diff --git a/glm/gtx/bit.hpp b/glm/gtx/bit.hpp index eee9d0c4..57f2df0c 100644 --- a/glm/gtx/bit.hpp +++ b/glm/gtx/bit.hpp @@ -132,6 +132,30 @@ namespace glm int const & FromBit, int const & ToBit); + /// + /// @see gtx_bit + int16 bitfieldInterleave(int8 x, int8 y); + + /// + /// @see gtx_bit + uint16 bitfieldInterleave(uint8 x, uint8 y); + + /// + /// @see gtx_bit + int32 bitfieldInterleave(int16 x, int16 y); + + /// + /// @see gtx_bit + uint32 bitfieldInterleave(uint16 x, uint16 y); + + /// + /// @see gtx_bit + int64 bitfieldInterleave(int32 x, int32 y); + + /// + /// @see gtx_bit + uint64 bitfieldInterleave(uint32 x, uint32 y); + /// @} } //namespace glm diff --git a/glm/gtx/bit.inl b/glm/gtx/bit.inl index d305c52d..7e4890ca 100644 --- a/glm/gtx/bit.inl +++ b/glm/gtx/bit.inl @@ -597,4 +597,46 @@ namespace glm Result &= ~(1 << i); return Result; } + + namespace detail + { + template + inline RET bitfieldInterleave(PARAM x, PARAM y) + { + RET Result = 0; + for (int i = 0; i < sizeof(PARAM) * 8; i++) + Result |= (x & 1U << i) << i | (y & 1U << i) << (i + 1); + return Result; + } + }//namespace detail + + inline int16 bitfieldInterleave(int8 x, int8 y) + { + return detail::bitfieldInterleave(x, y); + } + + inline uint16 bitfieldInterleave(uint8 x, uint8 y) + { + return detail::bitfieldInterleave(x, y); + } + + inline int32 bitfieldInterleave(int16 x, int16 y) + { + return detail::bitfieldInterleave(x, y); + } + + inline uint32 bitfieldInterleave(uint16 x, uint16 y) + { + return detail::bitfieldInterleave(x, y); + } + + inline int64 bitfieldInterleave(int32 x, int32 y) + { + return detail::bitfieldInterleave(x, y); + } + + inline uint64 bitfieldInterleave(uint32 x, uint32 y) + { + return detail::bitfieldInterleave(x, y); + } }//namespace glm diff --git a/test/gtx/gtx_bit.cpp b/test/gtx/gtx_bit.cpp index ad1c386a..e862d2b0 100644 --- a/test/gtx/gtx_bit.cpp +++ b/test/gtx/gtx_bit.cpp @@ -11,6 +11,10 @@ #include #include #include +#include +#include + +#include enum result { @@ -162,10 +166,447 @@ namespace bitRevert } }//bitRevert +inline glm::uint64 fastBitfieldInterleave(glm::uint32 x, glm::uint32 y) +{ + glm::uint64 REG1; + glm::uint64 REG2; + + REG1 = x; + REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); + REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); + REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); + REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); + REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); + + REG2 = y; + REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); + REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); + REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); + REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); + REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); + + return REG1 | (REG2 << 1); +} + +inline glm::uint64 interleaveBitfieldInterleave(glm::uint32 x, glm::uint32 y) +{ + glm::uint64 REG1; + glm::uint64 REG2; + + REG1 = x; + REG2 = y; + + REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); + REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); + + REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); + REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); + + REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); + REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); + + REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); + REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); + + REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); + REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); + + return REG1 | (REG2 << 1); +} + +inline glm::uint64 loopBitfieldInterleave(glm::uint32 x, glm::uint32 y) +{ + static glm::uint64 const Mask[5] = + { + 0x5555555555555555, + 0x3333333333333333, + 0x0F0F0F0F0F0F0F0F, + 0x00FF00FF00FF00FF, + 0x0000FFFF0000FFFF + }; + + glm::uint64 REG1 = x; + glm::uint64 REG2 = y; + for(int i = 4; i >= 0; --i) + { + REG1 = ((REG1 << (1 << i)) | REG1) & Mask[i]; + REG2 = ((REG2 << (1 << i)) | REG2) & Mask[i]; + } + + return REG1 | (REG2 << 1); +} + +/* +const int N = 1024; + +int32_t b1[N]; // 2 x arrays of input bit sets +int32_t b2[N]; +int32_t b3[N]; // 1 x array of output bit sets + +for (int i = 0; i < N; i += 4) +{ + __m128i v1 = _mm_loadu_si128(&b1[i]); // load input bits sets + __m128i v2 = _mm_loadu_si128(&b2[i]); + __m128i v3 = _mm_and_si128(v1, v2); // do the bitwise AND + _mm_storeu_si128(&b3[i], v3); // store the result +} +If you just want to AND an array in-place with a fixed mask then it would simplify to this: + +const int N = 1024; + +int32_t b1[N]; // input/output array of bit sets + +const __m128i v2 = _mm_set1_epi32(0x12345678); // mask + +for (int i = 0; i < N; i += 4) +{ + __m128i v1 = _mm_loadu_si128(&b1[i]); // load input bits sets + __m128i v3 = _mm_and_si128(v1, v2); // do the bitwise AND + _mm_storeu_si128(&b1[i], v3); // store the result +} +Note: for better performance make sure your input/output arrays are 