diff --git a/test/gtx/gtx_pca.cpp b/test/gtx/gtx_pca.cpp index eac7f8e5..4e3bb720 100644 --- a/test/gtx/gtx_pca.cpp +++ b/test/gtx/gtx_pca.cpp @@ -17,30 +17,38 @@ GLM_INLINE GLM_CONSTEXPR float myEpsilon() { return 0.00001f; } template<> GLM_INLINE GLM_CONSTEXPR double myEpsilon() { return 0.000001; } -template -T myEpsilon2(); -template<> -GLM_INLINE GLM_CONSTEXPR float myEpsilon2() { return 0.01f; } -template<> -GLM_INLINE GLM_CONSTEXPR double myEpsilon2() { return 0.000001; } - - template -bool vectorEpsilonEqual(glm::vec const& a, glm::vec const& b) +bool vectorEpsilonEqual(glm::vec const& a, glm::vec const& b, T epsilon) { for (int c = 0; c < D; ++c) - if (!glm::epsilonEqual(a[c], b[c], myEpsilon())) + if (!glm::epsilonEqual(a[c], b[c], epsilon)) + { + fprintf(stderr, "failing vectorEpsilonEqual: [%d] %lf != %lf (~%lf)\n", + c, + static_cast(a[c]), + static_cast(b[c]), + static_cast(epsilon) + ); return false; + } return true; } template -bool matrixEpsilonEqual(glm::mat const& a, glm::mat const& b) +bool matrixEpsilonEqual(glm::mat const& a, glm::mat const& b, T epsilon) { for (int c = 0; c < D; ++c) for (int r = 0; r < D; ++r) - if (!glm::epsilonEqual(a[c][r], b[c][r], myEpsilon())) + if (!glm::epsilonEqual(a[c][r], b[c][r], epsilon)) + { + fprintf(stderr, "failing vectorEpsilonEqual: [%d][%d] %lf != %lf (~%lf)\n", + c, r, + static_cast(a[c][r]), + static_cast(b[c][r]), + static_cast(epsilon) + ); return false; + } return true; } @@ -200,153 +208,123 @@ namespace _1aga outTestData[i][d] = static_cast(_1aga[i * 4 + d]); } - void getExpectedCovarDataPtr(const double*& ptr) + // All reference values computed separately using symbolic precision + // https://github.com/sgrottel/exp-pca-precision + // This applies to all functions named: `_1aga::expected*()` + + GLM_INLINE glm::dmat4 const& expectedCovarData() { - static const double _1agaCovar4x4d[] = { - 9.624340680272107, -0.000066573696146, -4.293213765684049, 0.018793741874528, - -0.000066573696146, 9.624439378684805, 5.351138726379443, -0.115692591458806, - -4.293213765684049, 5.351138726379443, 35.628485496346691, 0.908742392542202, - 0.018793741874528, -0.115692591458806, 0.908742392542202, 1.097059718568909 - }; - ptr = _1agaCovar4x4d; - } - void getExpectedCovarDataPtr(const float*& ptr) - { - // note: the value difference to `_1agaCovar4x4d` is due to the numeric error propagation during computation of the covariance matrix. - static const float _1agaCovar4x4f[] = { - 9.624336242675781f, -0.000066711785621f, -4.293214797973633f, 0.018793795257807f, - -0.000066711785621f, 9.624438285827637f, 5.351140022277832f, -0.115692682564259f, - -4.293214797973633f, 5.351140022277832f, 35.628479003906250f, 0.908742427825928f, - 0.018793795257807f, -0.115692682564259f, 0.908742427825928f, 1.097059369087219f - }; - ptr = _1agaCovar4x4f; + static const glm::dmat4 covar4x4d( + 9.62434068027210898322, -0.00006657369614512471, -4.29321376568405099761, 0.01879374187452758846, + -0.00006657369614512471, 9.62443937868480681175, 5.35113872637944076871, -0.11569259145880574080, + -4.29321376568405099761, 5.35113872637944076871, 35.62848549634668415820, 0.90874239254220201545, + 0.01879374187452758846, -0.11569259145880574080, 0.90874239254220201545, 1.09705971856890904803 + ); + return covar4x4d; } - template - int checkCovarMat(glm::mat const& covarMat) + template + GLM_INLINE glm::vec const& expectedEigenvalues(); + template<> + GLM_INLINE glm::dvec2 const& expectedEigenvalues<2>() { - const T* expectedCovarData = GLM_NULLPTR; - getExpectedCovarDataPtr(expectedCovarData); - for(glm::length_t