * 1.0)
+ ///
+ /// The first vector component specifies the 10 least-significant bits of the result;
+ /// the forth component specifies the 2 most-significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see vec4 unpackSnorm3x10_1x2(uint32 const & p)
+ /// @see uint32 packUnorm3x10_1x2(vec4 const & v)
+ /// @see uint32 packU3x10_1x2(uvec4 const & v)
+ /// @see uint32 packI3x10_1x2(ivec4 const & v)
GLM_FUNC_DECL uint32 packSnorm3x10_1x2(vec4 const & v);
- GLM_FUNC_DECL vec4 unpackSnorm3x10_1x2(uint32 const & v);
- GLM_FUNC_DECL uint32 packF11F11F10(vec3 const & v);
- GLM_FUNC_DECL vec3 unpackF11F11F10(uint32 const & v);
+ /// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackSnorm3x10_1x2(xyz): clamp(f / 511.0, -1, +1)
+ /// unpackSnorm3x10_1x2(w): clamp(f / 511.0, -1, +1)
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packSnorm3x10_1x2(vec4 const & v)
+ /// @see vec4 unpackUnorm3x10_1x2(uint32 const & p))
+ /// @see uvec4 unpackI3x10_1x2(uint32 const & p)
+ /// @see uvec4 unpackU3x10_1x2(uint32 const & p)
+ GLM_FUNC_DECL vec4 unpackSnorm3x10_1x2(uint32 const & p);
+
+ /// First, converts the first three components of the normalized floating-point value v into 10-bit unsigned integer values.
+ /// Then, converts the forth component of the normalized floating-point value v into 2-bit signed uninteger values.
+ /// Then, the results are packed into the returned 32-bit unsigned integer.
+ ///
+ /// The conversion for component c of v to fixed point is done as follows:
+ /// packUnorm3x10_1x2(xyz): round(clamp(c, 0, +1) * 1023.0)
+ /// packUnorm3x10_1x2(w): round(clamp(c, 0, +1) * 3.0)
+ ///
+ /// The first vector component specifies the 10 least-significant bits of the result;
+ /// the forth component specifies the 2 most-significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see vec4 unpackUnorm3x10_1x2(uint32 const & p)
+ /// @see uint32 packUnorm3x10_1x2(vec4 const & v)
+ /// @see uint32 packU3x10_1x2(uvec4 const & v)
+ /// @see uint32 packI3x10_1x2(ivec4 const & v)
+ GLM_FUNC_DECL uint32 packUnorm3x10_1x2(vec4 const & v);
+
+ /// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers.
+ /// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector.
+ ///
+ /// The conversion for unpacked fixed-point value f to floating point is done as follows:
+ /// unpackSnorm3x10_1x2(xyz): clamp(f / 1023.0, 0, +1)
+ /// unpackSnorm3x10_1x2(w): clamp(f / 3.0, 0, +1)
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packSnorm3x10_1x2(vec4 const & v)
+ /// @see vec4 unpackInorm3x10_1x2(uint32 const & p))
+ /// @see uvec4 unpackI3x10_1x2(uint32 const & p)
+ /// @see uvec4 unpackU3x10_1x2(uint32 const & p)
+ GLM_FUNC_DECL vec4 unpackUnorm3x10_1x2(uint32 const & p);
+
+ /// First, converts the first two components of the normalized floating-point value v into 11-bit signless floating-point values.
+ /// Then, converts the third component of the normalized floating-point value v into a 10-bit signless floating-point value.
+ /// Then, the results are packed into the returned 32-bit unsigned integer.
+ ///
+ /// The first vector component specifies the 11 least-significant bits of the result;
+ /// the last component specifies the 10 most-significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see vec3 unpackF2x11_1x10(uint32 const & p)
+ GLM_FUNC_DECL uint32 packF2x11_1x10(vec3 const & v);
+
+ /// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value .
+ /// Then, each component is converted to a normalized floating-point value to generate the returned three-component vector.
+ ///
+ /// The first component of the returned vector will be extracted from the least significant bits of the input;
+ /// the last component will be extracted from the most significant bits.
