diff --git a/icu4c/source/i18n/astro.cpp b/icu4c/source/i18n/astro.cpp
index 13ebb0a0e07..11f24caa058 100644
--- a/icu4c/source/i18n/astro.cpp
+++ b/icu4c/source/i18n/astro.cpp
@@ -242,7 +242,7 @@ inline static double normPI(double angle) {
* @deprecated ICU 2.4. This class may be removed or modified.
*/
CalendarAstronomer::CalendarAstronomer():
- fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(false) {
+ fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(false) {
clearCache();
}
@@ -252,30 +252,7 @@ CalendarAstronomer::CalendarAstronomer():
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
-CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(false) {
- clearCache();
-}
-
-/**
- * Construct a new CalendarAstronomer
object with the given
- * latitude and longitude. The object's time is set to the current
- * date and time.
- *
- * @param longitude The desired longitude, in degrees east of
- * the Greenwich meridian.
- *
- * @param latitude The desired latitude, in degrees. Positive
- * values signify North, negative South.
- *
- * @see java.util.Date#getTime()
- * @internal
- * @deprecated ICU 2.4. This class may be removed or modified.
- */
-CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) :
- fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(false) {
- fLongitude = normPI(longitude * (double)DEG_RAD);
- fLatitude = normPI(latitude * (double)DEG_RAD);
- fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2);
+CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), moonPosition(0,0), moonPositionSet(false) {
clearCache();
}
@@ -301,31 +278,9 @@ CalendarAstronomer::~CalendarAstronomer()
*/
void CalendarAstronomer::setTime(UDate aTime) {
fTime = aTime;
- U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset)));
clearCache();
}
-/**
- * Set the current date and time of this
- * @param desired The desired longitude.
- * @param next true if the next occurrence of the phase
- * is desired, false for the previous occurrence.
- * @internal
- * @deprecated ICU 2.4. This class may be removed or modified.
- */
-UDate CalendarAstronomer::getMoonTime(double desired, UBool next)
-{
- MoonTimeAngleFunc func;
- return timeOfAngle( func,
- desired,
- SYNODIC_MONTH,
- MINUTE_MS,
- next);
-}
-
/**
* Find the next or previous time at which the moon will be in the
* desired phase.
@@ -1265,31 +684,12 @@ UDate CalendarAstronomer::getMoonTime(double desired, UBool next)
* @deprecated ICU 2.4. This class may be removed or modified.
*/
UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) {
- return getMoonTime(desired.value, next);
-}
-
-class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
-public:
- virtual ~MoonRiseSetCoordFunc();
- virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer& a) override { result = a.getMoonPosition(); }
-};
-
-MoonRiseSetCoordFunc::~MoonRiseSetCoordFunc() {}
-
-/**
- * Returns the time (GMT) of sunrise or sunset on the local date to which
- * this calendar is currently set.
- * @internal
- * @deprecated ICU 2.4. This class may be removed or modified.
- */
-UDate CalendarAstronomer::getMoonRiseSet(UBool rise)
-{
- MoonRiseSetCoordFunc func;
- return riseOrSet(func,
- rise,
- .533 * DEG_RAD, // Angular Diameter
- 34 /60.0 * DEG_RAD, // Refraction correction
- MINUTE_MS); // Desired accuracy
+ MoonTimeAngleFunc func;
+ return timeOfAngle( func,
+ desired.value,
+ SYNODIC_MONTH,
+ MINUTE_MS,
+ next);
}
//-------------------------------------------------------------------------
@@ -1364,48 +764,7 @@ UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired,
return fTime;
}
-UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise,
- double diameter, double refraction,
- double epsilon)
-{
- Equatorial pos;
- double tanL = ::tan(fLatitude);
- double deltaT = 0;
- int32_t count = 0;
-
- //
- // Calculate the object's position at the current time, then use that
- // position to calculate the time of rising or setting. The position
- // will be different at that time, so iterate until the error is allowable.
- //
- U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n",
- rise?"T":"F", diameter, refraction, epsilon));
- do {
- // See "Practical Astronomy With Your Calculator, section 33.
- func.eval(pos, *this);
- double angle = ::acos(-tanL * ::tan(pos.declination));
- double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2;
-
- // Convert from LST to Universal Time.
- UDate newTime = lstToUT( lst );
-
- deltaT = newTime - fTime;
- setTime(newTime);
- U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf, A=%.3lf/D=%.3lf\n",
- count, deltaT, angle, lst, pos.ascension, pos.declination));
- }
- while (++ count < 5 && uprv_fabs(deltaT) > epsilon);
-
- // Calculate the correction due to refraction and the object's angular diameter
- double cosD = ::cos(pos.declination);
- double psi = ::acos(sin(fLatitude) / cosD);
- double x = diameter / 2 + refraction;
- double y = ::asin(sin(x) / ::sin(psi));
- long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS);
-
- return fTime + (rise ? -delta : delta);
-}
- /**
+/**
* Return the obliquity of the ecliptic (the angle between the ecliptic
* and the earth's equator) at the current time. This varies due to
* the precession of the earth's axis.
@@ -1414,19 +773,16 @@ UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise,
* measured in radians.
*/
double CalendarAstronomer::eclipticObliquity() {
- if (isINVALID(eclipObliquity)) {
- const double epoch = 2451545.0; // 2000 AD, January 1.5
+ const double epoch = 2451545.0; // 2000 AD, January 1.5
- double T = (getJulianDay() - epoch) / 36525;
+ double T = (getJulianDay() - epoch) / 36525;
- eclipObliquity = 23.439292
- - 46.815/3600 * T
- - 0.0006/3600 * T*T
- + 0.00181/3600 * T*T*T;
+ double eclipObliquity = 23.439292
+ - 46.815/3600 * T
+ - 0.0006/3600 * T*T
+ + 0.00181/3600 * T*T*T;
- eclipObliquity *= DEG_RAD;
- }
- return eclipObliquity;
+ return eclipObliquity * DEG_RAD;
}
@@ -1437,45 +793,13 @@ void CalendarAstronomer::clearCache() {
const double INVALID = uprv_getNaN();
julianDay = INVALID;
- julianCentury = INVALID;
sunLongitude = INVALID;
meanAnomalySun = INVALID;
- moonLongitude = INVALID;
moonEclipLong = INVALID;
- meanAnomalyMoon = INVALID;
- eclipObliquity = INVALID;
- siderealTime = INVALID;
- siderealT0 = INVALID;
+
moonPositionSet = false;
}
-//private static void out(String s) {
-// System.out.println(s);
-//}
-
-//private static String deg(double rad) {
-// return Double.toString(rad * RAD_DEG);
-//}
-
-//private static String hours(long ms) {
-// return Double.toString((double)ms / HOUR_MS) + " hours";
-//}
-
-/**
- * @internal
- * @deprecated ICU 2.4. This class may be removed or modified.
- */
-/*UDate CalendarAstronomer::local(UDate localMillis) {
- // TODO - srl ?
- TimeZone *tz = TimeZone::createDefault();
- int32_t rawOffset;
- int32_t dstOffset;
- UErrorCode status = U_ZERO_ERROR;
- tz->getOffset(localMillis, true, rawOffset, dstOffset, status);
- delete tz;
- return localMillis - rawOffset;
-}*/
-
// Debugging functions
UnicodeString CalendarAstronomer::Ecliptic::toString() const
{
@@ -1500,34 +824,6 @@ UnicodeString CalendarAstronomer::Equatorial::toString() const
#endif
}
-UnicodeString CalendarAstronomer::Horizon::toString() const
-{
-#ifdef U_DEBUG_ASTRO
- char tmp[800];
- snprintf(tmp, sizeof(tmp), "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG);
- return UnicodeString(tmp, "");
-#else
- return UnicodeString();
-#endif
-}
-
-
-// static private String radToHms(double angle) {
-// int hrs = (int) (angle*RAD_HOUR);
-// int min = (int)((angle*RAD_HOUR - hrs) * 60);
-// int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600);
-
-// return Integer.toString(hrs) + "h" + min + "m" + sec + "s";
-// }
-
-// static private String radToDms(double angle) {
-// int deg = (int) (angle*RAD_DEG);
-// int min = (int)((angle*RAD_DEG - deg) * 60);
-// int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600);
-
-// return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\"";
-// }
-
// =============== Calendar Cache ================
void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) {
diff --git a/icu4c/source/i18n/astro.h b/icu4c/source/i18n/astro.h
index 158e390d00c..ef297c4b3cc 100644
--- a/icu4c/source/i18n/astro.h
+++ b/icu4c/source/i18n/astro.h
@@ -31,7 +31,7 @@ U_NAMESPACE_BEGIN
* at a given moment in time. Accordingly, each
* Almost all of the calculations performed by this class, or by any
@@ -72,7 +72,6 @@ public:
* value without worrying about whether other code will modify them.
*
* @see CalendarAstronomer.Equatorial
- * @see CalendarAstronomer.Horizon
* @internal
*/
class U_I18N_API Ecliptic : public UMemory {
@@ -141,7 +140,6 @@ public:
* value without worrying about whether other code will modify them.
*
* @see CalendarAstronomer.Ecliptic
- * @see CalendarAstronomer.Horizon
* @internal
*/
class U_I18N_API Equatorial : public UMemory {
@@ -201,66 +199,6 @@ public:
double declination;
};
- /**
- * Represents the position of an object in the sky relative to
- * the local horizon.
- * The Altitude represents the object's elevation above the horizon,
- * with objects below the horizon having a negative altitude.
- * The Azimuth is the geographic direction of the object from the
- * observer's position, with 0 representing north. The azimuth increases
- * clockwise from north.
- *
- * Note that Horizon objects are immutable and cannot be modified
- * once they are constructed. This allows them to be passed and returned by
- * value without worrying about whether other code will modify them.
- *
- * @see CalendarAstronomer.Ecliptic
- * @see CalendarAstronomer.Equatorial
- * @internal
- */
- class U_I18N_API Horizon : public UMemory {
- public:
- /**
- * Constructs a Horizon coordinate object.
- *
- * @param alt The altitude, measured in radians above the horizon.
- * @param azim The azimuth, measured in radians clockwise from north.
- * @internal
- */
- Horizon(double alt=0, double azim=0)
- : altitude(alt), azimuth(azim) { }
-
- /**
- * Setter for Ecliptic Coordinate object
- * @param alt The altitude, measured in radians above the horizon.
- * @param azim The azimuth, measured in radians clockwise from north.
- * @internal
- */
- void set(double alt, double azim) {
- altitude = alt;
- azimuth = azim;
- }
-
- /**
- * Return a string representation of this object, with the
- * angles measured in degrees.
- * @internal
- */
- UnicodeString toString() const;
-
- /**
- * The object's altitude above the horizon, in radians.
- * @internal
- */
- double altitude;
-
- /**
- * The object's direction, in radians clockwise from north.
- * @internal
- */
- double azimuth;
- };
-
public:
//-------------------------------------------------------------------------
// Assorted private data used for conversions
@@ -300,22 +238,6 @@ public:
*/
CalendarAstronomer(UDate d);
- /**
- * Construct a new
- * @param longitude The desired longitude, in degrees east of
- * the Greenwich meridian.
- *
- * @param latitude The desired latitude, in degrees. Positive
- * values signify North, negative South.
- *
- * @see java.util.Date#getTime()
- * @internal
- */
- CalendarAstronomer(double longitude, double latitude);
-
/**
* Destructor
* @internal
@@ -333,48 +255,17 @@ public:
* @param aTime the date and time, expressed as the number of milliseconds since
* 1/1/1970 0:00 GMT (Gregorian).
*
- * @see #setDate
* @see #getTime
* @internal
*/
void setTime(UDate aTime);
-
- /**
- * Set the current date and time of this
- * @param longitude The desired longitude, in degrees east of
- * the Greenwich meridian.
- *
- * @param latitude The desired latitude, in degrees. Positive
- * values signify North, negative South.
- *
- * @see java.util.Date#getTime()
- * @internal
- */
- public CalendarAstronomer(double longitude, double latitude) {
- this();
- fLongitude = normPI(longitude * DEG_RAD);
- fLatitude = normPI(latitude * DEG_RAD);
- fGmtOffset = (long)(fLongitude * 24 * HOUR_MS / PI2);
- }
-
-
//-------------------------------------------------------------------------
// Time and date getters and setters
//-------------------------------------------------------------------------
-
/**
* Set the current date and time of this
- * Note that Horizon objects are immutable and cannot be modified
- * once they are constructed. This allows them to be passed and returned by
- * value without worrying about whether other code will modify them.
- *
- * @see CalendarAstronomer.Ecliptic
- * @see CalendarAstronomer.Equatorial
- * @internal
- */
- public static final class Horizon {
- /**
- * Constructs a Horizon coordinate object.
- *
- * @param alt The altitude, measured in radians above the horizon.
- * @param azim The azimuth, measured in radians clockwise from north.
- * @internal
- */
- public Horizon(double alt, double azim) {
- altitude = alt;
- azimuth = azim;
- }
-
- /**
- * Return a string representation of this object, with the
- * angles measured in degrees.
- * @internal
- */
- @Override
- public String toString() {
- return Double.toString(altitude*RAD_DEG) + "," + (azimuth*RAD_DEG);
- }
-
- /**
- * The object's altitude above the horizon, in radians.
- * @internal
- */
- public final double altitude;
-
- /**
- * The object's direction, in radians clockwise from north.