x = 0; x < D; ++x) - for(glm::length_t y = 0; y < D; ++y) - if(!glm::equal(covarMat[y][x], expectedCovarData[x * 4 + y], myEpsilon())) - { - fprintf(stderr, "E: %.15lf != %.15lf ; diff: %.20lf\n", - static_cast(covarMat[y][x]), - static_cast(expectedCovarData[x * 4 + y]), - static_cast(covarMat[y][x] - expectedCovarData[x * 4 + y]) - ); - return failReport(__LINE__); - } - return 0; + static const glm::dvec2 evals2( + 9.62447289926297399961763301774251330057894539467032275382255, + 9.62430715969394210015560961264297422776572580714373620309355 + ); + return evals2; + } + template<> + GLM_INLINE glm::dvec3 const& expectedEigenvalues<3>() + { + static const glm::dvec3 evals3( + 37.3274494274683425233695502581182052836449738530676689472257, + 9.62431434161498823505729817436585077939509766554969096873168, + 7.92550178622027216422369326567668971675332732240052872097887 + ); + return evals3; + } + template<> + GLM_INLINE glm::dvec4 const& expectedEigenvalues<4>() + { + static const glm::dvec4 evals4( + 37.3477389918792213596879452204499702406947817221901007885630, + 9.62470688921105696017807313860277172063600080413412567999700, + 7.94017075281634999342344275928070533134615133171969063657713, + 1.06170863996588365446060186982477896078741484440002343404155 + ); + return evals4; } - template void getExpectedEigenvaluesEigenvectorsDataPtr(const T*& evals, const T*& evecs); - template<> void getExpectedEigenvaluesEigenvectorsDataPtr<2, float>(const float*& evals, const float*& evecs) + template + GLM_INLINE glm::mat const& expectedEigenvectors(); + template<> + GLM_INLINE glm::dmat2 const& expectedEigenvectors<2>() { - static const float expectedEvals[] = { - 9.624471664428711f, 9.624302864074707f - }; - static const float expectedEvecs[] = { - -0.443000972270966f, 0.896521151065826f, - 0.896521151065826f, 0.443000972270966f - }; - evals = expectedEvals; - evecs = expectedEvecs; + static const glm::dmat2 evecs2( + glm::dvec2( + -0.503510847492551904906870957742619139443409162857537237123308, + 1 + ), + glm::dvec2( + 1.98605453086051402895741763848787613048533838388005162794043, + 1 + ) + ); + return evecs2; } - template<> void getExpectedEigenvaluesEigenvectorsDataPtr<2, double>(const double*& evals, const double*& evecs) + template<> + GLM_INLINE glm::dmat3 const& expectedEigenvectors<3>() { - static const double expectedEvals[] = { - 9.624472899262972, 9.624307159693940 - }; - static const double expectedEvecs[] = { - -0.449720461624363, 0.893169360421846, - 0.893169360421846, 0.449720461624363 - }; - evals = expectedEvals; - evecs = expectedEvecs; + static const glm::dmat3 evecs3( + glm::dvec3( + -0.154972738414395866005286433008304444294405085038689821864654, + 0.193161285869815165989799191097521722568079378840201629578695, + 1 + ), + glm::dvec3( + -158565.112775416943154745839952575022429933119522746586149868, + -127221.506282351944358932458687410410814983610301927832439675, + 1 + ), + glm::dvec3( + 2.52702248596556806145700361724323960543858113426446460406536, + -3.14959802931313870497377546974185300816008580801457419079412, + 1 + ) + ); + return evecs3; } - template<> void getExpectedEigenvaluesEigenvectorsDataPtr<3, float>(const float*& evals, const float*& evecs) + template<> + GLM_INLINE glm::dmat4 const& expectedEigenvectors<4>() { - static const float expectedEvals[] = { - 37.327442169189453f, 9.624311447143555f, 7.925499439239502f - }; - static const float expectedEvecs[] = { - -0.150428697466850f, 0.187497511506081f, 0.970678031444550f, - 0.779980957508087f, 