+ ///
+ /// @see gtc_packing
+ /// @see uint32 packF2x11_1x10(vec3 const & v)
+ GLM_FUNC_DECL vec3 unpackF2x11_1x10(uint32 const & p);
/// @}
}// namespace glm
diff --git a/glm/gtc/packing.inl b/glm/gtc/packing.inl
index 9b078dad..d67cad09 100644
--- a/glm/gtc/packing.inl
+++ b/glm/gtc/packing.inl
@@ -26,8 +26,7 @@
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
-namespace glm
-{
+namespace glm{
namespace detail
{
glm::uint16 float2half(glm::uint32 const & f)
@@ -48,7 +47,7 @@ namespace detail
((f >> 13) & 0x03ff); // Mantissa
}
- glm::uint16 float2packed11(glm::uint32 const & f)
+ glm::uint32 float2packed11(glm::uint32 const & f)
{
// 10 bits => EE EEEFFFFF
// 11 bits => EEE EEFFFFFF
@@ -62,11 +61,29 @@ namespace detail
// 0x7f800000 => 01111111 10000000 00000000 00000000
// 0x00008000 => 00000000 00000000 10000000 00000000
return
- ((((f & 0x7f800000) - 0x38000000) >> 17) & 0x07c0) | // exponential
- ((f >> 17) & 0x003f); // Mantissa
+ ((((f & 0x7f800000) - 0x38000000) >> 17) & 0x07c0) | // exponential
+ ((f >> 17) & 0x003f); // Mantissa
}
- glm::uint float2packed10(glm::uint const & f)
+ glm::uint32 packed11ToFloat(glm::uint32 const & p)
+ {
+ // 10 bits => EE EEEFFFFF
+ // 11 bits => EEE EEFFFFFF
+ // Half bits => SEEEEEFF FFFFFFFF
+ // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
+
+ // 0x000007c0 => 00000000 00000000 00000111 11000000
+ // 0x00007c00 => 00000000 00000000 01111100 00000000
+ // 0x000003ff => 00000000 00000000 00000011 11111111
+ // 0x38000000 => 00111000 00000000 00000000 00000000
+ // 0x7f800000 => 01111111 10000000 00000000 00000000
+ // 0x00008000 => 00000000 00000000 10000000 00000000
+ return
+ ((((p & 0x07c0) << 17) + 0x38000000) & 0x7f800000) | // exponential
+ ((p & 0x003f) << 17); // Mantissa
+ }
+
+ glm::uint32 float2packed10(glm::uint32 const & f)
{
// 10 bits => EE EEEFFFFF
// 11 bits => EEE EEFFFFFF
@@ -83,10 +100,31 @@ namespace detail
// 0x7f800000 => 01111111 10000000 00000000 00000000
// 0x00008000 => 00000000 00000000 10000000 00000000
return
- ((((f & 0x7f800000) - 0x38000000) >> 18) & 0x03E0) | // exponential
- ((f >> 18) & 0x001f); // Mantissa
+ ((((f & 0x7f800000) - 0x38000000) >> 18) & 0x03E0) | // exponential
+ ((f >> 18) & 0x001f); // Mantissa
}
+ glm::uint32 packed10ToFloat(glm::uint32 const & p)
+ {
+ // 10 bits => EE EEEFFFFF
+ // 11 bits => EEE EEFFFFFF
+ // Half bits => SEEEEEFF FFFFFFFF
+ // Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
+
+ // 0x0000001F => 00000000 00000000 00000000 00011111
+ // 0x0000003F => 00000000 00000000 00000000 00111111
+ // 0x000003E0 => 00000000 00000000 00000011 11100000
+ // 0x000007C0 => 00000000 00000000 00000111 11000000
+ // 0x00007C00 => 00000000 00000000 01111100 00000000
+ // 0x000003FF => 00000000 00000000 00000011 11111111
+ // 0x38000000 => 00111000 00000000 00000000 00000000
+ // 0x7f800000 => 01111111 10000000 00000000 00000000
