diff --git a/icu4c/source/i18n/astro.cpp b/icu4c/source/i18n/astro.cpp index 13ebb0a0e07..11f24caa058 100644 --- a/icu4c/source/i18n/astro.cpp +++ b/icu4c/source/i18n/astro.cpp @@ -242,7 +242,7 @@ inline static double normPI(double angle) { * @deprecated ICU 2.4. This class may be removed or modified. */ CalendarAstronomer::CalendarAstronomer(): - fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(false) { + fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(false) { clearCache(); } @@ -252,30 +252,7 @@ CalendarAstronomer::CalendarAstronomer(): * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ -CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(false) { - clearCache(); -} - -/** - * Construct a new CalendarAstronomer object with the given - * latitude and longitude. The object's time is set to the current - * date and time. - *

- * @param longitude The desired longitude, in degrees east of - * the Greenwich meridian. - * - * @param latitude The desired latitude, in degrees. Positive - * values signify North, negative South. - * - * @see java.util.Date#getTime() - * @internal - * @deprecated ICU 2.4. This class may be removed or modified. - */ -CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) : - fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(false) { - fLongitude = normPI(longitude * (double)DEG_RAD); - fLatitude = normPI(latitude * (double)DEG_RAD); - fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2); +CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), moonPosition(0,0), moonPositionSet(false) { clearCache(); } @@ -301,31 +278,9 @@ CalendarAstronomer::~CalendarAstronomer() */ void CalendarAstronomer::setTime(UDate aTime) { fTime = aTime; - U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset))); clearCache(); } -/** - * Set the current date and time of this CalendarAstronomer object. All - * astronomical calculations are performed based on this time setting. - * - * @param jdn the desired time, expressed as a "julian day number", - * which is the number of elapsed days since - * 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day - * numbers start at noon. To get the jdn for - * the corresponding midnight, subtract 0.5. - * - * @see #getJulianDay - * @see #JULIAN_EPOCH_MS - * @internal - * @deprecated ICU 2.4. This class may be removed or modified. - */ -void CalendarAstronomer::setJulianDay(double jdn) { - fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS; - clearCache(); - julianDay = jdn; -} - /** * Get the current time of this CalendarAstronomer object, * represented as the number of milliseconds since @@ -357,97 +312,10 @@ double CalendarAstronomer::getJulianDay() { return julianDay; } -/** - * Return this object's time expressed in julian centuries: - * the number of centuries after 1/1/1900 AD, 12:00 GMT - * - * @see #getJulianDay - * @internal - * @deprecated ICU 2.4. This class may be removed or modified. - */ -double CalendarAstronomer::getJulianCentury() { - if (isINVALID(julianCentury)) { - julianCentury = (getJulianDay() - 2415020.0) / 36525.0; - } - return julianCentury; -} - -/** - * Returns the current Greenwich sidereal time, measured in hours - * @internal - * @deprecated ICU 2.4. This class may be removed or modified. - */ -double CalendarAstronomer::getGreenwichSidereal() { - if (isINVALID(siderealTime)) { - // See page 86 of "Practical Astronomy with your Calculator", - // by Peter Duffet-Smith, for details on the algorithm. - - double UT = normalize(fTime/(double)HOUR_MS, 24.); - - siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.); - } - return siderealTime; -} - -double CalendarAstronomer::getSiderealOffset() { - if (isINVALID(siderealT0)) { - double JD = uprv_floor(getJulianDay() - 0.5) + 0.5; - double S = JD - 2451545.0; - double T = S / 36525.0; - siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24); - } - return siderealT0; -} - -/** - * Returns the current local sidereal time, measured in hours - * @internal - * @deprecated ICU 2.4. This class may be removed or modified. - */ -double CalendarAstronomer::getLocalSidereal() { - return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.); -} - -/** - * Converts local sidereal time to Universal Time. - * - * @param lst The Local Sidereal Time, in hours since sidereal midnight - * on this object's current date. - * - * @return The corresponding