Replace function instanciations with macros by templates

This commit is contained in:
Christophe Riccio 2014-10-20 02:03:48 +02:00
parent 0042517167
commit bf08a0e234
8 changed files with 196 additions and 433 deletions

View file

@ -211,7 +211,7 @@ namespace detail
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> round(vecType<T, P> const & x)
{
return detail::functor1<T, P, vecType>::call(::std::round, x);
return detail::functor1<T, P, vecType>::call(round, x);
}
/*

View file

@ -54,8 +54,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/pow.xml">GLSL pow man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.2 Exponential Functions</a>
template <typename genType>
GLM_FUNC_DECL genType pow(genType const & base, genType const & exponent);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> pow(vecType<T, P> const & base, vecType<T, P> const & exponent);
/// Returns the natural exponentiation of x, i.e., e^x.
///
@ -64,8 +64,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/exp.xml">GLSL exp man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.2 Exponential Functions</a>
template <typename genType>
GLM_FUNC_DECL genType exp(genType const & x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> exp(vecType<T, P> const & v);
/// Returns the natural logarithm of x, i.e.,
/// returns the value y which satisfies the equation x = e^y.
@ -76,8 +76,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/log.xml">GLSL log man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.2 Exponential Functions</a>
template <typename genType>
GLM_FUNC_DECL genType log(genType const & x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> log(vecType<T, P> const & v);
/// Returns 2 raised to the x power.
///
@ -86,8 +86,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/exp2.xml">GLSL exp2 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.2 Exponential Functions</a>
template <typename genType>
GLM_FUNC_DECL genType exp2(genType const & x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> exp2(vecType<T, P> const & v);
/// Returns the base 2 log of x, i.e., returns the value y,
/// which satisfies the equation x = 2 ^ y.
@ -97,8 +97,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/log2.xml">GLSL log2 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.2 Exponential Functions</a>
template <typename genType>
GLM_FUNC_DECL genType log2(genType x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> log2(vecType<T, P> const & v);
/// Returns the positive square root of x.
///
@ -109,9 +109,8 @@ namespace glm
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.2 Exponential Functions</a>
//template <typename genType>
//GLM_FUNC_DECL genType sqrt(genType const & x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> sqrt(vecType<T, P> const & x);
GLM_FUNC_DECL vecType<T, P> sqrt(vecType<T, P> const & v);
/// Returns the reciprocal of the positive square root of x.
///
@ -120,8 +119,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/inversesqrt.xml">GLSL inversesqrt man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.2 Exponential Functions</a>
template <typename genType>
GLM_FUNC_DECL genType inversesqrt(genType const & x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> inversesqrt(vecType<T, P> const & v);
/// @}
}//namespace glm