+ // 0x00008000 => 00000000 00000000 10000000 00000000
+ return
+ ((((p & 0x03E0) << 18) + 0x38000000) & 0x7f800000) | // exponential
+ ((p & 0x001f) << 18); // Mantissa
+ }
+
glm::uint half2float(glm::uint const & h)
{
return ((h & 0x8000) << 16) | ((( h & 0x7c00) + 0x1C000) << 13) | ((h & 0x03FF) << 13);
@@ -112,6 +150,20 @@ namespace detail
return float2packed11(Union.i);
}
+ float packed11bitToFloat(glm::uint x)
+ {
+ if(x == 0)
+ return 0.0f;
+ else if(x == ((1 << 11) - 1))
+ return ~0;//NaN
+ else if(x == (0x1f << 6))
+ return ~0;//Inf
+
+ uif Union;
+ Union.i = packed11ToFloat(x);
+ return Union.f;
+ }
+
glm::uint floatTo10bit(float x)
{
if(x == 0.0f)
@@ -125,6 +177,20 @@ namespace detail
Union.f = x;
return float2packed10(Union.i);
}
+
+ float packed10bitToFloat(glm::uint x)
+ {
+ if(x == 0)
+ return 0.0f;
+ else if(x == ((1 << 10) - 1))
+ return ~0;//NaN
+ else if(x == (0x1f << 5))
+ return ~0;//Inf
+
+ uif Union;
+ Union.i = packed10ToFloat(x);
+ return Union.f;
+ }
glm::uint f11_f11_f10(float x, float y, float z)
{
@@ -191,6 +257,24 @@ namespace detail
uint16 pack;
};
+ union half4x16
+ {
+ struct
+ {
+ hdata x;
+ hdata y;
+ hdata z;
+ hdata w;
+ } data;
+ uint64 pack;
+ };
+
+ union unorm1x8
+ {
+ uint8 data;
+ uint8 pack;
+ };
+
union unorm2x8
{
struct
@@ -201,6 +285,12 @@ namespace detail
uint16 pack;
};
+ union snorm1x8
+ {
+ int8 data;
+ uint8 pack;
+ };
+
union snorm2x8
{
struct
@@ -212,6 +302,72 @@ namespace detail
};
}//namespace detail
+ GLM_FUNC_QUALIFIER uint8 packUnorm1x8(float const & v)
+ {
+ int8 Scaled(round(clamp(v ,-1.0f, 1.0f) * 255.0f));
+ detail::unorm1x8 Packing;
+ Packing.data = Scaled;
+ return Packing.pack;
+ }
+
+ GLM_FUNC_QUALIFIER float unpackUnorm1x8(uint8 p)
+ {
+ detail::unorm1x8 Packing;
+ Packing.pack = p;
+ float Unpacked(Packing.data);
+ return Unpacked * float(0.0039215686274509803921568627451);
+ }
+
+ GLM_FUNC_QUALIFIER uint16 packUnorm2x8(vec2 const & v)
+ {
+ i8vec2 Scaled(round(clamp(v ,-1.0f, 1.0f) * 255.0f));
+ detail::unorm2x8 Packing;
+ Packing.data.x = Scaled.x;
+ Packing.data.y = Scaled.y;
+ return Packing.pack;
+ }
+
+ GLM_FUNC_QUALIFIER vec2 unpackUnorm2x8(uint16 p)
+ {
+ detail::unorm2x8 Packing;
+ Packing.pack = p;
+ vec2 Unpacked(Packing.data.x, Packing.data.y);
+ return Unpacked * float(0.0039215686274509803921568627451);
+ }
+
+ GLM_FUNC_QUALIFIER uint8 packSnorm1x8(float const & v)
+ {
+ glm::int8 Scaled(round(clamp(v ,-1.0f, 1.0f) * 127.0f));
+ detail::snorm1x8 Packing;
+ Packing.data = Scaled;
+ return Packing.pack;
+ }
+
+ GLM_FUNC_QUALIFIER float unpackSnorm1x8(uint8 p)
+ {
+ detail::snorm1x8 Packing;
+ Packing.pack = p;
+ float Unpacked(Packing.data);
+ return clamp(Unpacked * float(0.00787401574803149606299212598425), -1.0f, 1.0f);
+ }
+
+ GLM_FUNC_QUALIFIER uint16 packSnorm2x8(vec2 const & v)
+ {
+ glm::i8vec2 Scaled(round(clamp(v ,-1.0f, 1.0f) * 127.0f));
+ detail::snorm2x8 Packing;
+ Packing.data.x = Scaled.x;
