mirror of
https://github.com/g-truc/glm.git
synced 2025-04-06 14:05:01 +00:00
Added bitfieldInterleave implementation
This commit is contained in:
parent
df0d9e687e
commit
c57a000791
5 changed files with 524 additions and 339 deletions
50
glm/core/intrinsic_integer.hpp
Normal file
50
glm/core/intrinsic_integer.hpp
Normal file
|
@ -0,0 +1,50 @@
|
|||
///////////////////////////////////////////////////////////////////////////////////
|
||||
/// OpenGL Mathematics (glm.g-truc.net)
|
||||
///
|
||||
/// Copyright (c) 2005 - 2012 G-Truc Creation (www.g-truc.net)
|
||||
/// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
/// of this software and associated documentation files (the "Software"), to deal
|
||||
/// in the Software without restriction, including without limitation the rights
|
||||
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
/// copies of the Software, and to permit persons to whom the Software is
|
||||
/// furnished to do so, subject to the following conditions:
|
||||
///
|
||||
/// The above copyright notice and this permission notice shall be included in
|
||||
/// all copies or substantial portions of the Software.
|
||||
///
|
||||
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
/// THE SOFTWARE.
|
||||
///
|
||||
/// @ref core
|
||||
/// @file glm/core/intrinsic_integer.hpp
|
||||
/// @date 2009-05-11 / 2011-06-15
|
||||
/// @author Christophe Riccio
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifndef glm_detail_intrinsic_integer
|
||||
#define glm_detail_intrinsic_integer
|
||||
|
||||
#include "setup.hpp"
|
||||
|
||||
#if(!(GLM_ARCH & GLM_ARCH_SSE2))
|
||||
# error "SSE2 instructions not supported or enabled"
|
||||
#else
|
||||
|
||||
namespace glm{
|
||||
namespace detail
|
||||
{
|
||||
__m128i _mm_bit_interleave_si128(__m128i x)
|
||||
__m128i _mm_bit_interleave_si128(__m128i x, __m128i y);
|
||||
|
||||
}//namespace detail
|
||||
}//namespace glm
|
||||
|
||||
#include "intrinsic_integer.inl"
|
||||
|
||||
#endif//GLM_ARCH
|
||||
#endif//glm_detail_intrinsic_integer
|
140
glm/core/intrinsic_integer.inl
Normal file
140
glm/core/intrinsic_integer.inl
Normal file
|
@ -0,0 +1,140 @@
|
|||
///////////////////////////////////////////////////////////////////////////////////
|
||||
/// OpenGL Mathematics (glm.g-truc.net)
|
||||
///
|
||||
/// Copyright (c) 2005 - 2012 G-Truc Creation (www.g-truc.net)
|
||||
/// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
/// of this software and associated documentation files (the "Software"), to deal
|
||||
/// in the Software without restriction, including without limitation the rights
|
||||
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
/// copies of the Software, and to permit persons to whom the Software is
|
||||
/// furnished to do so, subject to the following conditions:
|
||||
///
|
||||
/// The above copyright notice and this permission notice shall be included in
|
||||
/// all copies or substantial portions of the Software.
|
||||
///
|
||||
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
/// THE SOFTWARE.