View file

@ -36,19 +36,15 @@ namespace glm{
namespace detail
{
template <bool isFloat>
struct compute_log2
{
template <typename T>
T operator() (T const & Value) const;
};
struct compute_log2{};
template <>
struct compute_log2<true>
{
template <typename T>
GLM_FUNC_QUALIFIER T operator() (T const & Value) const
GLM_FUNC_QUALIFIER T operator() (T Value) const
{
# if(GLM_LANG & GLM_LANG_CXX11_FLAG)
# if GLM_LANG & GLM_LANG_CXX11_FLAG
return std::log2(Value);
# else
return std::log(Value) * static_cast<T>(1.4426950408889634073599246810019);
@ -84,28 +80,42 @@ namespace detail
// pow
using std::pow;
VECTORIZE_VEC_VEC(pow)
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> pow(vecType<T, P> const & base, vecType<T, P> const & exponent)
{
return detail::functor2<T, P, vecType>::call(::std::pow, base, exponent);
}
// exp
using std::exp;
VECTORIZE_VEC(exp)
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> exp(vecType<T, P> const & x)
{
return detail::functor1<T, P, vecType>::call(::std::exp, x);
}
// log
using std::log;
VECTORIZE_VEC(log)
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> log(vecType<T, P> const & x)
{
return detail::functor1<T, P, vecType>::call(::std::log, x);
}
//exp2, ln2 = 0.69314718055994530941723212145818f
template <typename genType>
GLM_FUNC_QUALIFIER genType exp2(genType const & x)
GLM_FUNC_QUALIFIER genType exp2(genType x)
{
GLM_STATIC_ASSERT(
std::numeric_limits<genType>::is_iec559,
"'exp2' only accept floating-point inputs");
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'exp2' only accept floating-point inputs");
return std::exp(static_cast<genType>(0.69314718055994530941723212145818) * x);
}
VECTORIZE_VEC(exp2)
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> exp2(vecType<T, P> const & x)
{
return detail::functor1<T, P, vecType>::call(exp2, x);
}
// log2, ln2 = 0.69314718055994530941723212145818f
template <typename genType>
@ -118,79 +128,32 @@ namespace detail
return detail::compute_log2<std::numeric_limits<genType>::is_iec559>()(x);
}
VECTORIZE_VEC(log2)
namespace detail
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> log2(vecType<T, P> const & x)
{
template <template <class, precision> class vecType, typename T, precision P>
struct compute_sqrt{};
template <typename T, precision P>
struct compute_sqrt<tvec1, T, P>
{
GLM_FUNC_QUALIFIER static tvec1<T, P> call(tvec1<T, P> const & x)
{
return tvec1<T, P>(std::sqrt(x.x));
}
};
template <typename T, precision P>
struct compute_sqrt<tvec2, T, P>
{
GLM_FUNC_QUALIFIER static tvec2<T, P> call(tvec2<T, P> const & x)
{
return tvec2<T, P>(std::sqrt(x.x), std::sqrt(x.y));
}
};
template <typename T, precision P>
struct compute_sqrt<tvec3, T, P>
{
GLM_FUNC_QUALIFIER static tvec3<T, P> call(tvec3<T, P> const & x)
{
return tvec3<T, P>(std::sqrt(x.x), std::sqrt(x.y), std::sqrt(x.z));
}
};
template <typename T, precision P>
struct compute_sqrt<tvec4, T, P>
{
GLM_FUNC_QUALIFIER static tvec4<T, P> call(tvec4<T, P> const & x)
{
return tvec4<T, P>(std::sqrt(x.x), std::sqrt(x.y), std::sqrt(x.z), std::sqrt(x.w));
}
};
}//namespace detail
return detail::functor1<T, P, vecType>::call(log2, x);
}
// sqrt
using std::sqrt;
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> sqrt(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'sqrt' only accept floating-point inputs");
return detail::compute_sqrt<vecType, T, P>::call(x);
return detail::functor1<T, P, vecType>::call(sqrt, x);
}
// inversesqrt
GLM_FUNC_QUALIFIER float inversesqrt(float const & x)
template <typename genType>
GLM_FUNC_QUALIFIER genType inversesqrt(genType x)
{
return 1.0f / sqrt(x);
return static_cast<genType>(1) / sqrt(x);
}
GLM_FUNC_QUALIFIER double inversesqrt(double const & x)
{
return 1.0 / sqrt(x);
}
template <template <class, precision> class vecType, typename T, precision P>
GLM_FUNC_QUALIFIER vecType<T, P> inversesqrt
(
vecType<T, P> const & x
)
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> inversesqrt(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'inversesqrt' only accept floating-point inputs");
return detail::compute_inversesqrt<vecType, T, P>::call(x);
}
VECTORIZE_VEC(inversesqrt)
}//namespace glm