Universal Time, in milliseconds since - * 1 Jan 1970, GMT. - */ -double CalendarAstronomer::lstToUT(double lst) { - // Convert to local mean time - double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24); - - // Then find local midnight on this day - double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset; - - //out(" lt =" + lt + " hours"); - //out(" base=" + new Date(base)); - - return base + (long)(lt * HOUR_MS); -} - - //------------------------------------------------------------------------- // Coordinate transformations, all based on the current time of this object //------------------------------------------------------------------------- -/** - * Convert from ecliptic to equatorial coordinates. - * - * @param ecliptic A point in the sky in ecliptic coordinates. - * @return The corresponding point in equatorial coordinates. - * @internal - * @deprecated ICU 2.4. This class may be removed or modified. - */ -CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic) -{ - return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude); -} - /** * Convert from ecliptic to equatorial coordinates. * @@ -479,46 +347,6 @@ CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(Calenda return result; } -/** - * Convert from ecliptic longitude to equatorial coordinates. - * - * @param eclipLong The ecliptic longitude - * - * @return The corresponding point in equatorial coordinates. - * @internal - * @deprecated ICU 2.4. This class may be removed or modified. - */ -CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong) -{ - return eclipticToEquatorial(result, eclipLong, 0); // TODO: optimize -} - -/** - * @internal - * @deprecated ICU 2.4. This class may be removed or modified. - */ -CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong) -{ - Equatorial equatorial; - eclipticToEquatorial(equatorial, eclipLong); - - double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension; // Hour-angle - - double sinH = ::sin(H); - double cosH = cos(H); - double sinD = ::sin(equatorial.declination); - double cosD = cos(equatorial.declination); - double sinL = ::sin(fLatitude); - double cosL = cos(fLatitude); - - double altitude = asin(sinD*sinL + cosD*cosL*cosH); - double azimuth = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude)); - - result.set(azimuth, altitude); - return result; -} - - //------------------------------------------------------------------------- // The Sun //------------------------------------------------------------------------- @@ -657,50 +485,6 @@ double CalendarAstronomer::getSunLongitude() longitude = norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G); } -/** - * The position of the sun at this object's current date and time, - * in equatorial coordinates. - * @internal - * @deprecated ICU 2.4. This class may be removed or modified. - */ -CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) { - return eclipticToEquatorial(result, getSunLongitude(), 0); -} - - -/** - * Constant representing the vernal equinox. - * For use with {@link #getSunTime getSunTime}. - * Note: In this case, "vernal" refers to the northern hemisphere's seasons. - * @internal - * @deprecated ICU 2.4. This class may be removed or modified. - */ -/*double CalendarAstronomer::VERNAL_EQUINOX() { - return 0; -}*/ - -/** - * Constant representing the summer solstice. - * For use with {@link #getSunTime getSunTime}. - * Note: In this case, "summer" refers to the northern hemisphere's seasons. - * @internal - * @deprecated ICU 2.4. This class may be removed or modified. - */ -double CalendarAstronomer::SUMMER_SOLSTICE() { - return (CalendarAstronomer::PI/2); -} - -/** - * Constant representing the autumnal equinox. - * For use with {@link #getSunTime getSunTime}. - * Note: In this case, "autumn" refers to the northern hemisphere's seasons. - * @internal - * @deprecated ICU 2.4. This class may be removed or modified. - */ -/*double CalendarAstronomer::AUTUMN_EQUINOX() { - return (CalendarAstronomer::PI); -}*/ - /** * Constant representing the winter solstice. * For use with {@link #getSunTime getSunTime}. @@ -738,310 +522,6 @@ UDate CalendarAstronomer::getSunTime(double desired, UBool next) next); } -CalendarAstronomer::CoordFunc::~CoordFunc() {} - -class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc { -public: - virtual ~RiseSetCoordFunc(); - virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer& a) override { a.getSunPosition(result); } -}; - -RiseSetCoordFunc::~RiseSetCoordFunc() {} - -UDate CalendarAstronomer::getSunRiseSet(UBool rise) -{ - UDate t0 = fTime; - - // Make a rough guess: 6am or 6pm local time on the current day - double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS); - - U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset)); - setTime(noon + ((rise ? -6 : 6) * HOUR_MS)); - U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS))); - - RiseSetCoordFunc func; - double t = riseOrSet(func, - rise, - .533 * DEG_RAD, // Angular Diameter - 34. /60.0 * DEG_RAD, // Refraction correction - MINUTE_MS / 12.); // Desired accuracy - - setTime(t0); - return t; -} - -// Commented out - currently unused. ICU 2.6, Alan -// //------------------------------------------------------------------------- -// // Alternate Sun Rise/Set -// // See Duffett-Smith p.93 -// //------------------------------------------------------------------------- -// -// // This yields worse results (as compared to USNO data) than getSunRiseSet(). -// /** -// * TODO Make this when the entire class is package-private. -// */ -// /*public*/ long getSunRiseSet2(boolean rise) { -// // 1. Calculate coordinates of the sun's center for midnight -// double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; -// double[] sl = getSunLongitude(jd);// double lambda1 = sl[0]; -// Equatorial pos1 = eclipticToEquatorial(lambda1, 0); -// -// // 2. Add ... to lambda to get position 24 hours later -// double lambda2 = lambda1 + 0.985647*DEG_RAD; -// Equatorial pos2 = eclipticToEquatorial(lambda2, 0); -// -// // 3. Calculate LSTs of rising and setting for these two positions -// double tanL = ::tan(fLatitude); -// double H = ::acos(-tanL * ::tan(pos1.declination)); -// double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2; -// double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2; -// H = ::acos(-tanL * ::tan(pos2.declination)); -// double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; -// double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; -// if (lst1r > 24) lst1r -= 24; -// if (lst1s > 24) lst1s -= 24; -// if (lst2r > 24) lst2r -= 24; -// if (lst2s > 24) lst2s -= 24; -// -// // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2. -// double gst1r = lstToGst(lst1r); -// double gst1s = lstToGst(lst1s); -// double gst2r = lstToGst(lst2r); -// double gst2s = lstToGst(lst2s); -// if (gst1r > gst2r) gst2r += 24; -// if (gst1s > gst2s) gst2s += 24; -// -// // 5. Calculate GST at 0h UT of this date -// double t00 = utToGst(0); -// -// // 6. Calculate GST at 0h on the observer's longitude -// double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg. -// double t00p = t00 - offset*1.002737909; -// if (t00p < 0) t00p += 24; // do NOT normalize -// -// // 7. Adjust -// if (gst1r < t00p) { -// gst1r += 24; -// gst2r += 24; -// } -// if (gst1s < t00p) { -// gst1s += 24; -// gst2s += 24; -// } -// -// // 8. -// double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r); -// double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s); -// -// // 9. Correct for parallax, refraction, and sun's diameter -// double dec = (pos1.declination + pos2.declination) / 2; -// double psi = ::acos(sin(fLatitude) / cos(dec)); -// double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter -// double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG; -// double delta_t = 240 * y / cos(dec) / 3600; // hours -// -// // 10. Add correction to GSTs, subtract from GSTr -// gstr -= delta_t; -// gsts += delta_t; -// -// // 11. Convert GST to UT and then to local civil time -// double ut = gstToUt(rise ? gstr : gsts); -// //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t); -// long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day -// return midnight + (long) (ut * 3600000); -// } - -// Commented out - currently unused. ICU 2.6, Alan -// /** -// * Convert local sidereal time to Greenwich sidereal time. -// * Section 15. Duffett-Smith p.21 -// * @param lst in hours (0..24) -// * @return GST in hours (0..24) -// */ -// double lstToGst(double lst) { -// double delta = fLongitude * 24 / CalendarAstronomer_PI2; -// return normalize(lst - delta, 24); -// } - -// Commented out - currently unused. ICU 2.6, Alan -// /** -// * Convert UT to GST on this date. -// * Section 12. Duffett-Smith