+ Packing.data.y = Scaled.y;
+ return Packing.pack;
+ }
+
+ GLM_FUNC_QUALIFIER vec2 unpackSnorm2x8(uint16 p)
+ {
+ detail::snorm2x8 Packing;
+ Packing.pack = p;
+ vec2 Unpacked(Packing.data.x, Packing.data.y);
+ return clamp(Unpacked * float(0.00787401574803149606299212598425), -1.0f, 1.0f);
+ }
+
GLM_FUNC_QUALIFIER uint16 packUnorm1x16(float s)
{
return uint16(round(clamp(s, 0.0f, 1.0f) * 65535.0f));
@@ -242,6 +398,7 @@ namespace detail
float(Packing.data.z),
float(Packing.data.w));
Result *= float(1.5259021896696421759365224689097e-5); // 1.0 / 65535.0
+ return Result;
}
GLM_FUNC_QUALIFIER uint16 packSnorm1x16(float v)
@@ -278,40 +435,6 @@ namespace detail
return clamp(Unpacked * float(3.0518509475997192297128208258309e-5), -1.0f, 1.0f); //1.0f / 32767.0f
}
- GLM_FUNC_QUALIFIER uint16 packUnorm2x8(vec2 const & v)
- {
- i8vec2 Scaled(round(clamp(v ,-1.0f, 1.0f) * 255.0f));
- detail::unorm2x8 Packing;
- Packing.data.x = Scaled.x;
- Packing.data.y = Scaled.y;
- return Packing.pack;
- }
-
- GLM_FUNC_QUALIFIER vec2 unpackUnorm2x8(uint16 p)
- {
- detail::unorm2x8 Packing;
- Packing.pack = p;
- vec2 Unpacked(Packing.data.x, Packing.data.y);
- return Unpacked * float(0.0039215686274509803921568627451);
- }
-
- GLM_FUNC_QUALIFIER uint16 packSnorm2x8(vec2 const & v)
- {
- glm::i8vec2 Scaled(round(clamp(v ,-1.0f, 1.0f) * 127.0f));
- detail::snorm2x8 Packing;
- Packing.data.x = Scaled.x;
- Packing.data.y = Scaled.y;
- return Packing.pack;
- }
-
- GLM_FUNC_QUALIFIER vec2 unpackSnorm2x8(uint16 p)
- {
- detail::snorm2x8 Packing;
- Packing.pack = p;
- vec2 Unpacked(Packing.data.x, Packing.data.y);
- return clamp(Unpacked * float(0.00787401574803149606299212598425), -1.0f, 1.0f);
- }
-
GLM_FUNC_DECL uint16 packHalf1x16(float const & v)
{
detail::half1x16 Packing;
@@ -326,7 +449,28 @@ namespace detail
return detail::toFloat32(Packing.data);
}
- GLM_FUNC_QUALIFIER uint32 packI10I10I10I2(ivec4 const & v)
+ GLM_FUNC_DECL uint64 packHalf4x16(glm::vec4 const & v)
+ {
+ detail::half4x16 Packing;
+ Packing.data.x = detail::toFloat16(v.x);
+ Packing.data.y = detail::toFloat16(v.y);
+ Packing.data.z = detail::toFloat16(v.z);
+ Packing.data.w = detail::toFloat16(v.w);
+ return Packing.pack;
+ }
+
+ GLM_FUNC_DECL glm::vec4 unpackHalf4x16(uint64 const & v)
+ {
+ detail::half4x16 Packing;
+ Packing.pack = v;
+ return glm::vec4(
+ detail::toFloat32(Packing.data.x),
+ detail::toFloat32(Packing.data.y),
+ detail::toFloat32(Packing.data.z),
+ detail::toFloat32(Packing.data.w));
+ }
+
+ GLM_FUNC_QUALIFIER uint32 packI3x10_1x2(ivec4 const & v)
{
detail::i10i10i10i2 Result;
Result.data.x = v.x;
@@ -336,7 +480,7 @@ namespace detail
return Result.pack;
}
- GLM_FUNC_QUALIFIER ivec4 unpackI10I10I10I2(uint32 const & v)
+ GLM_FUNC_QUALIFIER ivec4 unpackI3x10_1x2(uint32 const & v)
{
detail::i10i10i10i2 Unpack;
Unpack.pack = v;
@@ -347,7 +491,7 @@ namespace detail
Unpack.data.w);
}
- GLM_FUNC_QUALIFIER uint32 packU10U10U10U2(uvec4 const & v)