- * @internal
- */
- public final double azimuth;
- }
-
static private String radToHms(double angle) {
int hrs = (int) (angle*RAD_HOUR);
int min = (int)((angle*RAD_HOUR - hrs) * 60);
diff --git a/icu4j/main/core/src/main/java/com/ibm/icu/util/ChineseCalendar.java b/icu4j/main/core/src/main/java/com/ibm/icu/util/ChineseCalendar.java
index c21f02833e4..d136b9d7fe0 100644
--- a/icu4j/main/core/src/main/java/com/ibm/icu/util/ChineseCalendar.java
+++ b/icu4j/main/core/src/main/java/com/ibm/icu/util/ChineseCalendar.java
@@ -110,12 +110,6 @@ public class ChineseCalendar extends Calendar {
*/
private TimeZone zoneAstro;
- /**
- * We have one instance per object, and we don't synchronize it because
- * Calendar doesn't support multithreaded execution in the first place.
- */
- private transient CalendarAstronomer astro = new CalendarAstronomer();
-
/**
* Cache that maps Gregorian year to local days of winter solstice.
* @see #winterSolstice
@@ -709,10 +703,9 @@ public class ChineseCalendar extends Calendar {
// PST 1298 with a final result of Dec 14 10:31:59 PST 1299.
long ms = daysToMillis(computeGregorianMonthStart(gyear, DECEMBER) +
1 - EPOCH_JULIAN_DAY);
- astro.setTime(ms);
// Winter solstice is 270 degrees solar longitude aka Dongzhi
- long solarLong = astro.getSunTime(CalendarAstronomer.WINTER_SOLSTICE,
+ long solarLong = (new CalendarAstronomer(ms)).getSunTime(CalendarAstronomer.WINTER_SOLSTICE,
true);
cacheValue = millisToDays(solarLong);
winterSolsticeCache.put(gyear, cacheValue);
@@ -730,9 +723,7 @@ public class ChineseCalendar extends Calendar {
* new moon after or before CalendarAstronomer
object. All
- * astronomical calculations are performed based on this time setting.
- *
- * @param jdn the desired time, expressed as a "julian day number",
- * which is the number of elapsed days since
- * 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day
- * numbers start at noon. To get the jdn for
- * the corresponding midnight, subtract 0.5.
- *
- * @see #getJulianDay
- * @see #JULIAN_EPOCH_MS
- * @internal
- * @deprecated ICU 2.4. This class may be removed or modified.
- */
-void CalendarAstronomer::setJulianDay(double jdn) {
- fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS;
- clearCache();
- julianDay = jdn;
-}
-
/**
* Get the current time of this CalendarAstronomer
object,
* represented as the number of milliseconds since
@@ -357,97 +312,10 @@ double CalendarAstronomer::getJulianDay() {
return julianDay;
}
-/**
- * Return this object's time expressed in julian centuries:
- * the number of centuries after 1/1/1900 AD, 12:00 GMT
- *
- * @see #getJulianDay
- * @internal
- * @deprecated ICU 2.4. This class may be removed or modified.
- */
-double CalendarAstronomer::getJulianCentury() {
- if (isINVALID(julianCentury)) {
- julianCentury = (getJulianDay() - 2415020.0) / 36525.0;
- }
- return julianCentury;
-}
-
-/**
- * Returns the current Greenwich sidereal time, measured in hours
- * @internal
- * @deprecated ICU 2.4. This class may be removed or modified.
- */
-double CalendarAstronomer::getGreenwichSidereal() {
- if (isINVALID(siderealTime)) {
- // See page 86 of "Practical Astronomy with your Calculator",
- // by Peter Duffet-Smith, for details on the algorithm.
-
- double UT = normalize(fTime/(double)HOUR_MS, 24.);
-
- siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.);
- }
- return siderealTime;
-}
-
-double CalendarAstronomer::getSiderealOffset() {
- if (isINVALID(siderealT0)) {
- double JD = uprv_floor(getJulianDay() - 0.5) + 0.5;
- double S = JD - 2451545.0;
- double T = S / 36525.0;
- siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24);
- }
- return siderealT0;
-}
-
-/**
- * Returns the current local sidereal time, measured in hours
- * @internal
- * @deprecated ICU 2.4. This class may be removed or modified.
- */
-double CalendarAstronomer::getLocalSidereal() {
- return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.);
-}
-
-/**
- * Converts local sidereal time to Universal Time.
- *
- * @param lst The Local Sidereal Time, in hours since sidereal midnight
- * on this object's current date.
- *
- * @return The corresponding Universal Time, in milliseconds since
- * 1 Jan 1970, GMT.
- */
-double CalendarAstronomer::lstToUT(double lst) {
- // Convert to local mean time
- double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24);
-
- // Then find local midnight on this day
- double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset;
-
- //out(" lt =" + lt + " hours");
- //out(" base=" + new Date(base));
-
- return base + (long)(lt * HOUR_MS);
-}
-
-
//-------------------------------------------------------------------------
// Coordinate transformations, all based on the current time of this object
//-------------------------------------------------------------------------
-/**
- * Convert from ecliptic to equatorial coordinates.
- *
- * @param ecliptic A point in the sky in ecliptic coordinates.
- * @return The corresponding point in equatorial coordinates.
- * @internal
- * @deprecated ICU 2.4. This class may be removed or modified.
- */
-CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic)
-{
- return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude);
-}
-
/**
* Convert from ecliptic to equatorial coordinates.
*
@@ -479,46 +347,6 @@ CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(Calenda
return result;
}
-/**
- * Convert from ecliptic longitude to equatorial coordinates.
- *
- * @param eclipLong The ecliptic longitude
- *
- * @return The corresponding point in equatorial coordinates.
- * @internal
- * @deprecated ICU 2.4. This class may be removed or modified.
- */
-CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong)
-{
- return eclipticToEquatorial(result, eclipLong, 0); // TODO: optimize
-}
-
-/**
- * @internal
- * @deprecated ICU 2.4. This class may be removed or modified.
- */
-CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong)
-{
- Equatorial equatorial;
- eclipticToEquatorial(equatorial, eclipLong);
-
- double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension; // Hour-angle
-
- double sinH = ::sin(H);
- double cosH = cos(H);
- double sinD = ::sin(equatorial.declination);
- double cosD = cos(equatorial.declination);
- double sinL = ::sin(fLatitude);
- double cosL = cos(fLatitude);
-
- double altitude = asin(sinD*sinL + cosD*cosL*cosH);
- double azimuth = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude));
-
- result.set(azimuth, altitude);
- return result;
-}
-
-
//-------------------------------------------------------------------------
// The Sun
//-------------------------------------------------------------------------
@@ -657,50 +485,6 @@ double CalendarAstronomer::getSunLongitude()
longitude = norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G);
}
-/**
- * The position of the sun at this object's current date and time,
- * in equatorial coordinates.
- * @internal
- * @deprecated ICU 2.4. This class may be removed or modified.
- */
-CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) {
- return eclipticToEquatorial(result, getSunLongitude(), 0);
-}
-
-
-/**
- * Constant representing the vernal equinox.
- * For use with {@link #getSunTime getSunTime}.
- * Note: In this case, "vernal" refers to the northern hemisphere's seasons.
- * @internal
- * @deprecated ICU 2.4. This class may be removed or modified.
- */
-/*double CalendarAstronomer::VERNAL_EQUINOX() {
- return 0;
-}*/
-
-/**
- * Constant representing the summer solstice.
- * For use with {@link #getSunTime getSunTime}.
- * Note: In this case, "summer" refers to the northern hemisphere's seasons.
- * @internal
- * @deprecated ICU 2.4. This class may be removed or modified.
- */
-double CalendarAstronomer::SUMMER_SOLSTICE() {
- return (CalendarAstronomer::PI/2);
-}
-
-/**
- * Constant representing the autumnal equinox.
- * For use with {@link #getSunTime getSunTime}.
- * Note: In this case, "autumn" refers to the northern hemisphere's seasons.
- * @internal
- * @deprecated ICU 2.4. This class may be removed or modified.
- */
-/*double CalendarAstronomer::AUTUMN_EQUINOX() {
- return (CalendarAstronomer::PI);
-}*/
-
/**
* Constant representing the winter solstice.
* For use with {@link #getSunTime getSunTime}.
@@ -738,310 +522,6 @@ UDate CalendarAstronomer::getSunTime(double desired, UBool next)
next);
}
-CalendarAstronomer::CoordFunc::~CoordFunc() {}
-
-class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
-public:
- virtual ~RiseSetCoordFunc();
- virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer& a) override { a.getSunPosition(result); }
-};
-
-RiseSetCoordFunc::~RiseSetCoordFunc() {}
-
-UDate CalendarAstronomer::getSunRiseSet(UBool rise)
-{
- UDate t0 = fTime;
-
- // Make a rough guess: 6am or 6pm local time on the current day
- double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS);
-
- U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset));
- setTime(noon + ((rise ? -6 : 6) * HOUR_MS));
- U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS)));
-
- RiseSetCoordFunc func;
- double t = riseOrSet(func,
- rise,
- .533 * DEG_RAD, // Angular Diameter
- 34. /60.0 * DEG_RAD, // Refraction correction
- MINUTE_MS / 12.); // Desired accuracy
-
- setTime(t0);
- return t;
-}
-
-// Commented out - currently unused. ICU 2.6, Alan
-// //-------------------------------------------------------------------------
-// // Alternate Sun Rise/Set
-// // See Duffett-Smith p.93
-// //-------------------------------------------------------------------------
-//
-// // This yields worse results (as compared to USNO data) than getSunRiseSet().
-// /**
-// * TODO Make this when the entire class is package-private.
-// */
-// /*public*/ long getSunRiseSet2(boolean rise) {
-// // 1. Calculate coordinates of the sun's center for midnight
-// double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
-// double[] sl = getSunLongitude(jd);// double lambda1 = sl[0];
-// Equatorial pos1 = eclipticToEquatorial(lambda1, 0);
-//
-// // 2. Add ... to lambda to get position 24 hours later
-// double lambda2 = lambda1 + 0.985647*DEG_RAD;
-// Equatorial pos2 = eclipticToEquatorial(lambda2, 0);
-//
-// // 3. Calculate LSTs of rising and setting for these two positions
-// double tanL = ::tan(fLatitude);
-// double H = ::acos(-tanL * ::tan(pos1.declination));
-// double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2;
-// double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2;
-// H = ::acos(-tanL * ::tan(pos2.declination));
-// double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
-// double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
-// if (lst1r > 24) lst1r -= 24;
-// if (lst1s > 24) lst1s -= 24;
-// if (lst2r > 24) lst2r -= 24;
-// if (lst2s > 24) lst2s -= 24;
-//
-// // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2.
-// double gst1r = lstToGst(lst1r);
-// double gst1s = lstToGst(lst1s);
-// double gst2r = lstToGst(lst2r);
-// double gst2s = lstToGst(lst2s);
-// if (gst1r > gst2r) gst2r += 24;
-// if (gst1s > gst2s) gst2s += 24;
-//
-// // 5. Calculate GST at 0h UT of this date
-// double t00 = utToGst(0);
-//
-// // 6. Calculate GST at 0h on the observer's longitude
-// double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.
-// double t00p = t00 - offset*1.002737909;
-// if (t00p < 0) t00p += 24; // do NOT normalize
-//
-// // 7. Adjust
-// if (gst1r < t00p) {
-// gst1r += 24;
-// gst2r += 24;
-// }
-// if (gst1s < t00p) {
-// gst1s += 24;
-// gst2s += 24;
-// }
-//
-// // 8.
-// double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r);
-// double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s);
-//
-// // 9. Correct for parallax, refraction, and sun's diameter
-// double dec = (pos1.declination + pos2.declination) / 2;
-// double psi = ::acos(sin(fLatitude) / cos(dec));
-// double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter
-// double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG;
-// double delta_t = 240 * y / cos(dec) / 3600; // hours
-//
-// // 10. Add correction to GSTs, subtract from GSTr
-// gstr -= delta_t;
-// gsts += delta_t;
-//
-// // 11. Convert GST to UT and then to local civil time
-// double ut = gstToUt(rise ? gstr : gsts);
-// //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t);
-// long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day
-// return midnight + (long) (ut * 3600000);
-// }
-
-// Commented out - currently unused. ICU 2.6, Alan
-// /**
-// * Convert local sidereal time to Greenwich sidereal time.
-// * Section 15. Duffett-Smith p.21
-// * @param lst in hours (0..24)
-// * @return GST in hours (0..24)
-// */
-// double lstToGst(double lst) {
-// double delta = fLongitude * 24 / CalendarAstronomer_PI2;
-// return normalize(lst - delta, 24);
-// }
-
-// Commented out - currently unused. ICU 2.6, Alan
-// /**
-// * Convert UT to GST on this date.
-// * Section 12. Duffett-Smith p.17
-// * @param ut in hours
-// * @return GST in hours
-// */
-// double utToGst(double ut) {
-// return normalize(getT0() + ut*1.002737909, 24);
-// }
-
-// Commented out - currently unused. ICU 2.6, Alan
-// /**
-// * Convert GST to UT on this date.
-// * Section 13. Duffett-Smith p.18
-// * @param gst in hours
-// * @return UT in hours
-// */
-// double gstToUt(double gst) {
-// return normalize(gst - getT0(), 24) * 0.9972695663;
-// }
-
-// Commented out - currently unused. ICU 2.6, Alan
-// double getT0() {
-// // Common computation for UT <=> GST
-//
-// // Find JD for 0h UT
-// double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
-//
-// double s = jd - 2451545.0;
-// double t = s / 36525.0;
-// double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t;
-// return t0;
-// }
-
-// Commented out - currently unused. ICU 2.6, Alan
-// //-------------------------------------------------------------------------
-// // Alternate Sun Rise/Set
-// // See sci.astro FAQ
-// // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html
-// //-------------------------------------------------------------------------
-//
-// // Note: This method appears to produce inferior accuracy as
-// // compared to getSunRiseSet().