View file

@ -48,9 +48,9 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/length.xml">GLSL length man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.5 Geometric Functions</a>
template <typename genType>
GLM_FUNC_DECL typename genType::value_type length(
genType const & x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL T length(
vecType<T, P> const & x);
/// Returns the distance betwwen p0 and p1, i.e., length(p0 - p1).
///
@ -58,10 +58,10 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/distance.xml">GLSL distance man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.5 Geometric Functions</a>
template <typename genType>
GLM_FUNC_DECL typename genType::value_type distance(
genType const & p0,
genType const & p1);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL T distance(
vecType<T, P> const & p0,
vecType<T, P> const & p1);
/// Returns the dot product of x and y, i.e., result = x * y.
///
@ -74,17 +74,6 @@ namespace glm
vecType<T, P> const & x,
vecType<T, P> const & y);
/// Returns the dot product of x and y, i.e., result = x * y.
///
/// @tparam genType Floating-point vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/dot.xml">GLSL dot man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.5 Geometric Functions</a>
template <typename genType>
GLM_FUNC_DECL genType dot(
genType const & x,
genType const & y);
/// Returns the cross product of x and y.
///
/// @tparam valType Floating-point scalar types.
@ -97,12 +86,13 @@ namespace glm
tvec3<T, P> const & y);
/// Returns a vector in the same direction as x but with length of 1.
/// According to issue 10 GLSL 1.10 specification, if length(x) == 0 then result is undefined and generate an error.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/normalize.xml">GLSL normalize man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.5 Geometric Functions</a>
template <typename genType>
GLM_FUNC_DECL genType normalize(
genType const & x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> normalize(
vecType<T, P> const & x);
/// If dot(Nref, I) < 0.0, return N, otherwise, return -N.
///