|
||||
///
|
||||
/// @ref core
|
||||
/// @file glm/core/intrinsic_integer.inl
|
||||
/// @date 2009-05-08 / 2011-06-15
|
||||
/// @author Christophe Riccio
|
||||
///////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace glm{
|
||||
namespace detail
|
||||
{
|
||||
inline __m128i _mm_bit_interleave_si128(__m128i x)
|
||||
{
|
||||
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF);
|
||||
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF);
|
||||
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F);
|
||||
__m128i const Mask1 = _mm_set1_epi32(0x33333333);
|
||||
__m128i const Mask0 = _mm_set1_epi32(0x55555555);
|
||||
|
||||
__m128i Reg1;
|
||||
__m128i Reg2;
|
||||
|
||||
// REG1 = x;
|
||||
// REG2 = y;
|
||||
//Reg1 = _mm_unpacklo_epi64(x, y);
|
||||
Reg1 = x;
|
||||
|
||||
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
Reg2 = _mm_slli_si128(Reg1, 2);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask4);
|
||||
|
||||
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
Reg2 = _mm_slli_si128(Reg1, 1);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask3);
|
||||
|
||||
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 4);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask2);
|
||||
|
||||
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
||||
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 2);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask1);
|
||||
|
||||
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
||||
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 1);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask0);
|
||||
|
||||
//return REG1 | (REG2 << 1);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 1);
|
||||
Reg2 = _mm_srli_si128(Reg2, 8);
|
||||
Reg1 = _mm_or_si128(Reg1, Reg2);
|
||||
|
||||
return Reg1;
|
||||
}
|
||||
|
||||
inline __m128i _mm_bit_interleave_si128(__m128i x, __m128i y)
|
||||
{
|
||||
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF);
|
||||
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF);
|
||||
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F);
|
||||
__m128i const Mask1 = _mm_set1_epi32(0x33333333);
|
||||
__m128i const Mask0 = _mm_set1_epi32(0x55555555);
|
||||
|
||||
__m128i Reg1;
|
||||
__m128i Reg2;
|
||||
|
||||
// REG1 = x;
|
||||
// REG2 = y;
|
||||
Reg1 = _mm_unpacklo_epi64(x, y);
|
||||
|
||||
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
Reg2 = _mm_slli_si128(Reg1, 2);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask4);
|
||||
|
||||
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
Reg2 = _mm_slli_si128(Reg1, 1);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask3);
|
||||
|
||||
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 4);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask2);
|
||||
|
||||
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
||||
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 2);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask1);
|
||||
|
||||
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
||||
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 1);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask0);
|
||||
|
||||
//return REG1 | (REG2 << 1);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 1);
|
||||
Reg2 = _mm_srli_si128(Reg2, 8);
|
||||
Reg1 = _mm_or_si128(Reg1, Reg2);
|
||||
|
||||
return Reg1;
|
||||
}
|
||||
|
||||
}//namespace detail
|
||||
}//namespace glms
|
117
glm/gtx/bit.inl
117
glm/gtx/bit.inl
|
@ -608,11 +608,90 @@ namespace glm
|
|||
Result |= (x & 1U << i) << i | (y & 1U << i) << (i + 1);
|
||||
return Result;
|
||||
}
|
||||
|
||||
template <>
|
||||