-//
-// /**
-// * TODO Make this when the entire class is package-private.
-// */
-// /*public*/ long getSunRiseSet3(boolean rise) {
-//
-// // Compute day number for 0.0 Jan 2000 epoch
-// double d = (double)(time - EPOCH_2000_MS) / DAY_MS;
-//
-// // Now compute the Local Sidereal Time, LST:
-// //
-// double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/
-// fLongitude*RAD_DEG;
-// //
-// // (east long. positive). Note that LST is here expressed in degrees,
-// // where 15 degrees corresponds to one hour. Since LST really is an angle,
-// // it's convenient to use one unit---degrees---throughout.
-//
-// // COMPUTING THE SUN'S POSITION
-// // ----------------------------
-// //
-// // To be able to compute the Sun's rise/set times, you need to be able to
-// // compute the Sun's position at any time. First compute the "day
-// // number" d as outlined above, for the desired moment. Next compute:
-// //
-// double oblecl = 23.4393 - 3.563E-7 * d;
-// //
-// double w = 282.9404 + 4.70935E-5 * d;
-// double M = 356.0470 + 0.9856002585 * d;
-// double e = 0.016709 - 1.151E-9 * d;
-// //
-// // This is the obliquity of the ecliptic, plus some of the elements of
-// // the Sun's apparent orbit (i.e., really the Earth's orbit): w =
-// // argument of perihelion, M = mean anomaly, e = eccentricity.
-// // Semi-major axis is here assumed to be exactly 1.0 (while not strictly
-// // true, this is still an accurate approximation). Next compute E, the
-// // eccentric anomaly:
-// //
-// double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) );
-// //
-// // where E and M are in degrees. This is it---no further iterations are
-// // needed because we know e has a sufficiently small value. Next compute
-// // the true anomaly, v, and the distance, r:
-// //
-// /* r * cos(v) = */ double A = cos(E*DEG_RAD) - e;
-// /* r * ::sin(v) = */ double B = ::sqrt(1 - e*e) * ::sin(E*DEG_RAD);
-// //
-// // and
-// //
-// // r = sqrt( A*A + B*B )
-// double v = ::atan2( B, A )*RAD_DEG;
-// //
-// // The Sun's true longitude, slon, can now be computed:
-// //
-// double slon = v + w;
-// //
-// // Since the Sun is always at the ecliptic (or at least very very close to
-// // it), we can use simplified formulae to convert slon (the Sun's ecliptic
-// // longitude) to sRA and sDec (the Sun's RA and Dec):
-// //
-// // ::sin(slon) * cos(oblecl)
-// // tan(sRA) = -------------------------
-// // cos(slon)
-// //
-// // ::sin(sDec) = ::sin(oblecl) * ::sin(slon)
-// //
-// // As was the case when computing az, the Azimuth, if possible use an
-// // atan2() function to compute sRA.
-//
-// double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG;
-//
-// double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD);
-// double sDec = ::asin(sin_sDec)*RAD_DEG;
-//
-// // COMPUTING RISE AND SET TIMES
-// // ----------------------------
-// //
-// // To compute when an object rises or sets, you must compute when it
-// // passes the meridian and the HA of rise/set. Then the rise time is
-// // the meridian time minus HA for rise/set, and the set time is the
-// // meridian time plus the HA for rise/set.
-// //
-// // To find the meridian time, compute the Local Sidereal Time at 0h local
-// // time (or 0h UT if you prefer to work in UT) as outlined above---name
-// // that quantity LST0. The Meridian Time, MT, will now be:
-// //
-// // MT = RA - LST0
-// double MT = normalize(sRA - LST, 360);
-// //
-// // where "RA" is the object's Right Ascension (in degrees!). If negative,
-// // add 360 deg to MT. If the object is the Sun, leave the time as it is,
-// // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from
-// // sidereal to solar time. Now, compute HA for rise/set, name that
-// // quantity HA0:
-// //
-// // ::sin(h0) - ::sin(lat) * ::sin(Dec)
-// // cos(HA0) = ---------------------------------
-// // cos(lat) * cos(Dec)
-// //
-// // where h0 is the altitude selected to represent rise/set. For a purely
-// // mathematical horizon, set h0 = 0 and simplify to:
-// //
-// // cos(HA0) = - tan(lat) * tan(Dec)
-// //
-// // If you want to account for refraction on the atmosphere, set h0 = -35/60
-// // degrees (-35 arc minutes), and if you want to compute the rise/set times
-// // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes).
-// //
-// double h0 = -50/60 * DEG_RAD;
-//
-// double HA0 = ::acos(
-// (sin(h0) - ::sin(fLatitude) * sin_sDec) /
-// (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG;
-//
-// // When HA0 has been computed, leave it as it is for the Sun but multiply
-// // by 365.2422/366.2422 for stellar objects, to convert from sidereal to
-// // solar time. Finally compute:
-// //
-// // Rise time = MT - HA0
-// // Set time = MT + HA0
-// //
-// // convert the times from degrees to hours by dividing by 15.
-// //
-// // If you'd like to check that your calculations are accurate or just
-// // need a quick result, check the USNO's Sun or Moon Rise/Set Table,
-// // double
in the range
- * 0 <= phase < 1
, interpreted as follows:
- *
- *
- *
- * @see #getMoonAge
- * @internal
- * @deprecated ICU 2.4. This class may be removed or modified.
- */
-double CalendarAstronomer::getMoonPhase() {
- // See page 147 of "Practical Astronomy with your Calculator",
- // by Peter Duffet-Smith, for details on the algorithm.
- return 0.5 * (1 - cos(getMoonAge()));
-}
-
/**
* Constant representing a new moon.
* For use with {@link #getMoonTime getMoonTime}
@@ -1196,25 +654,6 @@ CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() {
return CalendarAstronomer::MoonAge(0);
}
-/**
- * Constant representing the moon's first quarter.
- * For use with {@link #getMoonTime getMoonTime}
- * @internal
- * @deprecated ICU 2.4. This class may be removed or modified.
- */
-/*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() {
- return CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2);
-}*/
-
-/**
- * Constant representing a full moon.
- * For use with {@link #getMoonTime getMoonTime}
- * @internal
- * @deprecated ICU 2.4. This class may be removed or modified.
- */
-CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() {
- return CalendarAstronomer::MoonAge(CalendarAstronomer::PI);
-}
/**
* Constant representing the moon's last quarter.
* For use with {@link #getMoonTime getMoonTime}
@@ -1234,26 +673,6 @@ MoonTimeAngleFunc::~MoonTimeAngleFunc() {}
return CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);
}*/
-/**
- * Find the next or previous time at which the Moon's ecliptic
- * longitude will have the desired value.
- * CalendarAstronomer
* object has a time
property that determines the date
* and time for which its calculations are performed. You can set and
- * retrieve this property with {@link #setDate setDate}, {@link #getDate getDate}
+ * retrieve this property with {@link #setTime setTime}, {@link #getTime getTime}
* and related methods.
* CalendarAstronomer
object with the given
- * latitude and longitude. The object's time is set to the current
- * date and time.
- * CalendarAstronomer
object. All
- * astronomical calculations are performed based on this time setting.
- *
- * @param aTime the date and time, expressed as the number of milliseconds since
- * 1/1/1970 0:00 GMT (Gregorian).
- *
- * @see #getTime
- * @internal
- */
- void setDate(UDate aDate) { setTime(aDate); }
-
- /**
- * Set the current date and time of this CalendarAstronomer
object. All
- * astronomical calculations are performed based on this time setting.
- *
- * @param jdn the desired time, expressed as a "julian day number",
- * which is the number of elapsed days since
- * 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day
- * numbers start at noon. To get the jdn for
- * the corresponding midnight, subtract 0.5.
- *
- * @see #getJulianDay
- * @see #JULIAN_EPOCH_MS
- * @internal
- */
- void setJulianDay(double jdn);
-
/**
* Get the current time of this CalendarAstronomer
object,
* represented as the number of milliseconds since
* 1/1/1970 AD 0:00 GMT (Gregorian).
*
* @see #setTime
- * @see #getDate
* @internal
*/
UDate getTime();
@@ -384,58 +275,12 @@ public:
* expressed as a "julian day number", which is the number of elapsed
* days since 1/1/4713 BC (Julian), 12:00 GMT.
*
- * @see #setJulianDay
* @see #JULIAN_EPOCH_MS
* @internal
*/
double getJulianDay();
- /**
- * Return this object's time expressed in julian centuries:
- * the number of centuries after 1/1/1900 AD, 12:00 GMT
- *
- * @see #getJulianDay
- * @internal
- */
- double getJulianCentury();
-
- /**
- * Returns the current Greenwich sidereal time, measured in hours
- * @internal
- */
- double getGreenwichSidereal();
-
-private:
- double getSiderealOffset();
public:
- /**
- * Returns the current local sidereal time, measured in hours
- * @internal
- */
- double getLocalSidereal();
-
- /**
- * Converts local sidereal time to Universal Time.
- *
- * @param lst The Local Sidereal Time, in hours since sidereal midnight
- * on this object's current date.
- *
- * @return The corresponding Universal Time, in milliseconds since
- * 1 Jan 1970, GMT.
- */
- //private:
- double lstToUT(double lst);
-
- /**
- *
- * Convert from ecliptic to equatorial coordinates.
- *
- * @param ecliptic The ecliptic
- * @param result Fillin result
- * @return reference to result
- */
- Equatorial& eclipticToEquatorial(Equatorial& result, const Ecliptic& ecliptic);
-
/**
* Convert from ecliptic to equatorial coordinates.
*
@@ -447,21 +292,6 @@ public:
*/
Equatorial& eclipticToEquatorial(Equatorial& result, double eclipLong, double eclipLat);
- /**
- * Convert from ecliptic longitude to equatorial coordinates.
- *
- * @param eclipLong The ecliptic longitude
- *
- * @return The corresponding point in equatorial coordinates.
- * @internal
- */
- Equatorial& eclipticToEquatorial(Equatorial& result, double eclipLong) ;
-
- /**
- * @internal
- */
- Horizon& eclipticToHorizon(Horizon& result, double eclipLong) ;
-
//-------------------------------------------------------------------------
// The Sun
//-------------------------------------------------------------------------
@@ -484,39 +314,7 @@ public:
*/
/*public*/ void getSunLongitude(double julianDay, double &longitude, double &meanAnomaly);
- /**
- * The position of the sun at this object's current date and time,
- * in equatorial coordinates.
- * @param result fillin for the result
- * @internal
- */
- Equatorial& getSunPosition(Equatorial& result);
-
public:
- /**
- * Constant representing the vernal equinox.
- * For use with {@link #getSunTime getSunTime}.
- * Note: In this case, "vernal" refers to the northern hemisphere's seasons.
- * @internal
- */
-// static double VERNAL_EQUINOX();
-
- /**
- * Constant representing the summer solstice.
- * For use with {@link #getSunTime getSunTime}.
- * Note: In this case, "summer" refers to the northern hemisphere's seasons.
- * @internal
- */
- static double SUMMER_SOLSTICE();
-
- /**
- * Constant representing the autumnal equinox.
- * For use with {@link #getSunTime getSunTime}.
- * Note: In this case, "autumn" refers to the northern hemisphere's seasons.
- * @internal
- */
-// static double AUTUMN_EQUINOX();
-
/**
* Constant representing the winter solstice.
* For use with {@link #getSunTime getSunTime}.
@@ -532,20 +330,6 @@ public:
*/
UDate getSunTime(double desired, UBool next);
- /**
- * Returns the time (GMT) of sunrise or sunset on the local date to which
- * this calendar is currently set.
- *
- * NOTE: This method only works well if this object is set to a
- * time near local noon. Because of variations between the local
- * official time zone and the geographic longitude, the
- * computation can flop over into an adjacent day if this object
- * is set to a time near local midnight.
- *
- * @internal
- */
- UDate getSunRiseSet(UBool rise);
-
//-------------------------------------------------------------------------
// The Moon
//-------------------------------------------------------------------------
@@ -569,22 +353,6 @@ public:
*/
double getMoonAge();
- /**
- * Calculate the phase of the moon at the time set in this object.
- * The returned phase is a double
in the range
- * 0 <= phase < 1
, interpreted as follows:
- *
- *
- *
- * @see #getMoonAge
- * @internal
- */
- double getMoonPhase();
-
class U_I18N_API MoonAge : public UMemory {
public:
MoonAge(double l)
@@ -600,27 +368,6 @@ public:
*/
static MoonAge NEW_MOON();
- /**
- * Constant representing the moon's first quarter.
- * For use with {@link #getMoonTime getMoonTime}
- * @internal
- */
-// static const MoonAge FIRST_QUARTER();
-
- /**
- * Constant representing a full moon.
- * For use with {@link #getMoonTime getMoonTime}
- * @internal
- */
- static MoonAge FULL_MOON();
-
- /**
- * Constant representing the moon's last quarter.
- * For use with {@link #getMoonTime getMoonTime}
- * @internal
- */
-// static const MoonAge LAST_QUARTER();
-
/**
* Find the next or previous time at which the Moon's ecliptic
* longitude will have the desired value.
@@ -630,21 +377,13 @@ public:
* is desired, false for the previous occurrence.
* @internal
*/
- UDate getMoonTime(double desired, UBool next);
UDate getMoonTime(const MoonAge& desired, UBool next);
- /**
- * Returns the time (GMT) of sunrise or sunset on the local date to which
- * this calendar is currently set.