View file

@ -41,14 +41,9 @@ namespace detail
template <typename T, precision P>
struct compute_dot<tvec1, T, P>
{
GLM_FUNC_QUALIFIER static T call(tvec1<T, P> const & x, tvec1<T, P> const & y)
GLM_FUNC_QUALIFIER static T call(tvec1<T, P> const & a, tvec1<T, P> const & b)
{
# ifdef __CUDACC__ // Wordaround for a CUDA compiler bug up to CUDA6
tvec1<T, P> tmp(x * y);
return tmp.x;
# else
return tvec1<T, P>(x * y).x;
# endif
return a.x * b.x;
}
};
@ -85,139 +80,54 @@ namespace detail
// length
template <typename genType>
GLM_FUNC_QUALIFIER genType length
(
genType const & x
)
GLM_FUNC_QUALIFIER genType length(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'length' only accept floating-point inputs");
return abs(x);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T length(tvec2<T, P> const & v)
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER T length(vecType<T, P> const & v)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'length' only accept floating-point inputs");
T sqr = v.x * v.x + v.y * v.y;
return sqrt(sqr);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T length(tvec3<T, P> const & v)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'length' only accept floating-point inputs");
T sqr = v.x * v.x + v.y * v.y + v.z * v.z;
return sqrt(sqr);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T length(tvec4<T, P> const & v)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'length' only accept floating-point inputs");
T sqr = v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w;
return sqrt(sqr);
return sqrt(dot(v, v));
}
// distance
template <typename genType>
GLM_FUNC_QUALIFIER genType distance
(
genType const & p0,
genType const & p1
)
GLM_FUNC_QUALIFIER genType distance(genType const & p0, genType const & p1)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'distance' only accept floating-point inputs");
return length(p1 - p0);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T distance
(
tvec2<T, P> const & p0,
tvec2<T, P> const & p1
)
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> distance(vecType<T, P> const & p0, vecType<T, P> const & p1)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'distance' only accept floating-point inputs");
return length(p1 - p0);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T distance
(
tvec3<T, P> const & p0,
tvec3<T, P> const & p1
)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'distance' only accept floating-point inputs");
return length(p1 - p0);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T distance
(
tvec4<T, P> const & p0,
tvec4<T, P> const & p1
)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'distance' only accept floating-point inputs");
return length(p1 - p0);
}
// dot
template <typename T>
GLM_FUNC_QUALIFIER T dot
(
T const & x,
T const & y
)
GLM_FUNC_QUALIFIER T dot(T x, T y)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'dot' only accept floating-point inputs");
return x * y;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER T dot
(
vecType<T, P> const & x,
vecType<T, P> const & y
)
GLM_FUNC_QUALIFIER T dot(vecType<T, P> const & x, vecType<T, P> const & y)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'dot' only accept floating-point inputs");
return detail::compute_dot<vecType, T, P>::call(x, y);
}
/* // SSE3
GLM_FUNC_QUALIFIER float dot(const tvec4<float>& x, const tvec4<float>& y)
{
float Result;
__asm
{
mov esi, x
mov edi, y
movaps xmm0, [esi]
mulps xmm0, [edi]
haddps( _xmm0, _xmm0 )
haddps( _xmm0, _xmm0 )
movss Result, xmm0
}
return Result;
}
*/
// cross