p.17 -// * @param ut in hours -// * @return GST in hours -// */ -// double utToGst(double ut) { -// return normalize(getT0() + ut*1.002737909, 24); -// } - -// Commented out - currently unused. ICU 2.6, Alan -// /** -// * Convert GST to UT on this date. -// * Section 13. Duffett-Smith p.18 -// * @param gst in hours -// * @return UT in hours -// */ -// double gstToUt(double gst) { -// return normalize(gst - getT0(), 24) * 0.9972695663; -// } - -// Commented out - currently unused. ICU 2.6, Alan -// double getT0() { -// // Common computation for UT <=> GST -// -// // Find JD for 0h UT -// double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; -// -// double s = jd - 2451545.0; -// double t = s / 36525.0; -// double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t; -// return t0; -// } - -// Commented out - currently unused. ICU 2.6, Alan -// //------------------------------------------------------------------------- -// // Alternate Sun Rise/Set -// // See sci.astro FAQ -// // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html -// //------------------------------------------------------------------------- -// -// // Note: This method appears to produce inferior accuracy as -// // compared to getSunRiseSet(). -// -// /** -// * TODO Make this when the entire class is package-private. -// */ -// /*public*/ long getSunRiseSet3(boolean rise) { -// -// // Compute day number for 0.0 Jan 2000 epoch -// double d = (double)(time - EPOCH_2000_MS) / DAY_MS; -// -// // Now compute the Local Sidereal Time, LST: -// // -// double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/ -// fLongitude*RAD_DEG; -// // -// // (east long. positive). Note that LST is here expressed in degrees, -// // where 15 degrees corresponds to one hour. Since LST really is an angle, -// // it's convenient to use one unit---degrees---throughout. -// -// // COMPUTING THE SUN'S POSITION -// // ---------------------------- -// // -// // To be able to compute the Sun's rise/set times, you need to be able to -// // compute the Sun's position at any time. First compute the "day -// // number" d as outlined above, for the desired moment. Next compute: -// // -// double oblecl = 23.4393 - 3.563E-7 * d; -// // -// double w = 282.9404 + 4.70935E-5 * d; -// double M = 356.0470 + 0.9856002585 * d; -// double e = 0.016709 - 1.151E-9 * d; -// // -// // This is the obliquity of the ecliptic, plus some of the elements of -// // the Sun's apparent orbit (i.e., really the Earth's orbit): w = -// // argument of perihelion, M = mean anomaly, e = eccentricity. -// // Semi-major axis is here assumed to be exactly 1.0 (while not strictly -// // true, this is still an accurate approximation). Next compute E, the -// // eccentric anomaly: -// // -// double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) ); -// // -// // where E and M are in degrees. This is it---no further iterations are -// // needed because we know e has a sufficiently small value. Next compute -// // the true anomaly, v, and the distance, r: -// // -// /* r * cos(v) = */ double A = cos(E*DEG_RAD) - e; -// /* r * ::sin(v) = */ double B = ::sqrt(1 - e*e) * ::sin(E*DEG_RAD); -// // -// // and -// // -// // r = sqrt( A*A + B*B ) -// double v = ::atan2( B, A )*RAD_DEG; -// // -// // The Sun's true longitude, slon, can now be computed: -// // -// double slon = v + w; -// // -// // Since the Sun is always at the ecliptic (or at least very very close to -// // it), we can use simplified formulae to convert slon (the Sun's ecliptic -// // longitude) to sRA and sDec (the Sun's RA and Dec): -// // -// // ::sin(slon) * cos(oblecl) -// // tan(sRA) = ------------------------- -// // cos(slon) -// // -// // ::sin(sDec) = ::sin(oblecl) * ::sin(slon) -// // -// // As was the case when computing az, the Azimuth, if possible use an -// // atan2() function to compute sRA. -// -// double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG; -// -// double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD); -// double sDec = ::asin(sin_sDec)*RAD_DEG; -// -// // COMPUTING RISE AND SET TIMES -// // ---------------------------- -// // -// // To compute when an object rises or sets, you must compute when it -// // passes the meridian and the HA of rise/set. Then the rise time is -// // the meridian time minus HA for rise/set, and the set time is the -// // meridian time plus the HA for