mirror of
https://github.com/g-truc/glm.git
synced 2025-04-06 22:15:00 +00:00
Updated fast versions
This commit is contained in:
parent
a53acffaf4
commit
f2a8d5a976
2 changed files with 30 additions and 8 deletions
|
@ -379,6 +379,12 @@ namespace glm
|
|||
detail::fvec4SIMD simdNormalize(
|
||||
detail::fvec4SIMD const & x);
|
||||
|
||||
//! Returns a vector in the same direction as x but with length of 1.
|
||||
//! Less accurate but much faster than simdNormalize.
|
||||
//! (From GLM_GTX_simd_vec4 extension, geometry functions)
|
||||
detail::fvec4SIMD simdFastNormalize(
|
||||
detail::fvec4SIMD const & x);
|
||||
|
||||
//! If dot(Nref, I) < 0.0, return N, otherwise, return -N.
|
||||
//! (From GLM_GTX_simd_vec4 extension, geometry functions)
|
||||
detail::fvec4SIMD simdFaceforward(
|
||||
|
@ -407,12 +413,14 @@ namespace glm
|
|||
detail::fvec4SIMD simdSqrt(
|
||||
detail::fvec4SIMD const & x);
|
||||
|
||||
//! Returns the positive square root of x with the nicest quality but very slow
|
||||
//! Returns the positive square root of x with the nicest quality but very slow.
|
||||
//! Slightly more accurate but much slower than simdSqrt.
|
||||
//! (From GLM_GTX_simd_vec4 extension, exponential function)
|
||||
detail::fvec4SIMD simdNiceSqrt(
|
||||
detail::fvec4SIMD const & x);
|
||||
|
||||
//! Returns the positive square root of x but less accurate than simdSqrt but much faster.
|
||||
//! Returns the positive square root of x
|
||||
//! Less accurate but much faster than simdSqrt.
|
||||
//! (From GLM_GTX_simd_vec4 extension, exponential function)
|
||||
detail::fvec4SIMD simdFastSqrt(
|
||||
detail::fvec4SIMD const & x);
|
||||
|
@ -422,8 +430,8 @@ namespace glm
|
|||
detail::fvec4SIMD simdInversesqrt(
|
||||
detail::fvec4SIMD const & x);
|
||||
|
||||
//! Returns the reciprocal of the positive square root of x,
|
||||
//! faster than simdInversesqrt but less accurate.
|
||||
//! Returns the reciprocal of the positive square root of x.
|
||||
//! Faster than simdInversesqrt but less accurate.
|
||||
//! (From GLM_GTX_simd_vec4 extension, exponential function)
|
||||
detail::fvec4SIMD simdFastInversesqrt(
|
||||
detail::fvec4SIMD const & x);
|
||||
|
|
|
@ -585,7 +585,7 @@ namespace glm
|
|||
detail::fvec4SIMD const & y
|
||||
)
|
||||
{
|
||||
return detail::sse_dot_ss(x.Data, y.Data);
|
||||
return detail::sse_dot_ps(x.Data, y.Data);
|
||||
}
|
||||
|
||||
inline detail::fvec4SIMD simdCross
|
||||
|
@ -602,7 +602,21 @@ namespace glm
|
|||
detail::fvec4SIMD const & x
|
||||
)
|
||||
{
|
||||
return detail::sse_nrm_ps(x.Data);
|
||||
__m128 dot0 = detail::sse_dot_ps(x.Data, x.Data);
|
||||
__m128 isr0 = simdInversesqrt(dot0).Data;
|
||||
__m128 mul0 = _mm_mul_ps(x.Data, isr0);
|
||||
return mul0;
|
||||
}
|
||||
|
||||
inline detail::fvec4SIMD simdFastNormalize
|
||||
(
|
||||
detail::fvec4SIMD const & x
|
||||
)
|
||||
{
|
||||
__m128 dot0 = detail::sse_dot_ps(x.Data, x.Data);
|
||||
__m128 isr0 = simdFastInversesqrt(dot0).Data;
|
||||
__m128 mul0 = _mm_mul_ps(x.Data, isr0);
|
||||
return mul0;
|
||||
}
|
||||
|
||||
inline detail::fvec4SIMD simdFaceforward
|
||||
|
@ -636,7 +650,7 @@ namespace glm
|
|||
|
||||
inline detail::fvec4SIMD simdSqrt(detail::fvec4SIMD const & x)
|
||||
{
|
||||
return _mm_mul_ps(simdInversesqrt(x.Data), x.Data);
|
||||
return _mm_mul_ps(simdInversesqrt(x.Data).Data, x.Data);
|
||||
}
|
||||
|
||||
inline detail::fvec4SIMD simdNiceSqrt(detail::fvec4SIMD const & x)
|
||||
|
@ -646,7 +660,7 @@ namespace glm
|
|||
|
||||
inline detail::fvec4SIMD simdFastSqrt(detail::fvec4SIMD const & x)
|
||||
{
|
||||
return _mm_mul_ps(simdFastInversesqrt(x.Data), x.Data);
|
||||
return _mm_mul_ps(simdFastInversesqrt(x.Data).Data, x.Data);
|
||||
}
|
||||
|
||||
// SSE scalar reciprocal sqrt using rsqrt op, plus one Newton-Rhaphson iteration
|
||||
|
|
Loading…
Add table
Reference in a new issue