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> cross
(
tvec3<T, P> const & x,
tvec3<T, P> const & y
)
GLM_FUNC_QUALIFIER tvec3<T, P> cross(tvec3<T, P> const & x, tvec3<T, P> const & y)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'cross' only accept floating-point inputs");
@ -229,111 +139,59 @@ namespace detail
// normalize
template <typename genType>
GLM_FUNC_QUALIFIER genType normalize
(
genType const & x
)
GLM_FUNC_QUALIFIER genType normalize(genType const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'normalize' only accept floating-point inputs");
return x < genType(0) ? genType(-1) : genType(1);
}
// According to issue 10 GLSL 1.10 specification, if length(x) == 0 then result is undefine and generate an error
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec2<T, P> normalize
(
tvec2<T, P> const & x
)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'normalize' only accept floating-point inputs");
T sqr = x.x * x.x + x.y * x.y;
return x * inversesqrt(sqr);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> normalize
(
tvec3<T, P> const & x
)
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> normalize(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'normalize' only accept floating-point inputs");
T sqr = x.x * x.x + x.y * x.y + x.z * x.z;
return x * inversesqrt(sqr);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<T, P> normalize
(
tvec4<T, P> const & x
)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'normalize' only accept floating-point inputs");
T sqr = x.x * x.x + x.y * x.y + x.z * x.z + x.w * x.w;
return x * inversesqrt(sqr);
return x * inversesqrt(dot(x, x));
}
// faceforward
template <typename genType>
GLM_FUNC_QUALIFIER genType faceforward
(
genType const & N,
genType const & I,
genType const & Nref
)
GLM_FUNC_QUALIFIER genType faceforward(genType const & N, genType const & I, genType const & Nref)
{
return dot(Nref, I) < 0 ? N : -N;
return dot(Nref, I) < static_cast<genType>(0) ? N : -N;
}
// reflect
template <typename genType>
GLM_FUNC_QUALIFIER genType reflect
(
genType const & I,
genType const & N
)
GLM_FUNC_QUALIFIER genType reflect(genType const & I, genType const & N)
{
return I - N * dot(N, I) * genType(2);
return I - N * dot(N, I) * static_cast<genType>(2);
}
// refract
template <typename genType>
GLM_FUNC_QUALIFIER genType refract
(
genType const & I,
genType const & N,
genType const & eta
)
GLM_FUNC_QUALIFIER genType refract(genType const & I, genType const & N, genType const & eta)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'refract' only accept floating-point inputs");
genType dotValue = dot(N, I);
genType k = genType(1) - eta * eta * (genType(1) - dotValue * dotValue);
if(k < genType(0))
return genType(0);
genType k = static_cast<genType>(1) - eta * eta * (static_cast<genType>(1) - dotValue * dotValue);
if(k < static_cast<genType>(0))
return static_cast<genType>(0);
else
return eta * I - (eta * dotValue + sqrt(k)) * N;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> refract
(
vecType<T, P> const & I,
vecType<T, P> const & N,
T const & eta
)
GLM_FUNC_QUALIFIER vecType<T, P> refract(vecType<T, P> const & I, vecType<T, P> const & N, T const & eta)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'refract' only accept floating-point inputs");
T dotValue = dot(N, I);
T k = T(1) - eta * eta * (T(1) - dotValue * dotValue);
if(k < T(0))
T k = static_cast<T>(1) - eta * eta * (static_cast<T>(1) - dotValue * dotValue);
if(k < static_cast<T>(0))
return vecType<T, P>(0);
else
return eta * I - (eta * dotValue + std::sqrt(k)) * N;
}
}//namespace glm