+ GLM_FUNC_QUALIFIER uint32 packU3x10_1x2(uvec4 const & v)
{
detail::u10u10u10u2 Result;
Result.data.x = v.x;
@@ -357,7 +501,7 @@ namespace detail
return Result.pack;
}
- GLM_FUNC_QUALIFIER uvec4 unpackU10U10U10U2(uint32 const & v)
+ GLM_FUNC_QUALIFIER uvec4 unpackU3x10_1x2(uint32 const & v)
{
detail::u10u10u10u2 Unpack;
Unpack.pack = v;
@@ -371,10 +515,10 @@ namespace detail
GLM_FUNC_QUALIFIER uint32 packSnorm3x10_1x2(vec4 const & v)
{
detail::i10i10i10i2 Result;
- Result.data.x = int(v.x * 511.f);
- Result.data.y = int(v.y * 511.f);
- Result.data.z = int(v.z * 511.f);
- Result.data.w = int(v.w * 1.f);
+ Result.data.x = int(round(clamp(v.x,-1.0f, 1.0f) * 511.f));
+ Result.data.y = int(round(clamp(v.y,-1.0f, 1.0f) * 511.f));
+ Result.data.z = int(round(clamp(v.z,-1.0f, 1.0f) * 511.f));
+ Result.data.w = int(round(clamp(v.w,-1.0f, 1.0f) * 1.f));
return Result.pack;
}
@@ -383,14 +527,36 @@ namespace detail
detail::i10i10i10i2 Unpack;
Unpack.pack = v;
vec4 Result;
- Result.x = float(Unpack.data.x) / 511.f;
- Result.y = float(Unpack.data.y) / 511.f;
- Result.z = float(Unpack.data.z) / 511.f;
- Result.w = float(Unpack.data.w) / 1.f;
+ Result.x = clamp(float(Unpack.data.x) / 511.f, -1.0f, 1.0f);
+ Result.y = clamp(float(Unpack.data.y) / 511.f, -1.0f, 1.0f);
+ Result.z = clamp(float(Unpack.data.z) / 511.f, -1.0f, 1.0f);
+ Result.w = clamp(float(Unpack.data.w) / 1.f, -1.0f, 1.0f);
return Result;
}
- GLM_FUNC_QUALIFIER uint32 packF11F11F10(vec3 const & v)
+ GLM_FUNC_QUALIFIER uint32 packUnorm3x10_1x2(vec4 const & v)
+ {
+ detail::i10i10i10i2 Result;
+ Result.data.x = int(round(clamp(v.x, 0.0f, 1.0f) * 1023.f));
+ Result.data.y = int(round(clamp(v.y, 0.0f, 1.0f) * 1023.f));
+ Result.data.z = int(round(clamp(v.z, 0.0f, 1.0f) * 1023.f));
+ Result.data.w = int(round(clamp(v.w, 0.0f, 1.0f) * 3.f));
+ return Result.pack;
+ }
+
+ GLM_FUNC_QUALIFIER vec4 unpackUnorm3x10_1x2(uint32 const & v)
+ {
+ detail::i10i10i10i2 Unpack;
+ Unpack.pack = v;
+ vec4 Result;
+ Result.x = float(Unpack.data.x) / 1023.f;
+ Result.y = float(Unpack.data.y) / 1023.f;
+ Result.z = float(Unpack.data.z) / 1023.f;
+ Result.w = float(Unpack.data.w) / 3.f;
+ return Result;
+ }
+
+ GLM_FUNC_QUALIFIER uint32 packF2x11_1x10(vec3 const & v)
{
return
((detail::floatTo11bit(v.x) & ((1 << 11) - 1)) << 0) |
@@ -398,9 +564,12 @@ namespace detail
((detail::floatTo10bit(v.z) & ((1 << 10) - 1)) << 22);
}
- GLM_FUNC_QUALIFIER vec3 unpackF11F11F10(uint32 const & v)
+ GLM_FUNC_QUALIFIER vec3 unpackF2x11_1x10(uint32 const & v)
{
-
+ return vec3(
+ detail::packed11bitToFloat(v >> 0),
+ detail::packed11bitToFloat(v >> 11),
+ detail::packed10bitToFloat(v >> 22));
}
}//namespace glm
diff --git a/glm/gtc/type_ptr.inl b/glm/gtc/type_ptr.inl
index 6b3e1ac0..e2276d8c 100644
--- a/glm/gtc/type_ptr.inl
+++ b/glm/gtc/type_ptr.inl
@@ -286,22 +286,11 @@ namespace glm
//! Return the address to the data of the matrix input.