inline glm::uint16 bitfieldInterleave(glm::uint8 x, glm::uint8 y)
|
||||
{
|
||||
glm::uint16 REG1(x);
|
||||
glm::uint16 REG2(y);
|
||||
|
||||
REG1 = ((REG1 << 4) | REG1) & glm::uint16(0x0F0F);
|
||||
REG2 = ((REG2 << 4) | REG2) & glm::uint16(0x0F0F);
|
||||
|
||||
REG1 = ((REG1 << 2) | REG1) & glm::uint16(0x3333);
|
||||
REG2 = ((REG2 << 2) | REG2) & glm::uint16(0x3333);
|
||||
|
||||
REG1 = ((REG1 << 1) | REG1) & glm::uint16(0x5555);
|
||||
REG2 = ((REG2 << 1) | REG2) & glm::uint16(0x5555);
|
||||
|
||||
return REG1 | (REG2 << 1);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline glm::uint32 bitfieldInterleave(glm::uint16 x, glm::uint16 y)
|
||||
{
|
||||
glm::uint32 REG1(x);
|
||||
glm::uint32 REG2(y);
|
||||
|
||||
REG1 = ((REG1 << 8) | REG1) & glm::uint32(0x00FF00FF);
|
||||
REG2 = ((REG2 << 8) | REG2) & glm::uint32(0x00FF00FF);
|
||||
|
||||
REG1 = ((REG1 << 4) | REG1) & glm::uint32(0x0F0F0F0F);
|
||||
REG2 = ((REG2 << 4) | REG2) & glm::uint32(0x0F0F0F0F);
|
||||
|
||||
REG1 = ((REG1 << 2) | REG1) & glm::uint32(0x33333333);
|
||||
REG2 = ((REG2 << 2) | REG2) & glm::uint32(0x33333333);
|
||||
|
||||
REG1 = ((REG1 << 1) | REG1) & glm::uint32(0x55555555);
|
||||
REG2 = ((REG2 << 1) | REG2) & glm::uint32(0x55555555);
|
||||
|
||||
return REG1 | (REG2 << 1);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline glm::uint64 bitfieldInterleave(glm::uint32 x, glm::uint32 y)
|
||||
{
|
||||
glm::uint64 REG1(x);
|
||||
glm::uint64 REG2(y);
|
||||
|
||||
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
|
||||
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
|
||||
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
|
||||
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
||||
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
||||
|
||||
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
||||
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
||||
|
||||
return REG1 | (REG2 << 1);
|
||||
}
|
||||
}//namespace detail
|
||||
|
||||
inline int16 bitfieldInterleave(int8 x, int8 y)
|
||||
{
|
||||
return detail::bitfieldInterleave<int8, int16>(x, y);
|
||||
union sign8
|
||||
{
|
||||
int8 i;
|
||||
uint8 u;
|
||||
} sign_x, sign_y;
|
||||
|
||||
union sign16
|
||||
{
|
||||
int16 i;
|
||||
uint16 u;
|
||||
} result;
|
||||
|
||||
sign_x.i = x;
|
||||
sign_y.i = y;
|
||||
result.u = detail::bitfieldInterleave<int8, int16>(sign_x.u, sign_y.u);
|
||||
|
||||
return result.i;
|
||||
}
|
||||
|
||||
inline uint16 bitfieldInterleave(uint8 x, uint8 y)
|
||||
|
@ -622,7 +701,23 @@ namespace glm
|
|||
|
||||
inline int32 bitfieldInterleave(int16 x, int16 y)
|
||||
{
|
||||
return detail::bitfieldInterleave<int16, int32>(x, y);
|
||||
union sign16
|
||||
{
|
||||
int16 i;
|
||||
uint16 u;
|
||||
} sign_x, sign_y;
|
||||
|
||||
union sign32
|
||||
{
|
||||
int32 i;
|
||||
uint32 u;
|
||||
} result;
|
||||
|
||||
sign_x.i = x;
|
||||
sign_y.i = y;
|
||||
result.u = detail::bitfieldInterleave<int16, int32>(sign_x.u, sign_y.u);
|
||||
|
||||
return result.i;
|
||||
}
|
||||
|
||||
inline uint32 bitfieldInterleave(uint16 x, uint16 y)
|
||||
|
@ -632,7 +727,23 @@ namespace glm
|
|||
|
||||
inline int64 bitfieldInterleave(int32 x, int32 y)
|
||||
{
|
||||
return detail::bitfieldInterleave<int32, int64>(x, y);
|
||||
union sign32
|
||||
{
|
||||
int32 i;
|
||||
uint32 u;
|
||||
} sign_x, sign_y;
|
||||
|
||||
union sign64
|
||||
{
|
||||
int64 i;
|
||||
uint64 u;
|
||||
} result;
|
||||
|
||||
sign_x.i = x;
|
||||
sign_y.i = y;
|
||||
result.u = detail::bitfieldInterleave<int32, int64>(sign_x.u, sign_y.u);
|
||||
|
||||
return result.i;
|
||||
}
|
||||
|
||||
inline uint64 bitfieldInterleave(uint32 x, uint32 y)
|
||||
|
|
|