- * @internal
- */
- UDate getMoonRiseSet(UBool rise);
-
//-------------------------------------------------------------------------
// Interpolation methods for finding the time at which a given event occurs
//-------------------------------------------------------------------------
- // private
+public:
class AngleFunc : public UMemory {
public:
virtual double eval(CalendarAstronomer&) = 0;
@@ -652,20 +391,10 @@ public:
};
friend class AngleFunc;
+private:
UDate timeOfAngle(AngleFunc& func, double desired,
double periodDays, double epsilon, UBool next);
- class CoordFunc : public UMemory {
- public:
- virtual void eval(Equatorial& result, CalendarAstronomer&) = 0;
- virtual ~CoordFunc();
- };
- friend class CoordFunc;
-
- double riseOrSet(CoordFunc& func, UBool rise,
- double diameter, double refraction,
- double epsilon);
-
//-------------------------------------------------------------------------
// Other utility methods
//-------------------------------------------------------------------------
@@ -691,29 +420,13 @@ private:
*/
UDate fTime;
- /* These aren't used yet, but they'll be needed for sunset calculations
- * and equatorial to horizon coordinate conversions
- */
- double fLongitude;
- double fLatitude;
- double fGmtOffset;
-
- //
// The following fields are used to cache calculated results for improved
// performance. These values all depend on the current time setting
// of this object, so the clearCache method is provided.
- //
-
double julianDay;
- double julianCentury;
double sunLongitude;
double meanAnomalySun;
- double moonLongitude;
double moonEclipLong;
- double meanAnomalyMoon;
- double eclipObliquity;
- double siderealT0;
- double siderealTime;
void clearCache();
diff --git a/icu4c/source/i18n/chnsecal.cpp b/icu4c/source/i18n/chnsecal.cpp
index 06a606c4c85..65886ba7088 100644
--- a/icu4c/source/i18n/chnsecal.cpp
+++ b/icu4c/source/i18n/chnsecal.cpp
@@ -53,11 +53,6 @@ static void debug_chnsecal_msg(const char *pat, ...)
#endif
-// --- The cache --
-static icu::UMutex astroLock;
-static icu::CalendarAstronomer *gAstronomer = nullptr;
-static icu::UInitOnce gAstronomerInitOnce {};
-
// Lazy Creation & Access synchronized by class CalendarCache with a mutex.
static icu::CalendarCache *gWinterSolsticeCache = nullptr;
static icu::CalendarCache *gNewYearCache = nullptr;
@@ -90,10 +85,6 @@ static const int32_t SYNODIC_GAP = 25;
U_CDECL_BEGIN
static UBool calendar_chinese_cleanup() {
- if (gAstronomer) {
- delete gAstronomer;
- gAstronomer = nullptr;
- }
if (gWinterSolsticeCache) {
delete gWinterSolsticeCache;
gWinterSolsticeCache = nullptr;
@@ -180,18 +171,8 @@ const TimeZone* getAstronomerTimeZone() {
return gAstronomerTimeZone;
}
-static void U_CALLCONV initAstronomer() {
- gAstronomer = new CalendarAstronomer();
- ucln_i18n_registerCleanup(UCLN_I18N_CHINESE_CALENDAR, calendar_chinese_cleanup);
-}
-
} // namespace anonymous
-icu::CalendarAstronomer* getAstronomer() {
- umtx_initOnce(gAstronomerInitOnce, &initAstronomer);
- return gAstronomer;
-}
-
//-------------------------------------------------------------------------
// Minimum / Maximum access functions
//-------------------------------------------------------------------------
@@ -602,13 +583,10 @@ int32_t winterSolstice(const TimeZone* timeZone, int32_t gyear) {
// PST 1298 with a final result of Dec 14 10:31:59 PST 1299.
double ms = daysToMillis(timeZone, Grego::fieldsToDay(gyear, UCAL_DECEMBER, 1));
- umtx_lock(&astroLock);
- getAstronomer()->setTime(ms);
- UDate solarLong = getAstronomer()->getSunTime(CalendarAstronomer::WINTER_SOLSTICE(), true);
- umtx_unlock(&astroLock);
-
// Winter solstice is 270 degrees solar longitude aka Dongzhi
- double days = millisToDays(timeZone, solarLong);
+ double days = millisToDays(timeZone,
+ CalendarAstronomer(ms)
+ .getSunTime(CalendarAstronomer::WINTER_SOLSTICE(), true));
if (days < INT32_MIN || days > INT32_MAX) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
@@ -633,11 +611,10 @@ int32_t winterSolstice(const TimeZone* timeZone, int32_t gyear) {
* new moon after or before days
*/
int32_t newMoonNear(const TimeZone* timeZone, double days, UBool after) {
- umtx_lock(&astroLock);
- getAstronomer()->setTime(daysToMillis(timeZone, days));
- UDate newMoon = getAstronomer()->getMoonTime(CalendarAstronomer::NEW_MOON(), after);
- umtx_unlock(&astroLock);
- return (int32_t) millisToDays(timeZone, newMoon);
+ return (int32_t) millisToDays(
+ timeZone,
+ CalendarAstronomer(daysToMillis(timeZone, days))
+ .getMoonTime(CalendarAstronomer::NEW_MOON(), after));
}
/**
@@ -660,13 +637,9 @@ int32_t synodicMonthsBetween(int32_t day1, int32_t day2) {
* @param days days after January 1, 1970 0:00 Asia/Shanghai
*/
int32_t majorSolarTerm(const TimeZone* timeZone, int32_t days) {
- umtx_lock(&astroLock);
- getAstronomer()->setTime(daysToMillis(timeZone, days));
- UDate solarLongitude = getAstronomer()->getSunLongitude();
- umtx_unlock(&astroLock);
-
// Compute (floor(solarLongitude / (pi/6)) + 2) % 12
- int32_t term = ( ((int32_t)(6 * solarLongitude / CalendarAstronomer::PI)) + 2 ) % 12;
+ int32_t term = ( ((int32_t)(6 * CalendarAstronomer(daysToMillis(timeZone, days))
+ .getSunLongitude() / CalendarAstronomer::PI)) + 2 ) % 12;
if (term < 1) {
term += 12;
}
diff --git a/icu4c/source/i18n/islamcal.cpp b/icu4c/source/i18n/islamcal.cpp
index 2a5c2054004..2228c1dae61 100644
--- a/icu4c/source/i18n/islamcal.cpp
+++ b/icu4c/source/i18n/islamcal.cpp
@@ -55,7 +55,6 @@ static void debug_islamcal_msg(const char *pat, ...)
// --- The cache --
// cache of months
static icu::CalendarCache *gMonthCache = nullptr;
-static icu::CalendarAstronomer *gIslamicCalendarAstro = nullptr;
U_CDECL_BEGIN
static UBool calendar_islamic_cleanup() {
@@ -63,10 +62,6 @@ static UBool calendar_islamic_cleanup() {
delete gMonthCache;
gMonthCache = nullptr;
}
- if (gIslamicCalendarAstro) {
- delete gIslamicCalendarAstro;
- gIslamicCalendarAstro = nullptr;
- }
return true;
}
U_CDECL_END
@@ -264,6 +259,8 @@ int32_t IslamicCalendar::handleGetLimit(UCalendarDateFields field, ELimitType li
// Assorted calculation utilities
//
+namespace {
+
// we could compress this down more if we need to
static const int8_t umAlQuraYrStartEstimateFix[] = {
0, 0, -1, 0, -1, 0, 0, 0, 0, 0, // 1300..
@@ -306,6 +303,10 @@ inline bool civilLeapYear(int32_t year) {
return (14 + 11 * year) % 30 < 11;
}
+int32_t trueMonthStart(int32_t month);
+
+} // namespace
+
/**
* Return the day # on which the given year starts. Days are counted
* from the Hijri epoch, origin 0.
@@ -336,6 +337,18 @@ int64_t IslamicCalendar::monthStart(int32_t year, int32_t month, UErrorCode& sta
return trueMonthStart(month);
}
+namespace {
+/**
+ * Return the "age" of the moon at the given time; this is the difference
+ * in ecliptic latitude between the moon and the sun. This method simply
+ * calls CalendarAstronomer.moonAge, converts to degrees,
+ * and adjusts the resultto be in the range [-180, 180].
+ *
+ * @param time The time at which the moon's age is desired,
+ * in millis since 1/1/1970.
+ */
+double moonAge(UDate time);
+
/**
* Find the day number on which a particular month of the true/lunar
* Islamic calendar starts.
@@ -344,82 +357,46 @@ int64_t IslamicCalendar::monthStart(int32_t year, int32_t month, UErrorCode& sta
*
* @return The day number on which the given month starts.
*/
-int32_t IslamicCalendar::trueMonthStart(int32_t month) const
-{
+int32_t trueMonthStart(int32_t month) {
+ ucln_i18n_registerCleanup(UCLN_I18N_ISLAMIC_CALENDAR, calendar_islamic_cleanup);
UErrorCode status = U_ZERO_ERROR;
int64_t start = CalendarCache::get(&gMonthCache, month, status);
- if (start==0) {
+ if (U_SUCCESS(status) && start==0) {
// Make a guess at when the month started, using the average length
UDate origin = HIJRA_MILLIS
+ uprv_floor(month * CalendarAstronomer::SYNODIC_MONTH) * kOneDay;
// moonAge will fail due to memory allocation error
- double age = moonAge(origin, status);
- if (U_FAILURE(status)) {
- goto trueMonthStartEnd;
- }
+ double age = moonAge(origin);
if (age >= 0) {
// The month has already started
do {
origin -= kOneDay;
- age = moonAge(origin, status);
- if (U_FAILURE(status)) {
- goto trueMonthStartEnd;
- }
+ age = moonAge(origin);
} while (age >= 0);
}
else {
// Preceding month has not ended yet.
do {
origin += kOneDay;
- age = moonAge(origin, status);
- if (U_FAILURE(status)) {
- goto trueMonthStartEnd;
- }
+ age = moonAge(origin);
} while (age < 0);
}
start = ClockMath::floorDivideInt64(
(int64_t)((int64_t)origin - HIJRA_MILLIS), (int64_t)kOneDay) + 1;
CalendarCache::put(&gMonthCache, month, start, status);
}
-trueMonthStartEnd :
if(U_FAILURE(status)) {
start = 0;
}
return start;
}
-/**
-* Return the "age" of the moon at the given time; this is the difference
-* in ecliptic latitude between the moon and the sun. This method simply
-* calls CalendarAstronomer.moonAge, converts to degrees,
-* and adjusts the result to be in the range [-180, 180].
-*
-* @param time The time at which the moon's age is desired,
-* in millis since 1/1/1970.
-*/
-double IslamicCalendar::moonAge(UDate time, UErrorCode &status)
-{
- double age = 0;
-
- static UMutex astroLock; // pod bay door lock
- umtx_lock(&astroLock);
- if(gIslamicCalendarAstro == nullptr) {
- gIslamicCalendarAstro = new CalendarAstronomer();
- if (gIslamicCalendarAstro == nullptr) {
- status = U_MEMORY_ALLOCATION_ERROR;
- return age;
- }
- ucln_i18n_registerCleanup(UCLN_I18N_ISLAMIC_CALENDAR, calendar_islamic_cleanup);
- }
- gIslamicCalendarAstro->setTime(time);
- age = gIslamicCalendarAstro->getMoonAge();
- umtx_unlock(&astroLock);
-
+double moonAge(UDate time) {
// Convert to degrees and normalize...
- age = age * 180 / CalendarAstronomer::PI;
+ double age = CalendarAstronomer(time).getMoonAge() * 180 / CalendarAstronomer::PI;
if (age > 180) {
age = age - 360;
}
@@ -427,6 +404,7 @@ double IslamicCalendar::moonAge(UDate time, UErrorCode &status)
return age;
}
+} // namespace
//----------------------------------------------------------------------
// Calendar framework
//----------------------------------------------------------------------
@@ -536,11 +514,7 @@ void IslamicCalendar::handleComputeFields(int32_t julianDay, UErrorCode &status)
int32_t startDate = (int32_t)uprv_floor(month * CalendarAstronomer::SYNODIC_MONTH);
- double age = moonAge(internalGetTime(), status);
- if (U_FAILURE(status)) {
- status = U_MEMORY_ALLOCATION_ERROR;
- return;
- }
+ double age = moonAge(internalGetTime());
if ( days - startDate >= 25 && age > 0) {
// If we're near the end of the month, assume next month and search backwards
month++;
diff --git a/icu4c/source/i18n/islamcal.h b/icu4c/source/i18n/islamcal.h
index 1c3f04b4b1d..091ddf81c5a 100644
--- a/icu4c/source/i18n/islamcal.h
+++ b/icu4c/source/i18n/islamcal.h
@@ -211,28 +211,7 @@ class U_I18N_API IslamicCalendar : public Calendar {
* @param year The hijri month, 0-based
*/
virtual int64_t monthStart(int32_t year, int32_t month, UErrorCode& status) const;
-
- /**
- * Find the day number on which a particular month of the true/lunar
- * Islamic calendar starts.
- *
- * @param month The month in question, origin 0 from the Hijri epoch
- *
- * @return The day number on which the given month starts.
- */
- int32_t trueMonthStart(int32_t month) const;
- private:
- /**
- * Return the "age" of the moon at the given time; this is the difference
- * in ecliptic latitude between the moon and the sun. This method simply
- * calls CalendarAstronomer.moonAge, converts to degrees,
- * and adjusts the resultto be in the range [-180, 180].
- *
- * @param time The time at which the moon's age is desired,
- * in millis since 1/1/1970.