/// @see gtc_type_ptr
- template
- GLM_FUNC_QUALIFIER T * value_ptr(detail::tmat4x3 & mat)
+ template
+ GLM_FUNC_QUALIFIER T * value_ptr(detail::tmat4x3 & mat)
{
return &(mat[0].x);
}
-
- /// Return the constant address to the data of the quaternion input.
- /// @see gtc_type_ptr
- template
- GLM_FUNC_QUALIFIER T * value_ptr
- (
- detail::tquat & q
- )
- {
- return &(q[0]);
- }
//! Return the constant address to the data of the input parameter.
/// @see gtc_type_ptr
@@ -316,10 +305,10 @@ namespace glm
//! Return the address to the data of the quaternion input.
/// @see gtc_type_ptr
- template
+ template
GLM_FUNC_QUALIFIER T * value_ptr
(
- detail::tquat & q
+ detail::tquat & q
)
{
return &(q[0]);
diff --git a/test/gtc/gtc_packing.cpp b/test/gtc/gtc_packing.cpp
index bd401792..b3d83739 100644
--- a/test/gtc/gtc_packing.cpp
+++ b/test/gtc/gtc_packing.cpp
@@ -26,10 +26,10 @@
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
-
#include
#include
#include
+#include
void print_bits(glm::half const & s)
{
@@ -133,11 +133,185 @@ int test_half()
return Error;
}
+int test_Half1x16()
+{
+ int Error = 0;
+
+ std::vector Tests;
+ Tests.push_back(0.0f);
+ Tests.push_back(1.0f);
+ Tests.push_back(-1.0f);
+ Tests.push_back(2.0f);
+ Tests.push_back(-2.0f);
+ Tests.push_back(1.9f);
+
+ for(std::size_t i = 0; i < Tests.size(); ++i)
+ {
+ glm::uint32 p0 = glm::packHalf1x16(Tests[i]);
+ float v0 = glm::unpackHalf1x16(p0);
+ glm::uint32 p1 = glm::packHalf1x16(v0);
+ float v1 = glm::unpackHalf1x16(p0);
+ Error += (v0 == v1) ? 0 : 1;
+ }
+
+ return Error;
+}
+
+int test_Half4x16()
+{
+ int Error = 0;
+
+ std::vector Tests;
+ Tests.push_back(glm::vec4(1.0));
+ Tests.push_back(glm::vec4(0.0));
+ Tests.push_back(glm::vec4(2.0));
+ Tests.push_back(glm::vec4(0.1));
+ Tests.push_back(glm::vec4(0.5));
+ Tests.push_back(glm::vec4(-0.9));
+
+ for(std::size_t i = 0; i < Tests.size(); ++i)
+ {
+ glm::uint64 p0 = glm::packHalf4x16(Tests[i]);
+ glm::vec4 v0 = glm::unpackHalf4x16(p0);
+ glm::uint64 p1 = glm::packHalf4x16(v0);
+ glm::vec4 v1 = glm::unpackHalf4x16(p0);
+ Error += glm::all(glm::equal(v0, v1)) ? 0 : 1;
+ }
+
+ return Error;
+}
+
+int test_I3x10_1x2()
+{
+ int Error = 0;
+
+ std::vector Tests;
+ Tests.push_back(glm::ivec4(0));
+ Tests.push_back(glm::ivec4(1));
+ Tests.push_back(glm::ivec4(-1));
+ Tests.push_back(glm::ivec4(2));
+ Tests.push_back(glm::ivec4(-2));
+ Tests.push_back(glm::ivec4(3));
+
+ for(std::size_t i = 0; i < Tests.size(); ++i)
+ {
+ glm::uint32 p0 = glm::packI3x10_1x2(Tests[i]);
+ glm::ivec4 v0 = glm::unpackI3x10_1x2(p0);
+ glm::uint32 p1 = glm::packI3x10_1x2(v0);
+ glm::ivec4 v1 = glm::unpackI3x10_1x2(p0);
+ Error += glm::all(glm::equal(v0, v1)) ? 0 : 1;