@ -40,6 +40,7 @@ http://glm.g-truc.net/glm.pdf
|
|||
GLM 0.9.5.X: 2013-XX-XX
|
||||
--------------------------------------------------------------------------------
|
||||
- Improved Intel Compiler detection
|
||||
- Added bitfieldInterleave and _mm_bit_interleave_si128 functions
|
||||
|
||||
================================================================================
|
||||
GLM 0.9.4.2: 2013-01-XX
|
||||
|
|
|
@ -10,6 +10,11 @@
|
|||
#include <glm/glm.hpp>
|
||||
#include <glm/gtc/type_precision.hpp>
|
||||
#include <glm/gtx/bit.hpp>
|
||||
|
||||
#if(GLM_ARCH != GLM_ARCH_PURE)
|
||||
# include <glm/core/intrinsic_integer.hpp>
|
||||
#endif
|
||||
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <ctime>
|
||||
|
@ -166,333 +171,194 @@ namespace bitRevert
|
|||
}
|
||||
}//bitRevert
|
||||
|
||||
inline glm::uint64 fastBitfieldInterleave(glm::uint32 x, glm::uint32 y)
|
||||
{
|
||||
glm::uint64 REG1;
|
||||
glm::uint64 REG2;
|
||||
|
||||
REG1 = x;
|
||||
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
||||
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
||||
|
||||
REG2 = y;
|
||||
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
||||
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
||||
|
||||
return REG1 | (REG2 << 1);
|
||||
}
|
||||
|
||||
inline glm::uint64 interleaveBitfieldInterleave(glm::uint32 x, glm::uint32 y)
|
||||
{
|
||||
glm::uint64 REG1;
|
||||
glm::uint64 REG2;
|
||||
|
||||
REG1 = x;
|
||||
REG2 = y;
|
||||
|
||||
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
|
||||
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
|
||||
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
|
||||
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
||||
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
||||
|
||||
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
||||
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
||||
|
||||
return REG1 | (REG2 << 1);
|
||||
}
|
||||
|
||||
inline glm::uint64 loopBitfieldInterleave(glm::uint32 x, glm::uint32 y)
|
||||
{
|
||||
static glm::uint64 const Mask[5] =
|
||||
{
|
||||
0x5555555555555555,
|
||||
0x3333333333333333,
|
||||
0x0F0F0F0F0F0F0F0F,
|
||||
0x00FF00FF00FF00FF,
|
||||
0x0000FFFF0000FFFF
|
||||
};
|
||||
|
||||
glm::uint64 REG1 = x;
|
||||
glm::uint64 REG2 = y;
|
||||
for(int i = 4; i >= 0; --i)
|
||||
{
|
||||
REG1 = ((REG1 << (1 << i)) | REG1) & Mask[i];
|
||||
REG2 = ((REG2 << (1 << i)) | REG2) & Mask[i];
|
||||
}
|
||||
|
||||
return REG1 | (REG2 << 1);
|
||||
}
|
||||
|
||||
/*
|
||||
const int N = 1024;
|
||||
|
||||
int32_t b1[N]; // 2 x arrays of input bit sets
|
||||
int32_t b2[N];
|
||||
int32_t b3[N]; // 1 x array of output bit sets
|
||||
|
||||
for (int i = 0; i < N; i += 4)
|
||||
{
|
||||
__m128i v1 = _mm_loadu_si128(&b1[i]); // load input bits sets
|
||||
__m128i v2 = _mm_loadu_si128(&b2[i]);
|
||||
__m128i v3 = _mm_and_si128(v1, v2); // do the bitwise AND
|
||||
_mm_storeu_si128(&b3[i], v3); // store the result
|
||||
}
|
||||
If you just want to AND an array in-place with a fixed mask then it would simplify to this:
|
||||
|
||||
const int N = 1024;
|
||||
|
||||
int32_t b1[N]; // input/output array of bit sets
|
||||
|
||||
const __m128i v2 = _mm_set1_epi32(0x12345678); // mask
|
||||
|
||||
for (int i = 0; i < N; i += 4)
|
||||
{
|
||||
__m128i v1 = _mm_loadu_si128(&b1[i]); // load input bits sets
|
||||
__m128i v3 = _mm_and_si128(v1, v2); // do the bitwise AND
|
||||
_mm_storeu_si128(&b1[i], v3); // store the result
|
||||
}
|
||||
Note: for better performance make sure your input/output arrays are 16 byte aligned and then use _mm_load_si128/_mm_store_si128 rather than their unaligned counterparts as above.