rise/set. -// // -// // To find the meridian time, compute the Local Sidereal Time at 0h local -// // time (or 0h UT if you prefer to work in UT) as outlined above---name -// // that quantity LST0. The Meridian Time, MT, will now be: -// // -// // MT = RA - LST0 -// double MT = normalize(sRA - LST, 360); -// // -// // where "RA" is the object's Right Ascension (in degrees!). If negative, -// // add 360 deg to MT. If the object is the Sun, leave the time as it is, -// // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from -// // sidereal to solar time. Now, compute HA for rise/set, name that -// // quantity HA0: -// // -// // ::sin(h0) - ::sin(lat) * ::sin(Dec) -// // cos(HA0) = --------------------------------- -// // cos(lat) * cos(Dec) -// // -// // where h0 is the altitude selected to represent rise/set. For a purely -// // mathematical horizon, set h0 = 0 and simplify to: -// // -// // cos(HA0) = - tan(lat) * tan(Dec) -// // -// // If you want to account for refraction on the atmosphere, set h0 = -35/60 -// // degrees (-35 arc minutes), and if you want to compute the rise/set times -// // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes). -// // -// double h0 = -50/60 * DEG_RAD; -// -// double HA0 = ::acos( -// (sin(h0) - ::sin(fLatitude) * sin_sDec) / -// (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG; -// -// // When HA0 has been computed, leave it as it is for the Sun but multiply -// // by 365.2422/366.2422 for stellar objects, to convert from sidereal to -// // solar time. Finally compute: -// // -// // Rise time = MT - HA0 -// // Set time = MT + HA0 -// // -// // convert the times from degrees to hours by dividing by 15. -// // -// // If you'd like to check that your calculations are accurate or just -// // need a quick result, check the USNO's Sun or Moon Rise/Set Table, -// // . -// -// double result = MT + (rise ? -HA0 : HA0); // in degrees -// -// // Find UT midnight on this day -// long midnight = DAY_MS * (time / DAY_MS); -// -// return midnight + (long) (result * 3600000 / 15); -// } - //------------------------------------------------------------------------- // The Moon //------------------------------------------------------------------------- @@ -1083,7 +563,7 @@ const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition() // Calculate the mean longitude and anomaly of the moon, based on // a circular orbit. Similar to the corresponding solar calculation. double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0); - meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0); + double meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0); // // Calculate the following corrections: @@ -1109,7 +589,7 @@ const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition() double a4 = 0.2140*PI/180 * ::sin(2 * meanAnomalyMoon); // Now find the moon's corrected longitude - moonLongitude = meanLongitude + evection + center - annual + a4; + double moonLongitude = meanLongitude + evection + center - annual + a4; // // And finally, find the variation, caused by the fact that the sun's @@ -1149,7 +629,6 @@ const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition() * current ecliptic longitudes of the sun and the moon, * measured in radians. * - * @see #getMoonPhase * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ @@ -1165,27 +644,6 @@ double CalendarAstronomer::getMoonAge() { return norm2PI(moonEclipLong - sunLongitude); } -/** - * Calculate the phase of the moon at the time set in this object. - * The returned phase is a double in the range - * 0 <= phase < 1, interpreted as follows: - *

- * - * @see #getMoonAge - * @internal - * @deprecated ICU 2.4. This class may be removed or modified. - */ -double CalendarAstronomer::getMoonPhase() { - // See page 147 of "Practical Astronomy with your Calculator", - // by Peter Duffet-Smith, for details on the algorithm. - return 0.5 * (1 - cos(getMoonAge())); -} - /** * Constant representing a new moon. * For use with {@link #getMoonTime getMoonTime} @@ -1196,25 +654,6 @@ CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() { return CalendarAstronomer::MoonAge(0); } -/** - * Constant representing the moon's first quarter. - * For use with {@link #getMoonTime getMoonTime} - * @internal - * @deprecated ICU 2.4. This class may be removed or modified. - */ -/*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() { - return CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2); -}*/ - -/** - * Constant representing a full moon. - * For use with {@link #getMoonTime getMoonTime} - * @internal - * @deprecated ICU 2.4. This class may be removed or modified. - */ -CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() { - return CalendarAstronomer::MoonAge(CalendarAstronomer::PI); -} /** * Constant representing the moon's last quarter. * For use with {@link #getMoonTime getMoonTime} @@ -1234,26 +673,6 @@ MoonTimeAngleFunc::~MoonTimeAngleFunc() {} return CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2); }*/ -/** - * Find the next or previous time at which the Moon's ecliptic - * longitude will have the desired value. - *

- * @param desired The desired longitude. - * @param next true if the next occurrence of the phase - * is desired, false for the previous occurrence. - * @internal - * @deprecated ICU 2.4. This class may be removed or modified. - */ -UDate CalendarAstronomer::getMoonTime(double desired, UBool next) -{ - MoonTimeAngleFunc func; - return timeOfAngle( func, - desired, - SYNODIC_MONTH, - MINUTE_MS, - next); -} - /** * Find the next or previous time at which the moon will be in the * desired phase. @@ -1265,31 +684,12 @@ UDate CalendarAstronomer::getMoonTime(double desired, UBool next) * @deprecated ICU 2.4. This class may be removed or modified. */ UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) { - return getMoonTime(desired.value, next); -} - -class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc { -public: - virtual ~MoonRiseSetCoordFunc(); - virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer& a) override { result = a.getMoonPosition(); } -}; - -MoonRiseSetCoordFunc::~MoonRiseSetCoordFunc() {} - -/** - * Returns the time (GMT) of sunrise or sunset on the local date to which - * this calendar is currently set. - * @internal - * @deprecated ICU 2.4. This class may be removed or modified. - */ -UDate CalendarAstronomer::getMoonRiseSet(UBool rise) -{ - MoonRiseSetCoordFunc func; - return riseOrSet(func, - rise, - .533 * DEG_RAD, // Angular Diameter - 34 /60.0 * DEG_RAD, // Refraction correction - MINUTE_MS); // Desired accuracy + MoonTimeAngleFunc func; + return timeOfAngle( func, + desired.value, + SYNODIC_MONTH, + MINUTE_MS, + next); } //------------------------------------------------------------------------- @@ -1364,48 +764,7 @@ UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired, return fTime; } -UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise, - double diameter, double refraction, - double epsilon) -{ - Equatorial pos; - double tanL = ::tan(fLatitude); - double deltaT = 0; - int32_t count = 0; - - // - // Calculate the object's position at the current time, then use that - // position to calculate the time of rising or setting. The position - // will be different at that time, so iterate until the error is allowable. - // - U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n", - rise?"T":"F", diameter, refraction, epsilon)); - do { - // See "Practical Astronomy With Your Calculator, section 33. - func.eval(pos, *this); - double angle = ::acos(-tanL * ::tan(pos.declination)); - double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2; - - // Convert from LST to Universal Time. - UDate newTime = lstToUT( lst ); - - deltaT = newTime - fTime; - setTime(newTime); - U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf, A=%.3lf/D=%.3lf\n", - count, deltaT, angle, lst, pos.ascension, pos.declination)); - } - while (++ count < 5 && uprv_fabs(deltaT) > epsilon); - - // Calculate the correction due to refraction and the object's angular diameter - double cosD = ::cos(pos.declination); - double psi = ::acos(sin(fLatitude) / cosD); - double x = diameter / 2 + refraction; - double y = ::asin(sin(x) / ::sin(psi)); - long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS); - - return fTime + (rise ? -delta : delta); -} - /** +/** * Return the obliquity of the ecliptic (the angle between the ecliptic * and the earth's equator) at the current time. This varies due to * the precession of the earth's axis. @@ -1414,19 +773,16 @@ UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise, * measured in radians. */ double CalendarAstronomer::eclipticObliquity() { - if (isINVALID(eclipObliquity)) { - const double epoch = 2451545.0; // 2000 