- */
- static double moonAge(UDate time, UErrorCode &status);
//----------------------------------------------------------------------
// Calendar framework
diff --git a/icu4c/source/test/intltest/astrotst.cpp b/icu4c/source/test/intltest/astrotst.cpp
index 847dce65a33..c51e6f24746 100644
--- a/icu4c/source/test/intltest/astrotst.cpp
+++ b/icu4c/source/test/intltest/astrotst.cpp
@@ -23,7 +23,7 @@
#define CASE(id,test) case id: name = #test; if (exec) { logln(#test "---"); logln((UnicodeString)""); test(); } break
-AstroTest::AstroTest(): astro(nullptr), gc(nullptr) {
+AstroTest::AstroTest(): gc(nullptr) {
}
void AstroTest::runIndexedTest( int32_t index, UBool exec, const char* &name, char* /*par*/ )
@@ -35,9 +35,8 @@ void AstroTest::runIndexedTest( int32_t index, UBool exec, const char* &name, ch
CASE(1,TestLunarPosition);
CASE(2,TestCoordinates);
CASE(3,TestCoverage);
- CASE(4,TestSunriseTimes);
- CASE(5,TestBasics);
- CASE(6,TestMoonAge);
+ CASE(4,TestBasics);
+ CASE(5,TestMoonAge);
default: name = ""; break;
}
}
@@ -52,12 +51,12 @@ void AstroTest::runIndexedTest( int32_t index, UBool exec, const char* &name, ch
} UPRV_BLOCK_MACRO_END
-void AstroTest::initAstro(UErrorCode &status) {
+void AstroTest::init(UErrorCode &status) {
if(U_FAILURE(status)) return;
- if((astro != nullptr) || (gc != nullptr)) {
- dataerrln("Err: initAstro() called twice!");
- closeAstro(status);
+ if(gc != nullptr) {
+ dataerrln("Err: init() called twice!");
+ close(status);
if(U_SUCCESS(status)) {
status = U_INTERNAL_PROGRAM_ERROR;
}
@@ -65,15 +64,10 @@ void AstroTest::initAstro(UErrorCode &status) {
if(U_FAILURE(status)) return;
- astro = new CalendarAstronomer();
gc = Calendar::createInstance(TimeZone::getGMT()->clone(), status);
}
-void AstroTest::closeAstro(UErrorCode &/*status*/) {
- if(astro != nullptr) {
- delete astro;
- astro = nullptr;
- }
+void AstroTest::close(UErrorCode &/*status*/) {
if(gc != nullptr) {
delete gc;
gc = nullptr;
@@ -82,7 +76,7 @@ void AstroTest::closeAstro(UErrorCode &/*status*/) {
void AstroTest::TestSolarLongitude() {
UErrorCode status = U_ZERO_ERROR;
- initAstro(status);
+ init(status);
ASSERT_OK(status);
struct {
@@ -97,15 +91,11 @@ void AstroTest::TestSolarLongitude() {
gc->clear();
gc->set(tests[i].d[0], tests[i].d[1]-1, tests[i].d[2], tests[i].d[3], tests[i].d[4]);
- astro->setDate(gc->getTime(status));
+ CalendarAstronomer astro(gc->getTime(status));
- double longitude = astro->getSunLongitude();
- //longitude = 0;
- CalendarAstronomer::Equatorial result;
- astro->getSunPosition(result);
- logln((UnicodeString)"Sun position is " + result.toString() + (UnicodeString)"; " /* + result.toHmsString()*/ + " Sun longitude is " + longitude );
+ astro.getSunLongitude();
}
- closeAstro(status);
+ close(status);
ASSERT_OK(status);
}
@@ -113,7 +103,7 @@ void AstroTest::TestSolarLongitude() {
void AstroTest::TestLunarPosition() {
UErrorCode status = U_ZERO_ERROR;
- initAstro(status);
+ init(status);
ASSERT_OK(status);
static const double tests[][7] = {
@@ -124,13 +114,13 @@ void AstroTest::TestLunarPosition() {
for (int32_t i = 0; i < UPRV_LENGTHOF(tests); i++) {
gc->clear();
gc->set((int32_t)tests[i][0], (int32_t)tests[i][1]-1, (int32_t)tests[i][2], (int32_t)tests[i][3], (int32_t)tests[i][4]);
- astro->setDate(gc->getTime(status));
+ CalendarAstronomer astro(gc->getTime(status));
- const CalendarAstronomer::Equatorial& result = astro->getMoonPosition();
+ const CalendarAstronomer::Equatorial& result = astro.getMoonPosition();
logln((UnicodeString)"Moon position is " + result.toString() + (UnicodeString)"; " /* + result->toHmsString()*/);
}
- closeAstro(status);
+ close(status);
ASSERT_OK(status);
}
@@ -138,13 +128,14 @@ void AstroTest::TestLunarPosition() {
void AstroTest::TestCoordinates() {
UErrorCode status = U_ZERO_ERROR;
- initAstro(status);
+ init(status);
ASSERT_OK(status);
CalendarAstronomer::Equatorial result;
- astro->eclipticToEquatorial(result, 139.686111 * CalendarAstronomer::PI / 180.0, 4.875278* CalendarAstronomer::PI / 180.0);
+ CalendarAstronomer astro;
+ astro.eclipticToEquatorial(result, 139.686111 * CalendarAstronomer::PI / 180.0, 4.875278* CalendarAstronomer::PI / 180.0);
logln((UnicodeString)"result is " + result.toString() + (UnicodeString)"; " /* + result.toHmsString()*/ );
- closeAstro(status);
+ close(status);
ASSERT_OK(status);
}
@@ -152,7 +143,7 @@ void AstroTest::TestCoordinates() {
void AstroTest::TestCoverage() {
UErrorCode status = U_ZERO_ERROR;
- initAstro(status);
+ init(status);
ASSERT_OK(status);
GregorianCalendar *cal = new GregorianCalendar(1958, UCAL_AUGUST, 15,status);
UDate then = cal->getTime(status);
@@ -162,21 +153,14 @@ void AstroTest::TestCoverage() {
//Latitude: 34 degrees 05' North
//Longitude: 118 degrees 22' West
double laLat = 34 + 5./60, laLong = 360 - (118 + 22./60);
- CalendarAstronomer *myastro2 = new CalendarAstronomer(laLong, laLat);
double eclLat = laLat * CalendarAstronomer::PI / 360;
double eclLong = laLong * CalendarAstronomer::PI / 360;
- CalendarAstronomer::Ecliptic ecl(eclLat, eclLong);
CalendarAstronomer::Equatorial eq;
- CalendarAstronomer::Horizon hor;
-
- logln("ecliptic: " + ecl.toString());
- CalendarAstronomer *myastro3 = new CalendarAstronomer();
- myastro3->setJulianDay((4713 + 2000) * 365.25);
CalendarAstronomer *astronomers[] = {
- myastro, myastro2, myastro3, myastro2 // check cache
+ myastro, myastro, myastro // check cache
};
for (uint32_t i = 0; i < UPRV_LENGTHOF(astronomers); ++i) {
@@ -184,195 +168,19 @@ void AstroTest::TestCoverage() {
//logln("astro: " + astro);
logln((UnicodeString)" date: " + anAstro->getTime());
- logln((UnicodeString)" cent: " + anAstro->getJulianCentury());
- logln((UnicodeString)" gw sidereal: " + anAstro->getGreenwichSidereal());
- logln((UnicodeString)" loc sidereal: " + anAstro->getLocalSidereal());
- logln((UnicodeString)" equ ecl: " + (anAstro->eclipticToEquatorial(eq,ecl)).toString());
- logln((UnicodeString)" equ long: " + (anAstro->eclipticToEquatorial(eq, eclLong)).toString());
- logln((UnicodeString)" horiz: " + (anAstro->eclipticToHorizon(hor, eclLong)).toString());
- logln((UnicodeString)" sunrise: " + (anAstro->getSunRiseSet(true)));
- logln((UnicodeString)" sunset: " + (anAstro->getSunRiseSet(false)));
- logln((UnicodeString)" moon phase: " + anAstro->getMoonPhase());
- logln((UnicodeString)" moonrise: " + (anAstro->getMoonRiseSet(true)));
- logln((UnicodeString)" moonset: " + (anAstro->getMoonRiseSet(false)));
- logln((UnicodeString)" prev summer solstice: " + (anAstro->getSunTime(CalendarAstronomer::SUMMER_SOLSTICE(), false)));
- logln((UnicodeString)" next summer solstice: " + (anAstro->getSunTime(CalendarAstronomer::SUMMER_SOLSTICE(), true)));
- logln((UnicodeString)" prev full moon: " + (anAstro->getMoonTime(CalendarAstronomer::FULL_MOON(), false)));
- logln((UnicodeString)" next full moon: " + (anAstro->getMoonTime(CalendarAstronomer::FULL_MOON(), true)));
+ logln((UnicodeString)" equ ecl: " + (anAstro->eclipticToEquatorial(eq,eclLat,eclLong)).toString());
}
- delete myastro2;
- delete myastro3;
delete myastro;
delete cal;
- closeAstro(status);
+ close(status);
ASSERT_OK(status);
}
-
-
-void AstroTest::TestSunriseTimes() {
- UErrorCode status = U_ZERO_ERROR;
- initAstro(status);
- ASSERT_OK(status);
-
- // logln("Sunrise/Sunset times for San Jose, California, USA");
- // CalendarAstronomer *astro2 = new CalendarAstronomer(-121.55, 37.20);
- // TimeZone *tz = TimeZone::createTimeZone("America/Los_Angeles");
-
- // We'll use a table generated by the UNSO website as our reference
- // From: http://aa.usno.navy.mil/
- //-Location: W079 25, N43 40
- //-Rise and Set for the Sun for 2001
- //-Zone: 4h West of Greenwich
- int32_t USNO[] = {
- 6,59, 19,45,
- 6,57, 19,46,
- 6,56, 19,47,
- 6,54, 19,48,
- 6,52, 19,49,
- 6,50, 19,51,
- 6,48, 19,52,
- 6,47, 19,53,
- 6,45, 19,54,
- 6,43, 19,55,
- 6,42, 19,57,
- 6,40, 19,58,
- 6,38, 19,59,
- 6,36, 20, 0,
- 6,35, 20, 1,
- 6,33, 20, 3,
- 6,31, 20, 4,
- 6,30, 20, 5,
- 6,28, 20, 6,
- 6,27, 20, 7,
- 6,25, 20, 8,
- 6,23, 20,10,
- 6,22, 20,11,
- 6,20, 20,12,
- 6,19, 20,13,
- 6,17, 20,14,
- 6,16, 20,16,
- 6,14, 20,17,
- 6,13, 20,18,
- 6,11, 20,19,
- };
-
- logln("Sunrise/Sunset times for Toronto, Canada");
- // long = 79 25", lat = 43 40"
- CalendarAstronomer astro3(-(79+25/60), 43+40/60);
-
- // As of ICU4J 2.8 the ICU4J time zones implement pass-through
- // to the underlying JDK. Because of variation in the
- // underlying JDKs, we have to use a fixed-offset
- // SimpleTimeZone to get consistent behavior between JDKs.
- // The offset we want is [-18000000, 3600000] (raw, dst).
- // [aliu 10/15/03]
-
- // TimeZone tz = TimeZone.getTimeZone("America/Montreal");
- SimpleTimeZone tz(-18000000 + 3600000, "Montreal(FIXED)");
-
- GregorianCalendar cal(tz.clone(), Locale::getUS(), status);
- GregorianCalendar cal2(tz.clone(), Locale::getUS(), status);
- cal.clear();
- cal.set(UCAL_YEAR, 2001);
- cal.set(UCAL_MONTH, UCAL_APRIL);
- cal.set(UCAL_DAY_OF_MONTH, 1);
- cal.set(UCAL_HOUR_OF_DAY, 12); // must be near local noon for getSunRiseSet to work
-
- LocalPointerCalendarAstronomer
object that is initialized to
* the specified time. The time is expressed as a number of milliseconds since
@@ -224,32 +215,9 @@ public class CalendarAstronomer {
time = aTime;
}
- /**
- * Construct a new CalendarAstronomer
object with the given
- * latitude and longitude. The object's time is set to the current
- * date and time.
- * CalendarAstronomer
object. All
* astronomical calculations are performed based on this time setting.
@@ -266,19 +234,6 @@ public class CalendarAstronomer {
clearCache();
}
- /**
- * Set the current date and time of this CalendarAstronomer
object. All
- * astronomical calculations are performed based on this time setting.
- *
- * @param date the time and date, expressed as a Date
object.
- *
- * @see #setTime
- * @see #getDate
- * @internal
- */
- public void setDate(Date date) {
- setTime(date.getTime());
- }
/**
* Set the current date and time of this CalendarAstronomer
object. All
@@ -341,93 +296,10 @@ public class CalendarAstronomer {
return julianDay;
}
- /**
- * Return this object's time expressed in julian centuries:
- * the number of centuries after 1/1/1900 AD, 12:00 GMT
- *
- * @see #getJulianDay
- * @internal
- */
- public double getJulianCentury() {
- if (julianCentury == INVALID) {
- julianCentury = (getJulianDay() - 2415020.0) / 36525;
- }
- return julianCentury;
- }
-
- /**
- * Returns the current Greenwich sidereal time, measured in hours
- * @internal
- */
- public double getGreenwichSidereal() {
- if (siderealTime == INVALID) {
- // See page 86 of "Practical Astronomy with your Calculator",
- // by Peter Duffet-Smith, for details on the algorithm.