|
||||
*/
|
||||
|
||||
inline glm::uint64 sseBitfieldInterleave(glm::uint32 x, glm::uint32 y)
|
||||
{
|
||||
GLM_ALIGN(16) glm::uint32 const Array[4] = {x, 0, y, 0};
|
||||
|
||||
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF);
|
||||
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF);
|
||||
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F);
|
||||
__m128i const Mask1 = _mm_set1_epi32(0x33333333);
|
||||
__m128i const Mask0 = _mm_set1_epi32(0x55555555);
|
||||
|
||||
__m128i Reg1;
|
||||
__m128i Reg2;
|
||||
|
||||
// REG1 = x;
|
||||
// REG2 = y;
|
||||
Reg1 = _mm_load_si128((__m128i*)Array);
|
||||
|
||||
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
Reg2 = _mm_slli_si128(Reg1, 2);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask4);
|
||||
|
||||
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
Reg2 = _mm_slli_si128(Reg1, 1);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask3);
|
||||
|
||||
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 4);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask2);
|
||||
|
||||
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
||||
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 2);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask1);
|
||||
|
||||
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
||||
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 1);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask0);
|
||||
|
||||
//return REG1 | (REG2 << 1);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 1);
|
||||
Reg2 = _mm_srli_si128(Reg2, 8);
|
||||
Reg1 = _mm_or_si128(Reg1, Reg2);
|
||||
|
||||
GLM_ALIGN(16) glm::uint64 Result[2];
|
||||
_mm_store_si128((__m128i*)Result, Reg1);
|
||||
|
||||
return Result[0];
|
||||
}
|
||||
|
||||
inline glm::uint64 sseUnalignedBitfieldInterleave(glm::uint32 x, glm::uint32 y)
|
||||
{
|
||||
glm::uint32 const Array[4] = {x, 0, y, 0};
|
||||
|
||||
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF);
|
||||
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF);
|
||||
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F);
|
||||
__m128i const Mask1 = _mm_set1_epi32(0x33333333);
|
||||
__m128i const Mask0 = _mm_set1_epi32(0x55555555);
|
||||
|
||||
__m128i Reg1;
|
||||
__m128i Reg2;
|
||||
|
||||
// REG1 = x;
|
||||
// REG2 = y;
|
||||
Reg1 = _mm_loadu_si128((__m128i*)Array);
|
||||
|
||||
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
Reg2 = _mm_slli_si128(Reg1, 2);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask4);
|
||||
|
||||
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
Reg2 = _mm_slli_si128(Reg1, 1);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask3);
|
||||
|
||||
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 4);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask2);
|
||||
|
||||
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
||||
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 2);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask1);
|
||||
|
||||
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
||||
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 1);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask0);
|
||||
|
||||
//return REG1 | (REG2 << 1);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 1);
|
||||
Reg2 = _mm_srli_si128(Reg2, 8);
|
||||
Reg1 = _mm_or_si128(Reg1, Reg2);
|
||||
|
||||
glm::uint64 Result[2];
|
||||
_mm_storeu_si128((__m128i*)Result, Reg1);
|
||||
|
||||
return Result[0];
|
||||
}
|
||||
|
||||
inline __m128i _mm_bit_interleave_si128(__m128i x, __m128i y)
|
||||
{
|
||||
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF);
|
||||
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF);
|
||||
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F);
|
||||