0.625803351402283f, -0.000005212802080f, - 0.607454538345337f, -0.757109522819519f, 0.240383237600327f - }; - evals = expectedEvals; - evecs = expectedEvecs; - } - template<> void getExpectedEigenvaluesEigenvectorsDataPtr<3, double>(const double*& evals, const double*& evecs) - { - static const double expectedEvals[] = { - 37.327449427468345, 9.624314341614987, 7.925501786220276 - }; - static const double expectedEvecs[] = { - -0.150428640509585, 0.187497426513576, 0.970678082149394, - 0.779981605126846, 0.625802441381904, -0.000004919018357, - 0.607453635908278, -0.757110308615089, 0.240383154173870 - }; - evals = expectedEvals; - evecs = expectedEvecs; - } - template<> void getExpectedEigenvaluesEigenvectorsDataPtr<4, float>(const float*& evals, const float*& evecs) - { - static const float expectedEvals[] = { - 37.347740173339844f, 9.624703407287598f, 7.940164566040039f, 1.061712265014648f - }; - static const float expectedEvecs[] = { - -0.150269940495491f, 0.187220811843872f, 0.970467865467072f, 0.023652425035834f, - 0.779159665107727f, 0.626788496971130f, -0.000105984276161f, -0.006797631736845f, - 0.608242213726044f, -0.755563497543335f, 0.238818943500519f, 0.046158745884895f, - -0.019251370802522f, 0.034755907952785f, -0.034024771302938f, 0.998630762100220f, - }; - evals = expectedEvals; - evecs = expectedEvecs; - } - template<> void getExpectedEigenvaluesEigenvectorsDataPtr<4, double>(const double*& evals, const double*& evecs) - { - static const double expectedEvals[] = { - 37.347738991879226, 9.624706889211053, 7.940170752816341, 1.061708639965897 - }; - static const double expectedEvecs[] = { - -0.150269954805403, 0.187220917596058, 0.970467838469868, 0.023652551509145, - 0.779159831346545, 0.626788431871120, -0.000105940250315, -0.006797622027466, - 0.608241962267880, -0.755563776664248, 0.238818902950296, 0.046158707986616, - -0.019251317755512, 0.034755849578017, -0.034024915369495, 0.998630924225204, - }; - evals = expectedEvals; - evecs = expectedEvecs; - } - - template - int checkEigenvaluesEigenvectors( - glm::vec const& evals, - glm::mat const& evecs) - { - const T* expectedEvals = GLM_NULLPTR; - const T* expectedEvecs = GLM_NULLPTR; - getExpectedEigenvaluesEigenvectorsDataPtr(expectedEvals, expectedEvecs); - - for(int i = 0; i < D; ++i) - if(!glm::equal(evals[i], expectedEvals[i], myEpsilon())) - return failReport(__LINE__); - - for (int i = 0; i < D; ++i) - for (int d = 0; d < D; ++d) - if (!glm::equal(evecs[i][d], expectedEvecs[i * D + d], myEpsilon2())) - { - fprintf(stderr, "E: %.15lf != %.15lf ; diff: %.20lf\n", - static_cast(evecs[i][d]), - static_cast(expectedEvecs[i * D + d]), - static_cast(evecs[i][d] - expectedEvecs[i * D + d]) - ); - return failReport(__LINE__); - } - - return 0; + static const glm::dmat4 evecs4( + glm::dvec4( + -6.35322390281037045217295803597357821705371650876122113027264, + 7.91546394153385394517767054617789939529794642646629201212056, + 41.0301543819240679808549819457450130787045236815736490549663, + 1 + ), + glm::dvec4( + -114.622418941087829756565311692197154422302604224781253861297, + -92.2070185807065289900871215218752013659402949497379896153118, + 0.0155846091025912430932734548933329458404665760587569100867246, + 1 + ), + glm::dvec4( + 13.1771887761559019483954743159026938257325190511642952175789, + -16.3688257459634877666638419310116970616615816436949741766895, + 5.17386502341472097227408249233288958059579189051394773143190, + 1 + ), + glm::dvec4( + -0.0192777078948229800494895064532553117703859768210647632969276, + 