View file

@ -40,6 +40,7 @@
#pragma once
#include "setup.hpp"
#include "precision.hpp"
namespace glm
{
@ -52,8 +53,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/radians.xml">GLSL radians man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename genType>
GLM_FUNC_DECL genType radians(genType const & degrees);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> radians(vecType<T, P> const & degrees);
/// Converts radians to degrees and returns the result.
///
@ -61,8 +62,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/degrees.xml">GLSL degrees man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename genType>
GLM_FUNC_DECL genType degrees(genType const & radians);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> degrees(vecType<T, P> const & radians);
/// The standard trigonometric sine function.
/// The values returned by this function will range from [-1, 1].
@ -71,8 +72,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/sin.xml">GLSL sin man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename genType>
GLM_FUNC_DECL genType sin(genType const & angle);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> sin(vecType<T, P> const & angle);
/// The standard trigonometric cosine function.
/// The values returned by this function will range from [-1, 1].
@ -81,8 +82,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/cos.xml">GLSL cos man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename genType>
GLM_FUNC_DECL genType cos(genType const & angle);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> cos(vecType<T, P> const & angle);
/// The standard trigonometric tangent function.
///
@ -90,8 +91,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/tan.xml">GLSL tan man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename genType>
GLM_FUNC_DECL genType tan(genType const & angle);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> tan(vecType<T, P> const & angle);
/// Arc sine. Returns an angle whose sine is x.
/// The range of values returned by this function is [-PI/2, PI/2].
@ -101,8 +102,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/asin.xml">GLSL asin man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename genType>
GLM_FUNC_DECL genType asin(genType const & x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> asin(vecType<T, P> const & x);
/// Arc cosine. Returns an angle whose sine is x.
/// The range of values returned by this function is [0, PI].
@ -112,8 +113,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/acos.xml">GLSL acos man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename genType>
GLM_FUNC_DECL genType acos(genType const & x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> acos(vecType<T, P> const & x);
/// Arc tangent. Returns an angle whose tangent is y/x.
/// The signs of x and y are used to determine what
@ -125,8 +126,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/atan.xml">GLSL atan man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename genType>
GLM_FUNC_DECL genType atan(genType const & y, genType const & x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> atan(vecType<T, P> const & y, vecType<T, P> const & x);
/// Arc tangent. Returns an angle whose tangent is y_over_x.
/// The range of values returned by this function is [-PI/2, PI/2].
@ -135,8 +136,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/atan.xml">GLSL atan man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename genType>
GLM_FUNC_DECL genType atan(genType const & y_over_x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> atan(vecType<T, P> const & y_over_x);
/// Returns the hyperbolic sine function, (exp(x) - exp(-x)) / 2
///
@ -144,8 +145,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/sinh.xml">GLSL sinh man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename genType>
GLM_FUNC_DECL genType sinh(genType const & angle);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> sinh(vecType<T, P> const & angle);
/// Returns the hyperbolic cosine function, (exp(x) + exp(-x)) / 2
///
@ -153,8 +154,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/cosh.xml">GLSL cosh man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename genType>
GLM_FUNC_DECL genType cosh(genType const & angle);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> cosh(vecType<T, P> const & angle);
/// Returns the hyperbolic tangent function, sinh(angle) / cosh(angle)
///
@ -162,8 +163,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/tanh.xml">GLSL tanh man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename genType>
GLM_FUNC_DECL genType tanh(genType const & angle);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> tanh(vecType<T, P> const & angle);
/// Arc hyperbolic sine; returns the inverse of sinh.
///
@ -171,8 +172,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/asinh.xml">GLSL asinh man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename genType>
GLM_FUNC_DECL genType asinh(genType const & x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> asinh(vecType<T, P> const & x);
/// Arc hyperbolic cosine; returns the non-negative inverse
/// of cosh. Results are undefined if x < 1.
@ -181,8 +182,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/acosh.xml">GLSL acosh man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename genType>
GLM_FUNC_DECL genType acosh(genType const & x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> acosh(vecType<T, P> const & x);
/// Arc hyperbolic tangent; returns the inverse of tanh.
/// Results are undefined if abs(x) >= 1.
@ -191,8 +192,8 @@ namespace glm
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/atanh.xml">GLSL atanh man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename genType>
GLM_FUNC_DECL genType atanh(genType const & x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> atanh(vecType<T, P> const & x);
/// @}
}//namespace glm