__m128i const Mask1 = _mm_set1_epi32(0x33333333);
|
||||
__m128i const Mask0 = _mm_set1_epi32(0x55555555);
|
||||
|
||||
__m128i Reg1;
|
||||
__m128i Reg2;
|
||||
|
||||
// REG1 = x;
|
||||
// REG2 = y;
|
||||
Reg1 = _mm_unpacklo_epi64(x, y);
|
||||
|
||||
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
Reg2 = _mm_slli_si128(Reg1, 2);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask4);
|
||||
|
||||
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
Reg2 = _mm_slli_si128(Reg1, 1);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask3);
|
||||
|
||||
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 4);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask2);
|
||||
|
||||
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
||||
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 2);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask1);
|
||||
|
||||
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
||||
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 1);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask0);
|
||||
|
||||
//return REG1 | (REG2 << 1);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 1);
|
||||
Reg2 = _mm_srli_si128(Reg2, 8);
|
||||
Reg1 = _mm_or_si128(Reg1, Reg2);
|
||||
|
||||
return Reg1;
|
||||
}
|
||||
|
||||
|
||||
inline __m128i _mm_bit_interleave_si128(__m128i x)
|
||||
{
|
||||
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF);
|
||||
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF);
|
||||
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F);
|
||||
__m128i const Mask1 = _mm_set1_epi32(0x33333333);
|
||||
__m128i const Mask0 = _mm_set1_epi32(0x55555555);
|
||||
|
||||
__m128i Reg1;
|
||||
__m128i Reg2;
|
||||
|
||||
// REG1 = x;
|
||||
// REG2 = y;
|
||||
//Reg1 = _mm_unpacklo_epi64(x, y);
|
||||
Reg1 = x;
|
||||
|
||||
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
Reg2 = _mm_slli_si128(Reg1, 2);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask4);
|
||||
|
||||
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
Reg2 = _mm_slli_si128(Reg1, 1);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask3);
|
||||
|
||||
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 4);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask2);
|
||||
|
||||
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
||||
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 2);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask1);
|
||||
|
||||
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
||||
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 1);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask0);
|
||||
|
||||
//return REG1 | (REG2 << 1);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 1);
|
||||
Reg2 = _mm_srli_si128(Reg2, 8);
|
||||
Reg1 = _mm_or_si128(Reg1, Reg2);
|
||||
|
||||
return Reg1;
|
||||
}
|
||||
|
||||
namespace bitfieldInterleave
|
||||
{
|
||||
inline glm::uint64 fastBitfieldInterleave(glm::uint32 x, glm::uint32 y)
|
||||
{
|
||||
glm::uint64 REG1;
|
||||
glm::uint64 REG2;
|
||||
|
||||
REG1 = x;
|
||||
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
||||
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
||||
|
||||
REG2 = y;
|
||||
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
||||
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
||||
|
||||
return REG1 | (REG2 << 1);
|
||||
}
|
||||
|
||||
inline glm::uint64 interleaveBitfieldInterleave(glm::uint32 x, glm::uint32 y)
|
||||
{
|
||||
glm::uint64 REG1;
|
||||
glm::uint64 REG2;
|
||||
|
||||
REG1 = x;
|
||||
REG2 = y;
|
||||
|
||||
REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
|
||||
REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
|
||||
REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
|
||||
REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