0.0348034950916108873629241563077465542944938906271231198634442, + -0.0340715609308469289267379681032545422644143611273049912226126, + 1 + ) + ); + return evecs4; } } // namespace _1aga @@ -425,9 +403,9 @@ int testEigenvalueSort() }; // initial sanity check - if(!vectorEpsilonEqual(refVal, refVal)) + if(!vectorEpsilonEqual(refVal, refVal, myEpsilon())) return failReport(__LINE__); - if(!matrixEpsilonEqual(refVec, refVec)) + if(!matrixEpsilonEqual(refVec, refVec, myEpsilon())) return failReport(__LINE__); // Exhaustive search through all permutations @@ -443,9 +421,9 @@ int testEigenvalueSort() glm::sortEigenvalues(testVal, testVec); - if (!vectorEpsilonEqual(testVal, refVal)) + if (!vectorEpsilonEqual(testVal, refVal, myEpsilon())) return failReport(__LINE__); - if (!matrixEpsilonEqual(testVec, refVec)) + if (!matrixEpsilonEqual(testVec, refVec, myEpsilon())) return failReport(__LINE__); } @@ -473,7 +451,7 @@ int testCovar( vec center = computeCenter(testData); mat covarMat = glm::computeCovarianceMatrix(testData.data(), testData.size(), center); - if(_1aga::checkCovarMat(covarMat)) + if(!matrixEpsilonEqual(covarMat, mat(_1aga::expectedCovarData()), myEpsilon())) { fprintf(stderr, "Reconstructed covarMat:\n%s\n", glm::to_string(covarMat).c_str()); return failReport(__LINE__); @@ -505,27 +483,27 @@ int testCovar( mat c3 = glm::computeCovarianceMatrix(testData.data(), testData.size(), center); mat c4 = glm::computeCovarianceMatrix(testData.rbegin(), testData.rend(), center); - if(!matrixEpsilonEqual(c1, c2)) + if(!matrixEpsilonEqual(c1, c2, myEpsilon())) return failReport(__LINE__); - if(!matrixEpsilonEqual(c1, c3)) + if(!matrixEpsilonEqual(c1, c3, myEpsilon())) return failReport(__LINE__); - if(!matrixEpsilonEqual(c1, c4)) + if(!matrixEpsilonEqual(c1, c4, myEpsilon())) return failReport(__LINE__); #endif // GLM_HAS_CXX11_STL == 1 return 0; } +// Computes eigenvalues and eigenvectors from well-known covariance matrix template -int testEigenvectors() +int testEigenvectors(T epsilon) { typedef glm::vec vec; typedef glm::mat mat; // test expected result with fixed data set std::vector testData; - _1aga::fillTestData(testData); - vec center = computeCenter(testData); - mat covarMat = glm::computeCovarianceMatrix(testData.data(), testData.size(), center); + mat covarMat(_1aga::expectedCovarData()); + vec eigenvalues; mat eigenvectors; unsigned int c = glm::findEigenvaluesSymReal(covarMat, eigenvalues, eigenvectors); @@ -533,16 +511,25 @@ int testEigenvectors() return failReport(__LINE__); glm::sortEigenvalues(eigenvalues, eigenvectors); - if(_1aga::checkEigenvaluesEigenvectors(eigenvalues, eigenvectors) != 0) + if (!vectorEpsilonEqual(eigenvalues, vec(_1aga::expectedEigenvalues()), epsilon)) return failReport(__LINE__); + for (int i = 0; i < D; ++i) + { + vec act = glm::normalize(eigenvectors[i]); + vec exp = glm::normalize(_1aga::expectedEigenvectors()[i]); + if (glm::sign(act[0]) != glm::sign(exp[0])) exp = -exp; + if (!vectorEpsilonEqual(act, exp, epsilon)) + return failReport(__LINE__); + } + return 0; } -/// A simple small smoke test: -/// - a uniformly sampled block -/// - reconstruct main axes -/// - check order of eigenvalues equals order of extends of block in direction of main axes +// A simple small smoke test: +// - a uniformly sampled block +// - reconstruct main axes +// - check order of eigenvalues equals order of extends of block in direction of main axes int smokeTest() { using glm::vec3; @@ -579,11 +566,11 @@ int smokeTest() std::swap(eVec[1], eVec[2]); } - if(!vectorEpsilonEqual(glm::abs(eVec[0]), vec3(0, 1, 