-
- double UT = normalize((double)time/HOUR_MS, 24);
-
- siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24);
- }
- return siderealTime;
- }
-
- private double getSiderealOffset() {
- if (siderealT0 == INVALID) {
- double JD = Math.floor(getJulianDay() - 0.5) + 0.5;
- double S = JD - 2451545.0;
- double T = S / 36525.0;
- siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24);
- }
- return siderealT0;
- }
-
- /**
- * Returns the current local sidereal time, measured in hours
- * @internal
- */
- public double getLocalSidereal() {
- return normalize(getGreenwichSidereal() + (double)fGmtOffset/HOUR_MS, 24);
- }
-
- /**
- * Converts local sidereal time to Universal Time.
- *
- * @param lst The Local Sidereal Time, in hours since sidereal midnight
- * on this object's current date.
- *
- * @return The corresponding Universal Time, in milliseconds since
- * 1 Jan 1970, GMT.
- */
- private long lstToUT(double lst) {
- // Convert to local mean time
- double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24);
-
- // Then find local midnight on this day
- long base = DAY_MS * ((time + fGmtOffset)/DAY_MS) - fGmtOffset;
-
- //out(" lt =" + lt + " hours");
- //out(" base=" + new Date(base));
-
- return base + (long)(lt * HOUR_MS);
- }
-
-
//-------------------------------------------------------------------------
// Coordinate transformations, all based on the current time of this object
//-------------------------------------------------------------------------
- /**
- * Convert from ecliptic to equatorial coordinates.
- *
- * @param ecliptic A point in the sky in ecliptic coordinates.
- * @return The corresponding point in equatorial coordinates.
- * @internal
- */
- public final Equatorial eclipticToEquatorial(Ecliptic ecliptic)
- {
- return eclipticToEquatorial(ecliptic.longitude, ecliptic.latitude);
- }
-
/**
* Convert from ecliptic to equatorial coordinates.
*
@@ -457,42 +329,6 @@ public class CalendarAstronomer {
Math.asin(sinB*cosE + cosB*sinE*sinL) );
}
- /**
- * Convert from ecliptic longitude to equatorial coordinates.
- *
- * @param eclipLong The ecliptic longitude
- *
- * @return The corresponding point in equatorial coordinates.
- * @internal
- */
- public final Equatorial eclipticToEquatorial(double eclipLong)
- {
- return eclipticToEquatorial(eclipLong, 0); // TODO: optimize
- }
-
- /**
- * @internal
- */
- public Horizon eclipticToHorizon(double eclipLong)
- {
- Equatorial equatorial = eclipticToEquatorial(eclipLong);
-
- double H = getLocalSidereal()*PI/12 - equatorial.ascension; // Hour-angle
-
- double sinH = Math.sin(H);
- double cosH = Math.cos(H);
- double sinD = Math.sin(equatorial.declination);
- double cosD = Math.cos(equatorial.declination);
- double sinL = Math.sin(fLatitude);
- double cosL = Math.cos(fLatitude);
-
- double altitude = Math.asin(sinD*sinL + cosD*cosL*cosH);
- double azimuth = Math.atan2(-cosD*cosL*sinH, sinD - sinL * Math.sin(altitude));
-
- return new Horizon(azimuth, altitude);
- }
-
-
//-------------------------------------------------------------------------
// The Sun
//-------------------------------------------------------------------------
@@ -606,44 +442,11 @@ public class CalendarAstronomer {
};
}
- /**
- * The position of the sun at this object's current date and time,
- * in equatorial coordinates.
- * @internal
- */
- public Equatorial getSunPosition() {
- return eclipticToEquatorial(getSunLongitude(), 0);
- }
-
private static class SolarLongitude {
double value;
SolarLongitude(double val) { value = val; }
}
- /**
- * Constant representing the vernal equinox.
- * For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}.
- * Note: In this case, "vernal" refers to the northern hemisphere's seasons.
- * @internal
- */
- public static final SolarLongitude VERNAL_EQUINOX = new SolarLongitude(0);
-
- /**
- * Constant representing the summer solstice.
- * For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}.
- * Note: In this case, "summer" refers to the northern hemisphere's seasons.
- * @internal
- */
- public static final SolarLongitude SUMMER_SOLSTICE = new SolarLongitude(PI/2);
-
- /**
- * Constant representing the autumnal equinox.
- * For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}.
- * Note: In this case, "autumn" refers to the northern hemisphere's seasons.
- * @internal
- */
- public static final SolarLongitude AUTUMN_EQUINOX = new SolarLongitude(PI);
-
/**
* Constant representing the winter solstice.
* For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}.
@@ -676,312 +479,6 @@ public class CalendarAstronomer {
return getSunTime(desired.value, next);
}
- /**
- * Returns the time (GMT) of sunrise or sunset on the local date to which
- * this calendar is currently set.
- *
- * NOTE: This method only works well if this object is set to a
- * time near local noon. Because of variations between the local
- * official time zone and the geographic longitude, the
- * computation can flop over into an adjacent day if this object
- * is set to a time near local midnight.
- *
- * @internal
- */
- public long getSunRiseSet(boolean rise) {
- long t0 = time;
-
- // Make a rough guess: 6am or 6pm local time on the current day
- long noon = ((time + fGmtOffset)/DAY_MS)*DAY_MS - fGmtOffset + 12*HOUR_MS;
-
- setTime(noon + (rise ? -6L : 6L) * HOUR_MS);
-
- long t = riseOrSet(new CoordFunc() {
- @Override
- public Equatorial eval() { return getSunPosition(); }
- },
- rise,
- .533 * DEG_RAD, // Angular Diameter
- 34 /60.0 * DEG_RAD, // Refraction correction
- MINUTE_MS / 12); // Desired accuracy
-
- setTime(t0);
- return t;
- }
-
-// Commented out - currently unused. ICU 2.6, Alan
-// //-------------------------------------------------------------------------
-// // Alternate Sun Rise/Set
-// // See Duffett-Smith p.93
-// //-------------------------------------------------------------------------
-//
-// // This yields worse results (as compared to USNO data) than getSunRiseSet().
-// /**
-// * TODO Make this public when the entire class is package-private.
-// */
-// /*public*/ long getSunRiseSet2(boolean rise) {
-// // 1. Calculate coordinates of the sun's center for midnight
-// double jd = Math.floor(getJulianDay() - 0.5) + 0.5;
-// double[] sl = getSunLongitude(jd);
-// double lambda1 = sl[0];
-// Equatorial pos1 = eclipticToEquatorial(lambda1, 0);
-//
-// // 2. Add ... to lambda to get position 24 hours later
-// double lambda2 = lambda1 + 0.985647*DEG_RAD;
-// Equatorial pos2 = eclipticToEquatorial(lambda2, 0);
-//
-// // 3. Calculate LSTs of rising and setting for these two positions
-// double tanL = Math.tan(fLatitude);
-// double H = Math.acos(-tanL * Math.tan(pos1.declination));
-// double lst1r = (PI2 + pos1.ascension - H) * 24 / PI2;
-// double lst1s = (pos1.ascension + H) * 24 / PI2;
-// H = Math.acos(-tanL * Math.tan(pos2.declination));
-// double lst2r = (PI2-H + pos2.ascension ) * 24 / PI2;
-// double lst2s = (H + pos2.ascension ) * 24 / PI2;
-// if (lst1r > 24) lst1r -= 24;
-// if (lst1s > 24) lst1s -= 24;
-// if (lst2r > 24) lst2r -= 24;
-// if (lst2s > 24) lst2s -= 24;
-//
-// // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2.
-// double gst1r = lstToGst(lst1r);
-// double gst1s = lstToGst(lst1s);
-// double gst2r = lstToGst(lst2r);
-// double gst2s = lstToGst(lst2s);
-// if (gst1r > gst2r) gst2r += 24;
-// if (gst1s > gst2s) gst2s += 24;
-//
-// // 5. Calculate GST at 0h UT of this date
-// double t00 = utToGst(0);
-//
-// // 6. Calculate GST at 0h on the observer's longitude
-// double offset = Math.round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.
-// double t00p = t00 - offset*1.002737909;
-// if (t00p < 0) t00p += 24; // do NOT normalize
-//
-// // 7. Adjust
-// if (gst1r < t00p) {
-// gst1r += 24;
-// gst2r += 24;
-// }
-// if (gst1s < t00p) {
-// gst1s += 24;
-// gst2s += 24;
-// }
-//
-// // 8.
-// double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r);
-// double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s);
-//
-// // 9. Correct for parallax, refraction, and sun's diameter
-// double dec = (pos1.declination + pos2.declination) / 2;
-// double psi = Math.acos(Math.sin(fLatitude) / Math.cos(dec));
-// double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter
-// double y = Math.asin(Math.sin(x) / Math.sin(psi)) * RAD_DEG;
-// double delta_t = 240 * y / Math.cos(dec) / 3600; // hours
-//
-// // 10. Add correction to GSTs, subtract from GSTr
-// gstr -= delta_t;
-// gsts += delta_t;
-//
-// // 11. Convert GST to UT and then to local civil time
-// double ut = gstToUt(rise ? gstr : gsts);
-// //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t);
-// long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day
-// return midnight + (long) (ut * 3600000);
-// }
-
-// Commented out - currently unused. ICU 2.6, Alan
-// /**
-// * Convert local sidereal time to Greenwich sidereal time.
-// * Section 15. Duffett-Smith p.21
-// * @param lst in hours (0..24)
-// * @return GST in hours (0..24)
-// */
-// double lstToGst(double lst) {
-// double delta = fLongitude * 24 / PI2;
-// return normalize(lst - delta, 24);
-// }
-
-// Commented out - currently unused. ICU 2.6, Alan
-// /**
-// * Convert UT to GST on this date.
-// * Section 12. Duffett-Smith p.17
-// * @param ut in hours
-// * @return GST in hours
-// */
-// double utToGst(double ut) {
-// return normalize(getT0() + ut*1.002737909, 24);
-// }
-
-// Commented out - currently unused. ICU 2.6, Alan
-// /**
-// * Convert GST to UT on this date.
-// * Section 13. Duffett-Smith p.18
-// * @param gst in hours
-// * @return UT in hours
-// */
-// double gstToUt(double gst) {
-// return normalize(gst - getT0(), 24) * 0.9972695663;
-// }
-
-// Commented out - currently unused. ICU 2.6, Alan
-// double getT0() {
-// // Common computation for UT <=> GST
-//
-// // Find JD for 0h UT
-// double jd = Math.floor(getJulianDay() - 0.5) + 0.5;
-//
-// double s = jd - 2451545.0;
-// double t = s / 36525.0;
-// double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t;
-// return t0;
-// }
-
-// Commented out - currently unused. ICU 2.6, Alan
-// //-------------------------------------------------------------------------
-// // Alternate Sun Rise/Set
-// // See sci.astro FAQ
-// // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html
-// //-------------------------------------------------------------------------
-//
-// // Note: This method appears to produce inferior accuracy as
-// // compared to getSunRiseSet().
-//
-// /**
-// * TODO Make this public when the entire class is package-private.
-// */
-// /*public*/ long getSunRiseSet3(boolean rise) {
-//
-// // Compute day number for 0.0 Jan 2000 epoch
-// double d = (double)(time - EPOCH_2000_MS) / DAY_MS;
-//
-// // Now compute the Local Sidereal Time, LST:
-// //
-// double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/
-// fLongitude*RAD_DEG;
-// //
-// // (east long. positive). Note that LST is here expressed in degrees,
-// // where 15 degrees corresponds to one hour. Since LST really is an angle,
-// // it's convenient to use one unit---degrees---throughout.
-//
-// // COMPUTING THE SUN'S POSITION
-// // ----------------------------
-// //
-// // To be able to compute the Sun's rise/set times, you need to be able to
-// // compute the Sun's position at any time. First compute the "day
-// // number" d as outlined above, for the desired moment. Next compute:
-// //
-// double oblecl = 23.4393 - 3.563E-7 * d;
-// //
-// double w = 282.9404 + 4.70935E-5 * d;
-// double M = 356.0470 + 0.9856002585 * d;
-// double e = 0.016709 - 1.151E-9 * d;
-// //
-// // This is the obliquity of the ecliptic, plus some of the elements of
-// // the Sun's apparent orbit (i.e., really the Earth's orbit): w =
-// // argument of perihelion, M = mean anomaly, e = eccentricity.
-// // Semi-major axis is here assumed to be exactly 1.0 (while not strictly
-// // true, this is still an accurate approximation). Next compute E, the
-// // eccentric anomaly:
-// //
-// double E = M + e*(180/PI) * Math.sin(M*DEG_RAD) * ( 1.0 + e*Math.cos(M*DEG_RAD) );
-// //
-// // where E and M are in degrees. This is it---no further iterations are
-// // needed because we know e has a sufficiently small value. Next compute
-// // the true anomaly, v, and the distance, r:
-// //
-// /* r * cos(v) = */ double A = Math.cos(E*DEG_RAD) - e;
-// /* r * sin(v) = */ double B = Math.sqrt(1 - e*e) * Math.sin(E*DEG_RAD);
-// //
-// // and
-// //
-// // r = sqrt( A*A + B*B )
-// double v = Math.atan2( B, A )*RAD_DEG;
-// //
-// // The Sun's true longitude, slon, can now be computed:
-// //
-// double slon = v + w;
-// //
-// // Since the Sun is always at the ecliptic (or at least very very close to
-// // it), we can use simplified formulae to convert slon (the Sun's ecliptic
-// // longitude) to sRA and sDec (the Sun's RA and Dec):
-// //
-// // sin(slon) * cos(oblecl)
-// // tan(sRA) = -------------------------
-// // cos(slon)
-// //
-// // sin(sDec) = sin(oblecl) * sin(slon)
-// //
-// // As was the case when computing az, the Azimuth, if possible use an
-// // atan2() function to compute sRA.