||||
REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
||||
|
||||
REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
||||
REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
||||
|
||||
return REG1 | (REG2 << 1);
|
||||
}
|
||||
|
||||
inline glm::uint64 loopBitfieldInterleave(glm::uint32 x, glm::uint32 y)
|
||||
{
|
||||
static glm::uint64 const Mask[5] =
|
||||
{
|
||||
0x5555555555555555,
|
||||
0x3333333333333333,
|
||||
0x0F0F0F0F0F0F0F0F,
|
||||
0x00FF00FF00FF00FF,
|
||||
0x0000FFFF0000FFFF
|
||||
};
|
||||
|
||||
glm::uint64 REG1 = x;
|
||||
glm::uint64 REG2 = y;
|
||||
for(int i = 4; i >= 0; --i)
|
||||
{
|
||||
REG1 = ((REG1 << (1 << i)) | REG1) & Mask[i];
|
||||
REG2 = ((REG2 << (1 << i)) | REG2) & Mask[i];
|
||||
}
|
||||
|
||||
return REG1 | (REG2 << 1);
|
||||
}
|
||||
|
||||
inline glm::uint64 sseBitfieldInterleave(glm::uint32 x, glm::uint32 y)
|
||||
{
|
||||
GLM_ALIGN(16) glm::uint32 const Array[4] = {x, 0, y, 0};
|
||||
|
||||
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF);
|
||||
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF);
|
||||
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F);
|
||||
__m128i const Mask1 = _mm_set1_epi32(0x33333333);
|
||||
__m128i const Mask0 = _mm_set1_epi32(0x55555555);
|
||||
|
||||
__m128i Reg1;
|
||||
__m128i Reg2;
|
||||
|
||||
// REG1 = x;
|
||||
// REG2 = y;
|
||||
Reg1 = _mm_load_si128((__m128i*)Array);
|
||||
|
||||
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
Reg2 = _mm_slli_si128(Reg1, 2);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask4);
|
||||
|
||||
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
Reg2 = _mm_slli_si128(Reg1, 1);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask3);
|
||||
|
||||
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 4);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask2);
|
||||
|
||||
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
||||
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 2);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask1);
|
||||
|
||||
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
||||
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 1);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask0);
|
||||
|
||||
//return REG1 | (REG2 << 1);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 1);
|
||||
Reg2 = _mm_srli_si128(Reg2, 8);
|
||||
Reg1 = _mm_or_si128(Reg1, Reg2);
|
||||
|
||||
GLM_ALIGN(16) glm::uint64 Result[2];
|
||||
_mm_store_si128((__m128i*)Result, Reg1);
|
||||
|
||||
return Result[0];
|
||||
}
|
||||
|
||||
inline glm::uint64 sseUnalignedBitfieldInterleave(glm::uint32 x, glm::uint32 y)
|
||||
{
|
||||
glm::uint32 const Array[4] = {x, 0, y, 0};
|
||||
|
||||
__m128i const Mask4 = _mm_set1_epi32(0x0000FFFF);
|
||||
__m128i const Mask3 = _mm_set1_epi32(0x00FF00FF);
|
||||
__m128i const Mask2 = _mm_set1_epi32(0x0F0F0F0F);
|
||||
__m128i const Mask1 = _mm_set1_epi32(0x33333333);
|
||||
__m128i const Mask0 = _mm_set1_epi32(0x55555555);
|
||||
|
||||
__m128i Reg1;
|
||||
__m128i Reg2;
|
||||
|
||||
// REG1 = x;
|
||||
// REG2 = y;
|
||||
Reg1 = _mm_loadu_si128((__m128i*)Array);
|
||||
|
||||
//REG1 = ((REG1 << 16) | REG1) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
//REG2 = ((REG2 << 16) | REG2) & glm::uint64(0x0000FFFF0000FFFF);
|
||||
Reg2 = _mm_slli_si128(Reg1, 2);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask4);
|
||||
|
||||
//REG1 = ((REG1 << 8) | REG1) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
//REG2 = ((REG2 << 8) | REG2) & glm::uint64(0x00FF00FF00FF00FF);
|
||||
Reg2 = _mm_slli_si128(Reg1, 1);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask3);
|
||||
|
||||
//REG1 = ((REG1 << 4) | REG1) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