View file

@ -34,191 +34,131 @@ namespace glm
{
// radians
template <typename genType>
GLM_FUNC_QUALIFIER genType radians
(
genType const & degrees
)
GLM_FUNC_QUALIFIER genType radians(genType degrees)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'radians' only accept floating-point input");
return degrees * genType(0.01745329251994329576923690768489);
return degrees * static_cast<genType>(0.01745329251994329576923690768489);
}
VECTORIZE_VEC(radians)
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> radians(vecType<T, P> const & v)
{
return detail::functor1<T, P, vecType>::call(radians, v);
}
// degrees
template <typename genType>
GLM_FUNC_QUALIFIER genType degrees
(
genType const & radians
)
GLM_FUNC_QUALIFIER genType degrees(genType radians)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'degrees' only accept floating-point input");
return radians * genType(57.295779513082320876798154814105);
return radians * static_cast<genType>(57.295779513082320876798154814105);
}
VECTORIZE_VEC(degrees)
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> degrees(vecType<T, P> const & v)
{
return detail::functor1<T, P, vecType>::call(degrees, v);
}
// sin
using std::sin;
/*
template <typename genType>
GLM_FUNC_QUALIFIER genType sin
(
genType const & angle
)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'sin' only accept floating-point input");
using ::std::sin;
return genType(::std::sin(angle));
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> sin(vecType<T, P> const & v)
{
return detail::functor1<T, P, vecType>::call(sin, v);
}
*/
VECTORIZE_VEC(sin)
// cos
using std::cos;
/*
template <typename genType>
GLM_FUNC_QUALIFIER genType cos(genType const & angle)
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> cos(vecType<T, P> const & v)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'cos' only accept floating-point input");
return genType(::std::cos(angle));
return detail::functor1<T, P, vecType>::call(cos, v);
}
*/
VECTORIZE_VEC(cos)
// tan
using std::tan;
/*
template <typename genType>
GLM_FUNC_QUALIFIER genType tan
(
genType const & angle
)
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> tan(vecType<T, P> const & v)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'tan' only accept floating-point input");
return genType(::std::tan(angle));
return detail::functor1<T, P, vecType>::call(tan, v);
}
*/
VECTORIZE_VEC(tan)
// asin
using std::asin;
/*
template <typename genType>
GLM_FUNC_QUALIFIER genType asin
(
genType const & x
)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'asin' only accept floating-point input");
return genType(::std::asin(x));
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> asin(vecType<T, P> const & v)
{
return detail::functor1<T, P, vecType>::call(asin, v);
}
*/
VECTORIZE_VEC(asin)
// acos
using std::acos;
/*
template <typename genType>
GLM_FUNC_QUALIFIER genType acos
(
genType const & x
)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acos' only accept floating-point input");
return ::std::acos(x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> acos(vecType<T, P> const & v)
{
return detail::functor1<T, P, vecType>::call(acos, v);
}
*/
VECTORIZE_VEC(acos)
// atan
template <typename genType>
GLM_FUNC_QUALIFIER genType atan
(
genType const & y,
genType const & x
)
GLM_FUNC_QUALIFIER genType atan(genType const & y, genType const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'atan' only accept floating-point input");
return ::std::atan2(y, x);
}
VECTORIZE_VEC_VEC(atan)
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> atan(vecType<T, P> const & a, vecType<T, P> const & b)
{
return detail::functor2<T, P, vecType>::call(atan2, a, b);
}
using std::atan;
/*
template <typename genType>
GLM_FUNC_QUALIFIER genType atan
(
genType const & x
)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'atan' only accept floating-point input");
return ::std::atan(x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> atan(vecType<T, P> const & v)
{
return detail::functor1<T, P, vecType>::call(atan, v);
}
*/
VECTORIZE_VEC(atan)
// sinh
using std::sinh;
/*
template <typename genType>
GLM_FUNC_QUALIFIER genType sinh
(
genType const & angle
)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'sinh' only accept floating-point input");
return ::std::sinh(angle);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> sinh(vecType<T, P> const & v)
{
return detail::functor1<T, P, vecType>::call(sinh, v);
}
*/
VECTORIZE_VEC(sinh)
// cosh
using std::cosh;
/*
template <typename genType>
GLM_FUNC_QUALIFIER genType cosh
(
genType const & angle
)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'cosh' only accept floating-point input");
return ::std::cosh(angle);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> cosh(vecType<T, P> const & v)
{
return detail::functor1<T, P, vecType>::call(cosh, v);
}
*/
VECTORIZE_VEC(cosh)
// tanh
using std::tanh;
/*
template <typename genType>
GLM_FUNC_QUALIFIER genType tanh
(
genType const & angle
)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'tanh' only accept floating-point input");
return ::std::tanh(angle);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> tanh(vecType<T, P> const & v)
{
return detail::functor1<T, P, vecType>::call(tanh, v);
}
*/
VECTORIZE_VEC(tanh)
// asinh
# if(GLM_LANG & GLM_LANG_CXX11_FLAG)
# if GLM_LANG & GLM_LANG_CXX11_FLAG
using std::asinh;
# else
template <typename genType>
@ -230,10 +170,14 @@ namespace glm
}
# endif
VECTORIZE_VEC(asinh)
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> asinh(vecType<T, P> const & v)
{
return detail::functor1<T, P, vecType>::call(asinh, v);
}
// acosh
# if(GLM_LANG & GLM_LANG_CXX11_FLAG)
# if GLM_LANG & GLM_LANG_CXX11_FLAG
using std::acosh;
# else
template <typename genType>
@ -247,10 +191,14 @@ namespace glm
}
# endif
VECTORIZE_VEC(acosh)
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> acosh(vecType<T, P> const & v)
{
return detail::functor1<T, P, vecType>::call(acosh, v);
}
// atanh
# if(GLM_LANG & GLM_LANG_CXX11_FLAG)
# if GLM_LANG & GLM_LANG_CXX11_FLAG
using std::atanh;
# else
template <typename genType>
@ -264,6 +212,9 @@ namespace glm
}
# endif
VECTORIZE_VEC(atanh)
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> atanh(vecType<T, P> const & v)
{
return detail::functor1<T, P, vecType>::call(atanh, v);
}
}//namespace glm

View file

@ -99,7 +99,8 @@ int test_inversesqrt()
for(float f = 0.001f; f < 10.f; f *= 1.001f)
{
glm::lowp_fvec1 lowp_v = glm::inversesqrt(glm::lowp_fvec1(f));
glm::lowp_fvec1 u(f);
glm::lowp_fvec1 lowp_v = glm::inversesqrt(u);
float defaultp_v = glm::inversesqrt(f);
ulp = glm::max(glm::float_distance(lowp_v.x, defaultp_v), ulp);