-//
-// double sRA = Math.atan2(Math.sin(slon*DEG_RAD) * Math.cos(oblecl*DEG_RAD), Math.cos(slon*DEG_RAD))*RAD_DEG;
-//
-// double sin_sDec = Math.sin(oblecl*DEG_RAD) * Math.sin(slon*DEG_RAD);
-// double sDec = Math.asin(sin_sDec)*RAD_DEG;
-//
-// // COMPUTING RISE AND SET TIMES
-// // ----------------------------
-// //
-// // To compute when an object rises or sets, you must compute when it
-// // passes the meridian and the HA of rise/set. Then the rise time is
-// // the meridian time minus HA for rise/set, and the set time is the
-// // meridian time plus the HA for rise/set.
-// //
-// // To find the meridian time, compute the Local Sidereal Time at 0h local
-// // time (or 0h UT if you prefer to work in UT) as outlined above---name
-// // that quantity LST0. The Meridian Time, MT, will now be:
-// //
-// // MT = RA - LST0
-// double MT = normalize(sRA - LST, 360);
-// //
-// // where "RA" is the object's Right Ascension (in degrees!). If negative,
-// // add 360 deg to MT. If the object is the Sun, leave the time as it is,
-// // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from
-// // sidereal to solar time. Now, compute HA for rise/set, name that
-// // quantity HA0:
-// //
-// // sin(h0) - sin(lat) * sin(Dec)
-// // cos(HA0) = ---------------------------------
-// // cos(lat) * cos(Dec)
-// //
-// // where h0 is the altitude selected to represent rise/set. For a purely
-// // mathematical horizon, set h0 = 0 and simplify to:
-// //
-// // cos(HA0) = - tan(lat) * tan(Dec)
-// //
-// // If you want to account for refraction on the atmosphere, set h0 = -35/60
-// // degrees (-35 arc minutes), and if you want to compute the rise/set times
-// // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes).
-// //
-// double h0 = -50/60 * DEG_RAD;
-//
-// double HA0 = Math.acos(
-// (Math.sin(h0) - Math.sin(fLatitude) * sin_sDec) /
-// (Math.cos(fLatitude) * Math.cos(sDec*DEG_RAD)))*RAD_DEG;
-//
-// // When HA0 has been computed, leave it as it is for the Sun but multiply
-// // by 365.2422/366.2422 for stellar objects, to convert from sidereal to
-// // solar time. Finally compute:
-// //
-// // Rise time = MT - HA0
-// // Set time = MT + HA0
-// //
-// // convert the times from degrees to hours by dividing by 15.
-// //
-// // If you'd like to check that your calculations are accurate or just
-// // need a quick result, check the USNO's Sun or Moon Rise/Set Table,
-// // double
in the range
- * 0 <= phase < 1
, interpreted as follows:
- *
- *
- *
- * @see #getMoonAge
- * @internal
- */
- public double getMoonPhase() {
- // See page 147 of "Practical Astronomy with your Calculator",
- // by Peter Duffet-Smith, for details on the algorithm.
- return 0.5 * (1 - Math.cos(getMoonAge()));
- }
-
private static class MoonAge {
double value;
MoonAge(double val) { value = val; }
@@ -1134,27 +611,6 @@ public class CalendarAstronomer {
*/
public static final MoonAge NEW_MOON = new MoonAge(0);
- /**
- * Constant representing the moon's first quarter.
- * For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime}
- * @internal
- */
- public static final MoonAge FIRST_QUARTER = new MoonAge(PI/2);
-
- /**
- * Constant representing a full moon.
- * For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime}
- * @internal
- */
- public static final MoonAge FULL_MOON = new MoonAge(PI);
-
- /**
- * Constant representing the moon's last quarter.
- * For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime}
- * @internal
- */
- public static final MoonAge LAST_QUARTER = new MoonAge((PI*3)/2);
-
/**
* Find the next or previous time at which the Moon's ecliptic
* longitude will have the desired value.
@@ -1188,23 +644,6 @@ public class CalendarAstronomer {
return getMoonTime(desired.value, next);
}
- /**
- * Returns the time (GMT) of sunrise or sunset on the local date to which
- * this calendar is currently set.
- * @internal
- */
- public long getMoonRiseSet(boolean rise)
- {
- return riseOrSet(new CoordFunc() {
- @Override
- public Equatorial eval() { return getMoonPosition(); }
- },
- rise,
- .533 * DEG_RAD, // Angular Diameter
- 34 /60.0 * DEG_RAD, // Refraction correction
- MINUTE_MS); // Desired accuracy
- }
-
//-------------------------------------------------------------------------
// Interpolation methods for finding the time at which a given event occurs
//-------------------------------------------------------------------------
@@ -1281,48 +720,6 @@ public class CalendarAstronomer {
return time;
}
- private interface CoordFunc {
- public Equatorial eval();
- }
-
- private long riseOrSet(CoordFunc func, boolean rise,
- double diameter, double refraction,
- long epsilon)
- {
- Equatorial pos = null;
- double tanL = Math.tan(fLatitude);
- long deltaT = Long.MAX_VALUE;
- int count = 0;
-
- //
- // Calculate the object's position at the current time, then use that
- // position to calculate the time of rising or setting. The position
- // will be different at that time, so iterate until the error is allowable.
- //
- do {
- // See "Practical Astronomy With Your Calculator, section 33.
- pos = func.eval();
- double angle = Math.acos(-tanL * Math.tan(pos.declination));
- double lst = ((rise ? PI2-angle : angle) + pos.ascension ) * 24 / PI2;
-
- // Convert from LST to Universal Time.
- long newTime = lstToUT( lst );
-
- deltaT = newTime - time;
- setTime(newTime);
- }
- while (++ count < 5 && Math.abs(deltaT) > epsilon);
-
- // Calculate the correction due to refraction and the object's angular diameter
- double cosD = Math.cos(pos.declination);
- double psi = Math.acos(Math.sin(fLatitude) / cosD);
- double x = diameter / 2 + refraction;
- double y = Math.asin(Math.sin(x) / Math.sin(psi));
- long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS);
-
- return time + (rise ? -delta : delta);
- }
-
//-------------------------------------------------------------------------
// Other utility methods
//-------------------------------------------------------------------------
@@ -1389,19 +786,16 @@ public class CalendarAstronomer {
* measured in radians.
*/
private double eclipticObliquity() {
- if (eclipObliquity == INVALID) {
- final double epoch = 2451545.0; // 2000 AD, January 1.5
+ final double epoch = 2451545.0; // 2000 AD, January 1.5
- double T = (getJulianDay() - epoch) / 36525;
+ double T = (getJulianDay() - epoch) / 36525;
- eclipObliquity = 23.439292
+ double eclipObliquity = 23.439292
- 46.815/3600 * T
- 0.0006/3600 * T*T
+ 0.00181/3600 * T*T*T;
- eclipObliquity *= DEG_RAD;
- }
- return eclipObliquity;
+ return eclipObliquity * DEG_RAD;
}
@@ -1415,13 +809,6 @@ public class CalendarAstronomer {
*/
private long time;
- /* These aren't used yet, but they'll be needed for sunset calculations
- * and equatorial to horizon coordinate conversions
- */
- private double fLongitude = 0.0;
- private double fLatitude = 0.0;
- private long fGmtOffset = 0;
-
//
// The following fields are used to cache calculated results for improved
// performance. These values all depend on the current time setting
@@ -1430,52 +817,20 @@ public class CalendarAstronomer {
static final private double INVALID = Double.MIN_VALUE;
private transient double julianDay = INVALID;
- private transient double julianCentury = INVALID;
private transient double sunLongitude = INVALID;
private transient double meanAnomalySun = INVALID;
- private transient double moonLongitude = INVALID;
private transient double moonEclipLong = INVALID;
- //private transient double meanAnomalyMoon = INVALID;
- private transient double eclipObliquity = INVALID;
- private transient double siderealT0 = INVALID;
- private transient double siderealTime = INVALID;
private transient Equatorial moonPosition = null;
private void clearCache() {
julianDay = INVALID;
- julianCentury = INVALID;
sunLongitude = INVALID;
meanAnomalySun = INVALID;
- moonLongitude = INVALID;
moonEclipLong = INVALID;
- //meanAnomalyMoon = INVALID;
- eclipObliquity = INVALID;
- siderealTime = INVALID;
- siderealT0 = INVALID;
moonPosition = null;
}
- //private static void out(String s) {
- // System.out.println(s);
- //}
-
- //private static String deg(double rad) {
- // return Double.toString(rad * RAD_DEG);
- //}
-
- //private static String hours(long ms) {
- // return Double.toString((double)ms / HOUR_MS) + " hours";
- //}
-
- /**
- * @internal
- */
- public String local(long localMillis) {
- return new Date(localMillis - TimeZone.getDefault().getRawOffset()).toString();
- }
-
-
/**
* Represents the position of an object in the sky relative to the ecliptic,
* the plane of the earth's orbit around the Sun.
@@ -1490,7 +845,6 @@ public class CalendarAstronomer {
* value without worrying about whether other code will modify them.
*
* @see CalendarAstronomer.Equatorial
- * @see CalendarAstronomer.Horizon
* @internal
*/
public static final class Ecliptic {
@@ -1550,7 +904,6 @@ public class CalendarAstronomer {
* value without worrying about whether other code will modify them.
*
* @see CalendarAstronomer.Ecliptic
- * @see CalendarAstronomer.Horizon
* @internal
*/
public static final class Equatorial {
@@ -1603,59 +956,6 @@ public class CalendarAstronomer {
public final double declination;
}
- /**
- * Represents the position of an object in the sky relative to
- * the local horizon.
- * The Altitude represents the object's elevation above the horizon,
- * with objects below the horizon having a negative altitude.
- * The Azimuth is the geographic direction of the object from the
- * observer's position, with 0 representing north. The azimuth increases
- * clockwise from north.
- * days
*/
private int newMoonNear(int days, boolean after) {
-
- astro.setTime(daysToMillis(days));
- long newMoon = astro.getMoonTime(CalendarAstronomer.NEW_MOON, after);
+ long newMoon = (new CalendarAstronomer(daysToMillis(days))).getMoonTime(CalendarAstronomer.NEW_MOON, after);
return millisToDays(newMoon);
}
@@ -755,11 +746,8 @@ public class ChineseCalendar extends Calendar {
* @param days days after January 1, 1970 0:00 Asia/Shanghai
*/
private int majorSolarTerm(int days) {
-
- astro.setTime(daysToMillis(days));
-
// Compute (floor(solarLongitude / (pi/6)) + 2) % 12
- int term = ((int) Math.floor(6 * astro.getSunLongitude() / Math.PI) + 2) % 12;
+ int term = ((int) Math.floor(6 * (new CalendarAstronomer(daysToMillis(days))).getSunLongitude() / Math.PI) + 2) % 12;
if (term < 1) {
term += 12;
}
@@ -1055,7 +1043,6 @@ public class ChineseCalendar extends Calendar {
stream.defaultReadObject();
/* set up the transient caches... */
- astro = new CalendarAstronomer();
winterSolsticeCache = new CalendarCache();
newYearCache = new CalendarCache();
}
diff --git a/icu4j/main/core/src/main/java/com/ibm/icu/util/IslamicCalendar.java b/icu4j/main/core/src/main/java/com/ibm/icu/util/IslamicCalendar.java
index 7d1182f69b7..32dc3328588 100644
--- a/icu4j/main/core/src/main/java/com/ibm/icu/util/IslamicCalendar.java
+++ b/icu4j/main/core/src/main/java/com/ibm/icu/util/IslamicCalendar.java
@@ -938,12 +938,7 @@ public class IslamicCalendar extends Calendar {
*/
static final double moonAge(long time)
{
- double age = 0;
-
- synchronized(astro) {
- astro.setTime(time);
- age = astro.getMoonAge();
- }
+ double age = (new CalendarAstronomer(time)).getMoonAge();
// Convert to degrees and normalize...
age = age * 180 / Math.PI;
if (age > 180) {
@@ -957,9 +952,6 @@ public class IslamicCalendar extends Calendar {
// Internal data....