//REG2 = ((REG2 << 4) | REG2) & glm::uint64(0x0F0F0F0F0F0F0F0F);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 4);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask2);
|
||||
|
||||
//REG1 = ((REG1 << 2) | REG1) & glm::uint64(0x3333333333333333);
|
||||
//REG2 = ((REG2 << 2) | REG2) & glm::uint64(0x3333333333333333);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 2);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask1);
|
||||
|
||||
//REG1 = ((REG1 << 1) | REG1) & glm::uint64(0x5555555555555555);
|
||||
//REG2 = ((REG2 << 1) | REG2) & glm::uint64(0x5555555555555555);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 1);
|
||||
Reg1 = _mm_or_si128(Reg2, Reg1);
|
||||
Reg1 = _mm_and_si128(Reg1, Mask0);
|
||||
|
||||
//return REG1 | (REG2 << 1);
|
||||
Reg2 = _mm_slli_epi32(Reg1, 1);
|
||||
Reg2 = _mm_srli_si128(Reg2, 8);
|
||||
Reg1 = _mm_or_si128(Reg1, Reg2);
|
||||
|
||||
glm::uint64 Result[2];
|
||||
_mm_storeu_si128((__m128i*)Result, Reg1);
|
||||
|
||||
return Result[0];
|
||||
}
|
||||
|
||||
int test()
|
||||
{
|
||||
glm::uint32 x_max = 1 << 13;
|
||||
|
@ -514,11 +380,36 @@ namespace bitfieldInterleave
|
|||
glm::uint64 D = interleaveBitfieldInterleave(x, y);
|
||||
glm::uint64 E = sseBitfieldInterleave(x, y);
|
||||
glm::uint64 F = sseUnalignedBitfieldInterleave(x, y);
|
||||
|
||||
assert(A == B);
|
||||
assert(A == C);
|
||||
assert(A == D);
|
||||
assert(A == E);
|
||||
assert(A == F);
|
||||
|
||||
# if(GLM_ARCH != GLM_ARCH_PURE)
|
||||
__m128i G = _mm_bit_interleave_si128(_mm_set_epi32(0, y, 0, x));
|
||||
glm::uint64 Result[2];
|
||||
_mm_storeu_si128((__m128i*)Result, G);
|
||||
assert(A == Result[0]);
|
||||
# endif//(GLM_ARCH != GLM_ARCH_PURE)
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
for(glm::uint8 y = 0; y < 127; ++y)
|
||||
for(glm::uint8 x = 0; x < 127; ++x)
|
||||
{
|
||||
glm::uint64 A(glm::bitfieldInterleave(glm::uint8(x), glm::uint8(y)));
|
||||
glm::uint64 B(glm::bitfieldInterleave(glm::uint16(x), glm::uint16(y)));
|
||||
glm::uint64 C(glm::bitfieldInterleave(glm::uint32(x), glm::uint32(y)));
|
||||
|
||||
glm::int64 D(glm::bitfieldInterleave(glm::int8(x), glm::int8(y)));
|
||||
glm::int64 E(glm::bitfieldInterleave(glm::int16(x), glm::int16(y)));
|
||||
glm::int64 F(glm::bitfieldInterleave(glm::int32(x), glm::int32(y)));
|
||||
|
||||
assert(D == E);
|
||||
assert(D == F);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -588,6 +479,7 @@ namespace bitfieldInterleave
|
|||
std::cout << "sseUnalignedBitfieldInterleave Time " << Time << " clocks" << std::endl;
|
||||
}
|
||||
|
||||
# if(GLM_ARCH != GLM_ARCH_PURE)
|
||||
{
|
||||
// SIMD
|
||||
glm::int32 simd_x_max = 1 << 13;
|
||||
|
@ -601,14 +493,13 @@ namespace bitfieldInterleave
|
|||
std::clock_t LastTime = std::clock();
|
||||
|
||||
for(std::size_t i = 0; i < Data.size(); ++i)
|
||||
SimdData[i] = _mm_bit_interleave_si128(SimdParam[i]);
|
||||
SimdData[i] = glm::detail::_mm_bit_interleave_si128(SimdParam[i]);
|
||||
|
||||
std::clock_t Time = std::clock() - LastTime;
|
||||
|
||||
std::cout << "_mm_bit_interleave_si128 Time " << Time << " clocks" << std::endl;
|
||||
}
|
||||
|
||||
|
||||
# endif//(GLM_ARCH != GLM_ARCH_PURE)
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -616,18 +507,10 @@ namespace bitfieldInterleave
|
|||
|
||||
int main()
|
||||
{
|
||||
//__m64 REG3 = _mm_set1_pi32(static_cast<int>(0x80000000));
|
||||
//__m64 REG1 = _mm_set1_pi32(0xFFFFFFFF);
|
||||
//__m64 REG2 = _mm_set1_pi32(0x55555555);
|
||||
//__m128i REG = _mm_set_epi64(REG1, REG2);
|
||||
|
||||
|
||||
int Error = 0;
|
||||
Error += ::bitfieldInterleave::test();
|
||||
Error += ::extractField::test();
|
||||
Error += ::bitRevert::test();
|
||||
|
||||
while(true);
|
||||
|
||||
return Error;
|
||||
}
|
||||
|
|
Loading…
Add table
Reference in a new issue