16 byte aligned and then use _mm_load_si128/_mm_store_si128 rather than their unaligned counterparts as above. +*/ + +inline glm::uint64 sseBitfieldInterleave(glm::uint32 x, glm::uint32 y) +{ + GLM_ALIGN(16) glm::uint32 const Array[4] = {x, 0, y, 0}; + + __m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); + __m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); + __m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); + __m128i const Mask1 = _mm_set1_epi32(0x33333333); + __m128i const Mask0 = _mm_set1_epi32(0x55555555); + + __m128i Reg1; + __m128i Reg2; + + // REG1 = x; + // REG2 = y; + Reg1 = _mm_load_si128((__m128i*)Array); + + //REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); + //REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); + Reg2 = _mm_slli_si128(Reg1, 2); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask4); + + //REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); + //REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); + Reg2 = _mm_slli_si128(Reg1, 1); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask3); + + //REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); + //REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); + Reg2 = _mm_slli_epi32(Reg1, 4); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask2); + + //REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); + //REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); + Reg2 = _mm_slli_epi32(Reg1, 2); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask1); + + //REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); + //REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); + Reg2 = _mm_slli_epi32(Reg1, 1); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask0); + + //return REG1 | (REG2 << 1); + Reg2 = _mm_slli_epi32(Reg1, 1); + Reg2 = _mm_srli_si128(Reg2, 8); + Reg1 = _mm_or_si128(Reg1, Reg2); + + GLM_ALIGN(16) glm::uint64 Result[2]; + _mm_store_si128((__m128i*)Result, Reg1); + + return Result[0]; +} + +inline glm::uint64 sseUnalignedBitfieldInterleave(glm::uint32 x, glm::uint32 y) +{ + glm::uint32 const Array[4] = {x, 0, y, 0}; + + __m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); + __m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); + __m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); + __m128i const Mask1 = _mm_set1_epi32(0x33333333); + __m128i const Mask0 = _mm_set1_epi32(0x55555555); + + __m128i Reg1; + __m128i Reg2; + + // REG1 = x; + // REG2 = y; + Reg1 = _mm_loadu_si128((__m128i*)Array); + + //REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); + //REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); + Reg2 = _mm_slli_si128(Reg1, 2); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask4); + + //REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); + //REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); + Reg2 = _mm_slli_si128(Reg1, 1); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask3); + + //REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); + //REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); + Reg2 = _mm_slli_epi32(Reg1, 4); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask2); + + //REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); + //REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); + Reg2 = _mm_slli_epi32(Reg1, 2); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask1); + + //REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); + //REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); + Reg2 = _mm_slli_epi32(Reg1, 1); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask0); + + //return REG1 | (REG2 << 1); + Reg2 = _mm_slli_epi32(Reg1, 1); + Reg2 = _mm_srli_si128(Reg2, 8); + Reg1 = _mm_or_si128(Reg1, Reg2); + + glm::uint64 Result[2]; + _mm_storeu_si128((__m128i*)Result, Reg1); + + return Result[0]; +} + +inline __m128i _mm_bit_interleave_si128(__m128i x, __m128i y) +{ + __m128i const Mask4 = _mm_set1_epi32(0x0000FFFF); + __m128i const Mask3 = _mm_set1_epi32(0x00FF00FF); + __m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F); + __m128i const Mask1 = _mm_set1_epi32(0x33333333); + __m128i const Mask0 = _mm_set1_epi32(0x55555555); + + __m128i Reg1; + __m128i Reg2; + + // REG1 = x; + // REG2 = y; + Reg1 = _mm_unpacklo_epi64(x, y); + + //REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF); + //REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF); + Reg2 = _mm_slli_si128(Reg1, 2); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask4); + + //REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF); + //REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF); + Reg2 = _mm_slli_si128(Reg1, 1); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask3); + + //REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F); + //REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F); + Reg2 = _mm_slli_epi32(Reg1, 4); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask2); + + //REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333); + //REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333); + Reg2 = _mm_slli_epi32(Reg1, 2); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask1); + + //REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555); + //REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555); + Reg2 = _mm_slli_epi32(Reg1, 1); + Reg1 = _mm_or_si128(Reg2, Reg1); + Reg1 = _mm_and_si128(Reg1, Mask0); + + //return REG1 | (REG2 << 1); + Reg2 = _mm_slli_epi32(Reg1, 1); + Reg2 = _mm_srli_si128(Reg2, 8); + Reg1 = _mm_or_si128(Reg1, Reg2); + + return Reg1; +} + +namespace bitfieldInterleave +{ + int test() + { + glm::uint32 x_max = 1 << 13; + glm::uint32 y_max = 1 << 12; + + // ALU + std::vector Data(x_max * y_max); + std::vector ParamX(x_max); + std::vector ParamY(y_max); + for(glm::uint32 x = 0; x < x_max; ++x) + ParamX[x] = glm::u64vec2(x); + for(glm::uint32 y = 0; y < y_max; ++y) + ParamY[y] = glm::u64vec2(y); + + { + for(glm::uint32 y = 0; y < (1 << 10); ++y) + for(glm::uint32 x = 0; x < (1 << 10); ++x) + { + glm::uint64 A = glm::bitfieldInterleave(x, y); + glm::uint64 B = fastBitfieldInterleave(x, y); + glm::uint64 C = loopBitfieldInterleave(x, y); + glm::uint64 D = interleaveBitfieldInterleave(x, y); + glm::uint64 E = sseBitfieldInterleave(x, y); + glm::uint64 F = sseUnalignedBitfieldInterleave(x, y); + assert(A == B); + assert(A == C); + assert(A == D); + assert(A == E); + assert(A == F); + } + } + + { + std::clock_t LastTime = std::clock(); + + for(glm::uint32 y = 0; y < y_max; ++y) + for(glm::uint32 x = 0; x < x_max; ++x) + { + glm::uint64 Result = glm::bitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x)); + Data[x + y * x_max].x = Result; + } + + std::clock_t Time = std::clock() - LastTime; + + std::cout << "glm::bitfieldInterleave Time " << Time << " clocks" << std::endl; + } + + { + std::clock_t LastTime = std::clock(); + + for(glm::uint32 y = 0; y < y_max; ++y) + for(glm::uint32 x = 0; x < x_max; ++x) + { + glm::uint64 Result = fastBitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x)); + Data[x + y * x_max].x = Result; + } + + std::clock_t Time = std::clock() - LastTime; + + std::cout << "fastBitfieldInterleave Time " << Time << " clocks" << std::endl; + } + + { + std::clock_t LastTime = std::clock(); + + for(glm::uint32 y = 0; y < y_max; ++y) + for(glm::uint32 x = 0; x < x_max; ++x) + { + glm::uint64 Result = loopBitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x)); + Data[x + y * x_max].x = Result; + } + + std::clock_t Time = std::clock() - LastTime; + + std::cout << "loopBitfieldInterleave Time " << Time << " clocks" << std::endl; + } + + { + std::clock_t LastTime = std::clock(); + + for(glm::uint32 y = 0; y < y_max; ++y) + for(glm::uint32 x = 0; x < x_max; ++x) + { + glm::uint64 Result = interleaveBitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x)); + Data[x + y * x_max].x = Result; + } + + std::clock_t Time = std::clock() - LastTime; + + std::cout << "interleaveBitfieldInterleave Time " << Time << " clocks" << std::endl; + } + + { + std::clock_t LastTime = std::clock(); + + for(glm::uint32 y = 0; y < y_max; ++y) + for(glm::uint32 x = 0; x < x_max; ++x) + { + glm::uint64 Result = sseBitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x)); + Data[x + y * x_max].x = Result; + } + + std::clock_t Time = std::clock() - LastTime; + + std::cout << "sseBitfieldInterleave Time " << Time << " clocks" << std::endl; + } + + { + std::clock_t LastTime = std::clock(); + + for(glm::uint32 y = 0; y < y_max; ++y) + for(glm::uint32 x = 0; x < x_max; ++x) + { + glm::uint64 Result = sseUnalignedBitfieldInterleave(glm::uint32(ParamX[x].x), glm::uint32(ParamY[y].x)); + Data[x + y * x_max].x = Result; + } + + std::clock_t Time = std::clock() - LastTime; + + std::cout << "sseUnalignedBitfieldInterleave Time " << Time << " clocks" << std::endl; + } + + { + // SIMD + glm::int32 simd_x_max = 1 << 13; + glm::int32 simd_y_max = 1 << 12; + + std::vector<__m128i> SimdData(x_max * y_max); + std::vector<__m128i> SimdParamX(x_max); + std::vector<__m128i> SimdParamY(y_max); + for(int x = 0; x < simd_x_max; ++x) + SimdParamX[x] = _mm_set1_epi32(x); + for(int y = 0; y < simd_y_max; ++y) + SimdParamY[y] = _mm_set1_epi32(y); + + std::clock_t LastTime = std::clock(); + + for(glm::int32 y = 0; y < simd_y_max; ++y) + for(glm::int32 x = 0; x < simd_x_max; ++x) + { + __m128i Result = _mm_bit_interleave_si128(SimdParamX[x], SimdParamX[y]); + SimdData[x + y * x_max] = Result; + } + + std::clock_t Time = std::clock() - LastTime; + + std::cout << "_mm_bit_interleave_si128 Time " << Time << " clocks" << std::endl; + } + + + + return 0; + } +} + int main() { + //__m64 REG3 = _mm_set1_pi32(static_cast(0x80000000)); + //__m64 REG1 = _mm_set1_pi32(0xFFFFFFFF); + //__m64 REG2 = _mm_set1_pi32(0x55555555); + //__m128i REG = _mm_set_epi64(REG1, REG2); + + int Error = 0; + Error += ::bitfieldInterleave::test(); Error += ::extractField::test(); Error += ::bitRevert::test(); + + while(true); + return Error; }