//
- // And an Astronomer object for the moon age calculations
- private static CalendarAstronomer astro = new CalendarAstronomer();
-
private static CalendarCache cache = new CalendarCache();
/**
diff --git a/icu4j/main/core/src/test/java/com/ibm/icu/dev/test/calendar/AstroTest.java b/icu4j/main/core/src/test/java/com/ibm/icu/dev/test/calendar/AstroTest.java
index b8dc6e0dd9a..aaef1b79606 100644
--- a/icu4j/main/core/src/test/java/com/ibm/icu/dev/test/calendar/AstroTest.java
+++ b/icu4j/main/core/src/test/java/com/ibm/icu/dev/test/calendar/AstroTest.java
@@ -36,7 +36,6 @@ public class AstroTest extends CoreTestFmwk {
@Test
public void TestSolarLongitude() {
GregorianCalendar gc = new GregorianCalendar(new SimpleTimeZone(0, "UTC"));
- CalendarAstronomer astro = new CalendarAstronomer();
// year, month, day, hour, minute, longitude (radians), ascension(radians), declination(radians)
final double tests[][] = {
{ 1980, 7, 27, 00, 00, 2.166442986535465, 2.2070499713207730, 0.3355704075759270 },
@@ -47,7 +46,7 @@ public class AstroTest extends CoreTestFmwk {
gc.clear();
gc.set((int)tests[i][0], (int)tests[i][1]-1, (int)tests[i][2], (int)tests[i][3], (int) tests[i][4]);
- astro.setDate(gc.getTime());
+ CalendarAstronomer astro = new CalendarAstronomer(gc.getTimeInMillis());
double longitude = astro.getSunLongitude();
if (longitude != tests[i][5]) {
@@ -61,36 +60,12 @@ public class AstroTest extends CoreTestFmwk {
") for test " + i);
}
}
- Equatorial result = astro.getSunPosition();
- if (result.ascension != tests[i][6]) {
- if ((float)result.ascension == (float)tests[i][6]) {
- logln("result.ascension(" + result.ascension +
- ") != tests[i][6](" + tests[i][6] +
- ") in double for test " + i);
- } else {
- errln("FAIL: result.ascension(" + result.ascension +
- ") != tests[i][6](" + tests[i][6] +
- ") for test " + i);
- }
- }
- if (result.declination != tests[i][7]) {
- if ((float)result.declination == (float)tests[i][7]) {
- logln("result.declination(" + result.declination +
- ") != tests[i][7](" + tests[i][7] +
- ") in double for test " + i);
- } else {
- errln("FAIL: result.declination(" + result.declination +
- ") != tests[i][7](" + tests[i][7] +
- ") for test " + i);
- }
- }
}
}
@Test
public void TestLunarPosition() {
GregorianCalendar gc = new GregorianCalendar(new SimpleTimeZone(0, "UTC"));
- CalendarAstronomer astro = new CalendarAstronomer();
// year, month, day, hour, minute, ascension(radians), declination(radians)
final double tests[][] = {
{ 1979, 2, 26, 16, 00, -0.3778379118188744, -0.1399698825594198 },
@@ -100,7 +75,7 @@ public class AstroTest extends CoreTestFmwk {
for (int i = 0; i < tests.length; i++) {
gc.clear();
gc.set((int)tests[i][0], (int)tests[i][1]-1, (int)tests[i][2], (int)tests[i][3], (int) tests[i][4]);
- astro.setDate(gc.getTime());
+ CalendarAstronomer astro = new CalendarAstronomer(gc.getTimeInMillis());
Equatorial result = astro.getMoonPosition();
if (result.ascension != tests[i][5]) {
@@ -138,24 +113,17 @@ public class AstroTest extends CoreTestFmwk {
@Test
public void TestCoverage() {
GregorianCalendar cal = new GregorianCalendar(1958, Calendar.AUGUST, 15);
- Date then = cal.getTime();
- CalendarAstronomer myastro = new CalendarAstronomer(then);
+ CalendarAstronomer myastro = new CalendarAstronomer(cal.getTimeInMillis());
//Latitude: 34 degrees 05' North
//Longitude: 118 degrees 22' West
double laLat = 34 + 5d/60, laLong = 360 - (118 + 22d/60);
- CalendarAstronomer myastro2 = new CalendarAstronomer(laLong, laLat);
double eclLat = laLat * Math.PI / 360;
double eclLong = laLong * Math.PI / 360;
- Ecliptic ecl = new Ecliptic(eclLat, eclLong);
- logln("ecliptic: " + ecl);
-
- CalendarAstronomer myastro3 = new CalendarAstronomer();
- myastro3.setJulianDay((4713 + 2000) * 365.25);
CalendarAstronomer[] astronomers = {
- myastro, myastro2, myastro3, myastro2 // check cache
+ myastro, myastro, myastro // check cache
};
@@ -165,176 +133,21 @@ public class AstroTest extends CoreTestFmwk {
logln("astro: " + astro);
logln(" time: " + astro.getTime());
logln(" date: " + astro.getDate());
- logln(" cent: " + astro.getJulianCentury());
- logln(" gw sidereal: " + astro.getGreenwichSidereal());
- logln(" loc sidereal: " + astro.getLocalSidereal());
- logln(" equ ecl: " + astro.eclipticToEquatorial(ecl));
- logln(" equ long: " + astro.eclipticToEquatorial(eclLong));
- logln(" horiz: " + astro.eclipticToHorizon(eclLong));
- logln(" sunrise: " + new Date(astro.getSunRiseSet(true)));
- logln(" sunset: " + new Date(astro.getSunRiseSet(false)));
- logln(" moon phase: " + astro.getMoonPhase());
- logln(" moonrise: " + new Date(astro.getMoonRiseSet(true)));
- logln(" moonset: " + new Date(astro.getMoonRiseSet(false)));
- logln(" prev summer solstice: " + new Date(astro.getSunTime(CalendarAstronomer.SUMMER_SOLSTICE, false)));
- logln(" next summer solstice: " + new Date(astro.getSunTime(CalendarAstronomer.SUMMER_SOLSTICE, true)));
- logln(" prev full moon: " + new Date(astro.getMoonTime(CalendarAstronomer.FULL_MOON, false)));
- logln(" next full moon: " + new Date(astro.getMoonTime(CalendarAstronomer.FULL_MOON, true)));
+ logln(" equ long: " + astro.eclipticToEquatorial(eclLat, eclLong));
}
}
- static final long DAY_MS = 24*60*60*1000L;
-
- @Test
- public void TestSunriseTimes() {
-
- // logln("Sunrise/Sunset times for San Jose, California, USA");
- // CalendarAstronomer astro = new CalendarAstronomer(-121.55, 37.20);
- // TimeZone tz = TimeZone.getTimeZone("America/Los_Angeles");
-
- // We'll use a table generated by the UNSO website as our reference
- // From: http://aa.usno.navy.mil/
- //-Location: W079 25, N43 40
- //-Rise and Set for the Sun for 2001
- //-Zone: 4h West of Greenwich
- int[] USNO = {
- 6,59, 19,45,
- 6,57, 19,46,
- 6,56, 19,47,
- 6,54, 19,48,
- 6,52, 19,49,
- 6,50, 19,51,
- 6,48, 19,52,
- 6,47, 19,53,
- 6,45, 19,54,
- 6,43, 19,55,
- 6,42, 19,57,
- 6,40, 19,58,
- 6,38, 19,59,
- 6,36, 20, 0,
- 6,35, 20, 1,
- 6,33, 20, 3,
- 6,31, 20, 4,
- 6,30, 20, 5,
- 6,28, 20, 6,
- 6,27, 20, 7,
- 6,25, 20, 8,
- 6,23, 20,10,
- 6,22, 20,11,
- 6,20, 20,12,
- 6,19, 20,13,
- 6,17, 20,14,
- 6,16, 20,16,
- 6,14, 20,17,
- 6,13, 20,18,
- 6,11, 20,19,
- };
-
- logln("Sunrise/Sunset times for Toronto, Canada");
- CalendarAstronomer astro = new CalendarAstronomer(-(79+25/60), 43+40/60);
-
- // As of ICU4J 2.8 the ICU4J time zones implement pass-through
- // to the underlying JDK. Because of variation in the
- // underlying JDKs, we have to use a fixed-offset
- // SimpleTimeZone to get consistent behavior between JDKs.
- // The offset we want is [-18000000, 3600000] (raw, dst).
- // [aliu 10/15/03]
-
- // TimeZone tz = TimeZone.getTimeZone("America/Montreal");
- TimeZone tz = new SimpleTimeZone(-18000000 + 3600000, "Montreal(FIXED)");
-
- GregorianCalendar cal = new GregorianCalendar(tz, Locale.US);
- GregorianCalendar cal2 = new GregorianCalendar(tz, Locale.US);
- cal.clear();
- cal.set(Calendar.YEAR, 2001);
- cal.set(Calendar.MONTH, Calendar.APRIL);
- cal.set(Calendar.DAY_OF_MONTH, 1);
- cal.set(Calendar.HOUR_OF_DAY, 12); // must be near local noon for getSunRiseSet to work
-
- DateFormat df = DateFormat.getTimeInstance(cal, DateFormat.MEDIUM, Locale.US);
- DateFormat df2 = DateFormat.getDateTimeInstance(cal, DateFormat.MEDIUM, DateFormat.MEDIUM, Locale.US);
- DateFormat day = DateFormat.getDateInstance(cal, DateFormat.MEDIUM, Locale.US);
-
- for (int i=0; i < 30; i++) {
- astro.setDate(cal.getTime());
-
- Date sunrise = new Date(astro.getSunRiseSet(true));
- Date sunset = new Date(astro.getSunRiseSet(false));
-
- cal2.setTime(cal.getTime());
- cal2.set(Calendar.SECOND, 0);
- cal2.set(Calendar.MILLISECOND, 0);
-
- cal2.set(Calendar.HOUR_OF_DAY, USNO[4*i+0]);
- cal2.set(Calendar.MINUTE, USNO[4*i+1]);
- Date exprise = cal2.getTime();
- cal2.set(Calendar.HOUR_OF_DAY, USNO[4*i+2]);
- cal2.set(Calendar.MINUTE, USNO[4*i+3]);
- Date expset = cal2.getTime();
- // Compute delta of what we got to the USNO data, in seconds
- int deltarise = Math.abs((int)(sunrise.getTime() - exprise.getTime()) / 1000);
- int deltaset = Math.abs((int)(sunset.getTime() - expset.getTime()) / 1000);
-
- // Allow a deviation of 0..MAX_DEV seconds
- // It would be nice to get down to 60 seconds, but at this
- // point that appears to be impossible without a redo of the
- // algorithm using something more advanced than Duffett-Smith.
- final int MAX_DEV = 180;
- if (deltarise > MAX_DEV || deltaset > MAX_DEV) {
- if (deltarise > MAX_DEV) {
- errln("FAIL: " + day.format(cal.getTime()) +
- ", Sunrise: " + df2.format(sunrise) +
- " (USNO " + df.format(exprise) +
- " d=" + deltarise + "s)");
- } else {
- logln(day.format(cal.getTime()) +
- ", Sunrise: " + df.format(sunrise) +
- " (USNO " + df.format(exprise) + ")");
- }
- if (deltaset > MAX_DEV) {
- errln("FAIL: " + day.format(cal.getTime()) +
- ", Sunset: " + df2.format(sunset) +
- " (USNO " + df.format(expset) +
- " d=" + deltaset + "s)");
- } else {
- logln(day.format(cal.getTime()) +
- ", Sunset: " + df.format(sunset) +
- " (USNO " + df.format(expset) + ")");
- }
- } else {
- logln(day.format(cal.getTime()) +
- ", Sunrise: " + df.format(sunrise) +
- " (USNO " + df.format(exprise) + ")" +
- ", Sunset: " + df.format(sunset) +
- " (USNO " + df.format(expset) + ")");
- }
- cal.add(Calendar.DATE, 1);
- }
-
-// CalendarAstronomer a = new CalendarAstronomer(-(71+5/60), 42+37/60);
-// cal.clear();
-// cal.set(cal.YEAR, 1986);
-// cal.set(cal.MONTH, cal.MARCH);
-// cal.set(cal.DATE, 10);
-// cal.set(cal.YEAR, 1988);
-// cal.set(cal.MONTH, cal.JULY);
-// cal.set(cal.DATE, 27);
-// a.setDate(cal.getTime());
-// long r = a.getSunRiseSet2(true);
- }
-
@Test
public void TestBasics() {
// Check that our JD computation is the same as the book's (p. 88)
- CalendarAstronomer astro = new CalendarAstronomer();
GregorianCalendar cal3 = new GregorianCalendar(TimeZone.getTimeZone("GMT"), Locale.US);
DateFormat d3 = DateFormat.getDateTimeInstance(cal3, DateFormat.MEDIUM,DateFormat.MEDIUM,Locale.US);
cal3.clear();
cal3.set(Calendar.YEAR, 1980);
cal3.set(Calendar.MONTH, Calendar.JULY);
cal3.set(Calendar.DATE, 27);
- astro.setDate(cal3.getTime());
+ CalendarAstronomer astro = new CalendarAstronomer(cal3.getTimeInMillis());
double jd = astro.getJulianDay() - 2447891.5;
double exp = -3444;
if (jd == exp) {
@@ -357,7 +170,6 @@ public class AstroTest extends CoreTestFmwk {
@Test
public void TestMoonAge(){
GregorianCalendar gc = new GregorianCalendar(new SimpleTimeZone(0,"GMT"));
- CalendarAstronomer calastro = new CalendarAstronomer();
// more testcases are around the date 05/20/2012
//ticket#3785 UDate ud0 = 1337557623000.0;
double testcase[][] = {{2012, 5, 20 , 16 , 48, 59},
@@ -380,7 +192,7 @@ public class AstroTest extends CoreTestFmwk {
(int)testcase[i][2]+" Hour "+(int)testcase[i][3]+" Minutes "+(int)testcase[i][4]+
" Seconds "+(int)testcase[i][5];
gc.set((int)testcase[i][0],(int)testcase[i][1]-1,(int)testcase[i][2],(int)testcase[i][3],(int)testcase[i][4], (int)testcase[i][5]);
- calastro.setDate(gc.getTime());
+ CalendarAstronomer calastro = new CalendarAstronomer(gc.getTimeInMillis());
double expectedAge = (angle[i]*PI)/180;
double got = calastro.getMoonAge();
logln(testString);
diff --git a/icu4j/main/core/src/test/java/com/ibm/icu/dev/test/calendar/IBMCalendarTest.java b/icu4j/main/core/src/test/java/com/ibm/icu/dev/test/calendar/IBMCalendarTest.java
index 5404088af20..9322764fa4d 100644
--- a/icu4j/main/core/src/test/java/com/ibm/icu/dev/test/calendar/IBMCalendarTest.java
+++ b/icu4j/main/core/src/test/java/com/ibm/icu/dev/test/calendar/IBMCalendarTest.java
@@ -975,7 +975,6 @@ public class IBMCalendarTest extends CalendarTestFmwk {
// CalendarAstronomer
// (This class should probably be made package-private.)
CalendarAstronomer astro = new CalendarAstronomer();
- /*String s = */astro.local(0);
// ChineseCalendar
ChineseCalendar ccal = new ChineseCalendar(TimeZone.getDefault(),