AD, January 1.5 + const double epoch = 2451545.0; // 2000 AD, January 1.5 - double T = (getJulianDay() - epoch) / 36525; + double T = (getJulianDay() - epoch) / 36525; - eclipObliquity = 23.439292 - - 46.815/3600 * T - - 0.0006/3600 * T*T - + 0.00181/3600 * T*T*T; + double eclipObliquity = 23.439292 + - 46.815/3600 * T + - 0.0006/3600 * T*T + + 0.00181/3600 * T*T*T; - eclipObliquity *= DEG_RAD; - } - return eclipObliquity; + return eclipObliquity * DEG_RAD; } @@ -1437,45 +793,13 @@ void CalendarAstronomer::clearCache() { const double INVALID = uprv_getNaN(); julianDay = INVALID; - julianCentury = INVALID; sunLongitude = INVALID; meanAnomalySun = INVALID; - moonLongitude = INVALID; moonEclipLong = INVALID; - meanAnomalyMoon = INVALID; - eclipObliquity = INVALID; - siderealTime = INVALID; - siderealT0 = INVALID; + moonPositionSet = false; } -//private static void out(String s) { -// System.out.println(s); -//} - -//private static String deg(double rad) { -// return Double.toString(rad * RAD_DEG); -//} - -//private static String hours(long ms) { -// return Double.toString((double)ms / HOUR_MS) + " hours"; -//} - -/** - * @internal - * @deprecated ICU 2.4. This class may be removed or modified. - */ -/*UDate CalendarAstronomer::local(UDate localMillis) { - // TODO - srl ? - TimeZone *tz = TimeZone::createDefault(); - int32_t rawOffset; - int32_t dstOffset; - UErrorCode status = U_ZERO_ERROR; - tz->getOffset(localMillis, true, rawOffset, dstOffset, status); - delete tz; - return localMillis - rawOffset; -}*/ - // Debugging functions UnicodeString CalendarAstronomer::Ecliptic::toString() const { @@ -1500,34 +824,6 @@ UnicodeString CalendarAstronomer::Equatorial::toString() const #endif } -UnicodeString CalendarAstronomer::Horizon::toString() const -{ -#ifdef U_DEBUG_ASTRO - char tmp[800]; - snprintf(tmp, sizeof(tmp), "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG); - return UnicodeString(tmp, ""); -#else - return UnicodeString(); -#endif -} - - -// static private String radToHms(double angle) { -// int hrs = (int) (angle*RAD_HOUR); -// int min = (int)((angle*RAD_HOUR - hrs) * 60); -// int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600); - -// return Integer.toString(hrs) + "h" + min + "m" + sec + "s"; -// } - -// static private String radToDms(double angle) { -// int deg = (int) (angle*RAD_DEG); -// int min = (int)((angle*RAD_DEG - deg) * 60); -// int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600); - -// return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\""; -// } - // =============== Calendar Cache ================ void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) { diff --git a/icu4c/source/i18n/astro.h b/icu4c/source/i18n/astro.h index 158e390d00c..ef297c4b3cc 100644 --- a/icu4c/source/i18n/astro.h +++ b/icu4c/source/i18n/astro.h @@ -31,7 +31,7 @@ U_NAMESPACE_BEGIN * at a given moment in time. Accordingly, each CalendarAstronomer * object has a time property that determines the date * and time for which its calculations are performed. You can set and - * retrieve this property with {@link #setDate setDate}, {@link #getDate getDate} + * retrieve this property with {@link #setTime setTime}, {@link #getTime getTime} * and related methods. *

* Almost all of the calculations performed by this class, or by any @@ -72,7 +72,6 @@ public: * value without worrying about whether other code will modify them. * * @see CalendarAstronomer.Equatorial - * @see CalendarAstronomer.Horizon * @internal */ class U_I18N_API Ecliptic : public UMemory { @@ -141,7 +140,6 @@ public: * value without worrying about whether other code will modify them. * * @see CalendarAstronomer.Ecliptic - * @see CalendarAstronomer.Horizon * @internal */ class U_I18N_API Equatorial : public UMemory { @@ -201,66 +199,6 @@ public: double declination; }; - /** - * Represents the position of an object in the sky relative to - * the local horizon. - * The Altitude represents the object's elevation above the horizon, - * with objects below the horizon having a negative altitude. - * The Azimuth is the geographic direction of the object from the - * observer's position, with 0 representing north. The azimuth increases - * clockwise from north. - *