+ }
+
+ return Error;
+}
+
+int test_U3x10_1x2()
+{
+ int Error = 0;
+
+ std::vector Tests;
+ Tests.push_back(glm::uvec4(0));
+ Tests.push_back(glm::uvec4(1));
+ Tests.push_back(glm::uvec4(2));
+ Tests.push_back(glm::uvec4(3));
+ Tests.push_back(glm::uvec4(4));
+ Tests.push_back(glm::uvec4(5));
+
+ for(std::size_t i = 0; i < Tests.size(); ++i)
+ {
+ glm::uint32 p0 = glm::packU3x10_1x2(Tests[i]);
+ glm::uvec4 v0 = glm::unpackU3x10_1x2(p0);
+ glm::uint32 p1 = glm::packU3x10_1x2(v0);
+ glm::uvec4 v1 = glm::unpackU3x10_1x2(p0);
+ Error += glm::all(glm::equal(v0, v1)) ? 0 : 1;
+ }
+
+ return Error;
+}
+
+int test_Snorm3x10_1x2()
+{
+ int Error = 0;
+
+ std::vector Tests;
+ Tests.push_back(glm::vec4(1.0));
+ Tests.push_back(glm::vec4(0.0));
+ Tests.push_back(glm::vec4(2.0));
+ Tests.push_back(glm::vec4(0.1));
+ Tests.push_back(glm::vec4(0.5));
+ Tests.push_back(glm::vec4(0.9));
+
+ for(std::size_t i = 0; i < Tests.size(); ++i)
+ {
+ glm::uint32 p0 = glm::packSnorm3x10_1x2(Tests[i]);
+ glm::vec4 v0 = glm::unpackSnorm3x10_1x2(p0);
+ glm::uint32 p1 = glm::packSnorm3x10_1x2(v0);
+ glm::vec4 v1 = glm::unpackSnorm3x10_1x2(p0);
+ Error += glm::all(glm::equal(v0, v1)) ? 0 : 1;
+ }
+
+ return Error;
+}
+
+int test_Unorm3x10_1x2()
+{
+ int Error = 0;
+
+ std::vector Tests;
+ Tests.push_back(glm::vec4(1.0));
+ Tests.push_back(glm::vec4(0.0));
+ Tests.push_back(glm::vec4(2.0));
+ Tests.push_back(glm::vec4(0.1));
+ Tests.push_back(glm::vec4(0.5));
+ Tests.push_back(glm::vec4(0.9));
+
+ for(std::size_t i = 0; i < Tests.size(); ++i)
+ {
+ glm::uint32 p0 = glm::packSnorm3x10_1x2(Tests[i]);
+ glm::vec4 v0 = glm::unpackSnorm3x10_1x2(p0);
+ glm::uint32 p1 = glm::packSnorm3x10_1x2(v0);
+ glm::vec4 v1 = glm::unpackSnorm3x10_1x2(p0);
+ Error += glm::all(glm::equal(v0, v1)) ? 0 : 1;
+ }
+
+ return Error;
+}
+
+int test_F2x11_1x10()
+{
+ int Error = 0;
+
+ std::vector Tests;
+ Tests.push_back(glm::vec3(1.0));
+ Tests.push_back(glm::vec3(0.0));
+ Tests.push_back(glm::vec3(2.0));
+ Tests.push_back(glm::vec3(0.1));
+ Tests.push_back(glm::vec3(0.5));
+ Tests.push_back(glm::vec3(0.9));
+
+ for(std::size_t i = 0; i < Tests.size(); ++i)
+ {
+ glm::uint32 p0 = glm::packF2x11_1x10(Tests[i]);
+ glm::vec3 v0 = glm::unpackF2x11_1x10(p0);
+ glm::uint32 p1 = glm::packF2x11_1x10(v0);
+ glm::vec3 v1 = glm::unpackF2x11_1x10(p0);
+ Error += glm::all(glm::equal(v0, v1)) ? 0 : 1;
+ }
+
+ return Error;
+}
+
int main()
{
int Error(0);
- Error += test_half();
+ Error += test_F2x11_1x10();
+ Error += test_Snorm3x10_1x2();
+ Error += test_Unorm3x10_1x2();
+ Error += test_I3x10_1x2();
+ Error += test_U3x10_1x2();
+ Error += test_Half1x16();
+ Error += test_U3x10_1x2();
return Error;
}