0))) + if(!vectorEpsilonEqual(glm::abs(eVec[0]), vec3(0, 1, 0), myEpsilon())) return failReport(__LINE__); - if(!vectorEpsilonEqual(glm::abs(eVec[1]), vec3(1, 0, 0))) + if(!vectorEpsilonEqual(glm::abs(eVec[1]), vec3(1, 0, 0), myEpsilon())) return failReport(__LINE__); - if(!vectorEpsilonEqual(glm::abs(eVec[2]), vec3(0, 0, 1))) + if(!vectorEpsilonEqual(glm::abs(eVec[2]), vec3(0, 0, 1), myEpsilon())) return failReport(__LINE__); return 0; @@ -615,14 +602,9 @@ int rndTest(unsigned int randomEngineSeed) glm::dvec3 z = glm::normalize(glm::cross(x, y)); y = glm::normalize(glm::cross(z, x)); - //printf("\n"); - //printf("x: %.10lf, %.10lf, %.10lf\n", x.x, x.y, x.z); - //printf("y: %.10lf, %.10lf, %.10lf\n", y.x, y.y, y.z); - //printf("z: %.10lf, %.10lf, %.10lf\n", z.x, z.y, z.z); - // generate input point data std::vector ptData; - static const int patters[] = { + static const int pattern[] = { 8, 0, 0, 4, 1, 2, 0, 2, 0, @@ -635,9 +617,9 @@ int rndTest(unsigned int randomEngineSeed) for(int zs = 1; zs >= -1; zs -= 2) ptData.push_back( offset - + x * static_cast(patters[p * 3 + 0] * xs) - + y * static_cast(patters[p * 3 + 1] * ys) - + z * static_cast(patters[p * 3 + 2] * zs)); + + x * static_cast(pattern[p * 3 + 0] * xs) + + y * static_cast(pattern[p * 3 + 1] * ys) + + z * static_cast(pattern[p * 3 + 2] * zs)); // perform PCA: glm::dvec3 center = computeCenter(ptData); @@ -649,16 +631,14 @@ int rndTest(unsigned int randomEngineSeed) return failReport(__LINE__); glm::sortEigenvalues(evals, evecs); - //printf("\n"); - //printf("evec0: %.10lf, %.10lf, %.10lf\n", evecs[0].x, evecs[0].y, evecs[0].z); - //printf("evec2: %.10lf, %.10lf, %.10lf\n", evecs[2].x, evecs[2].y, evecs[2].z); - //printf("evec1: %.10lf, %.10lf, %.10lf\n", evecs[1].x, evecs[1].y, evecs[1].z); - - if(glm::length(glm::abs(x) - glm::abs(evecs[0])) > myEpsilon()) + if (glm::sign(evecs[0][0]) != glm::sign(x[0])) evecs[0] = -evecs[0]; + if(!vectorEpsilonEqual(x, evecs[0], myEpsilon())) return failReport(__LINE__); - if(glm::length(glm::abs(y) - glm::abs(evecs[2])) > myEpsilon()) + if (glm::sign(evecs[2][0]) != glm::sign(y[0])) evecs[2] = -evecs[2]; + if (!vectorEpsilonEqual(y, evecs[2], myEpsilon())) return failReport(__LINE__); - if(glm::length(glm::abs(z) - glm::abs(evecs[1])) > myEpsilon()) + if (glm::sign(evecs[1][0]) != glm::sign(z[0])) evecs[1] = -evecs[1]; + if (!vectorEpsilonEqual(z, evecs[1], myEpsilon())) return failReport(__LINE__); return 0; @@ -707,17 +687,19 @@ int main() return error; // test PCA eigen vector reconstruction - if(testEigenvectors<2, float, glm::defaultp>() != 0) + // Expected epsilon precision evaluated separately: + // https://github.com/sgrottel/exp-pca-precision + if(testEigenvectors<2, float, glm::defaultp>(0.002f) != 0) error = failReport(__LINE__); - if(testEigenvectors<2, double, glm::defaultp>() != 0) + if(testEigenvectors<2, double, glm::defaultp>(0.00000000001) != 0) error = failReport(__LINE__); - if(testEigenvectors<3, float, glm::defaultp>() != 0) + if(testEigenvectors<3, float, glm::defaultp>(0.00001f) != 0) error = failReport(__LINE__); - if(testEigenvectors<3, double, glm::defaultp>() != 0) + if(testEigenvectors<3, double, glm::defaultp>(0.0000000001) != 0) error = failReport(__LINE__); - if(testEigenvectors<4, float, glm::defaultp>() != 0) + if(testEigenvectors<4, float, glm::defaultp>(0.0001f) != 0) error = failReport(__LINE__); - if(testEigenvectors<4, double, glm::defaultp>() != 0) + if(testEigenvectors<4, double, glm::defaultp>(0.0000001) != 0) error = failReport(__LINE__); if(error != 0) return error;