- * Note that Horizon objects are immutable and cannot be modified - * once they are constructed. This allows them to be passed and returned by - * value without worrying about whether other code will modify them. - * - * @see CalendarAstronomer.Ecliptic - * @see CalendarAstronomer.Equatorial - * @internal - */ - class U_I18N_API Horizon : public UMemory { - public: - /** - * Constructs a Horizon coordinate object. - *

- * @param alt The altitude, measured in radians above the horizon. - * @param azim The azimuth, measured in radians clockwise from north. - * @internal - */ - Horizon(double alt=0, double azim=0) - : altitude(alt), azimuth(azim) { } - - /** - * Setter for Ecliptic Coordinate object - * @param alt The altitude, measured in radians above the horizon. - * @param azim The azimuth, measured in radians clockwise from north. - * @internal - */ - void set(double alt, double azim) { - altitude = alt; - azimuth = azim; - } - - /** - * Return a string representation of this object, with the - * angles measured in degrees. - * @internal - */ - UnicodeString toString() const; - - /** - * The object's altitude above the horizon, in radians. - * @internal - */ - double altitude; - - /** - * The object's direction, in radians clockwise from north. - * @internal - */ - double azimuth; - }; - public: //------------------------------------------------------------------------- // Assorted private data used for conversions @@ -300,22 +238,6 @@ public: */ CalendarAstronomer(UDate d); - /** - * Construct a new CalendarAstronomer object with the given - * latitude and longitude. The object's time is set to the current - * date and time. - *

- * @param longitude The desired longitude, in degrees east of - * the Greenwich meridian. - * - * @param latitude The desired latitude, in degrees. Positive - * values signify North, negative South. - * - * @see java.util.Date#getTime() - * @internal - */ - CalendarAstronomer(double longitude, double latitude); - /** * Destructor * @internal @@ -333,48 +255,17 @@ public: * @param aTime the date and time, expressed as the number of milliseconds since * 1/1/1970 0:00 GMT (Gregorian). * - * @see #setDate * @see #getTime * @internal */ void setTime(UDate aTime); - - /** - * Set the current date and time of this CalendarAstronomer object. All - * astronomical calculations are performed based on this time setting. - * - * @param aTime the date and time, expressed as the number of milliseconds since - * 1/1/1970 0:00 GMT (Gregorian). - * - * @see #getTime - * @internal - */ - void setDate(UDate aDate) { setTime(aDate); } - - /** - * Set the current date and time of this CalendarAstronomer object. All - * astronomical calculations are performed based on this time setting. - * - * @param jdn the desired time, expressed as a "julian day number", - * which is the number of elapsed days since - * 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day - * numbers start at noon. To get the jdn for - * the corresponding midnight, subtract 0.5. - * - * @see #getJulianDay - * @see #JULIAN_EPOCH_MS - * @internal - */ - void setJulianDay(double jdn); - /** * Get the current time of this CalendarAstronomer object, * represented as the number of milliseconds since * 1/1/1970 AD 0:00 GMT (Gregorian). * * @see #setTime - * @see #getDate * @internal */ UDate getTime(); @@ -384,58 +275,12 @@ public: * expressed as a "julian day number", which is the number of elapsed * days since 1/1/4713 BC (Julian), 12:00 GMT. * - * @see #setJulianDay * @see #JULIAN_EPOCH_MS * @internal */ double getJulianDay(); - /** - * Return this object's time expressed in julian centuries: - * the number of centuries after 1/1/1900 AD, 12:00 GMT - * - * @see #getJulianDay - * @internal - */ - double getJulianCentury(); - - /** - * Returns the current Greenwich sidereal time, measured in hours - * @internal - */ - double getGreenwichSidereal(); - -private: - double getSiderealOffset(); public: - /** - * Returns the current local sidereal time, measured in hours - * @internal - */ - double getLocalSidereal(); - - /** - * Converts local sidereal time to Universal Time. - * - * @param lst The Local Sidereal Time, in hours since sidereal midnight - * on this object's current date. - * - * @return The corresponding Universal Time, in milliseconds since - * 1 Jan 1970, GMT. - */ - //private: - double lstToUT(double lst); - - /** - * - * Convert from ecliptic to equatorial coordinates. - * - * @param ecliptic The ecliptic - * @param result Fillin result - * @return reference to result - */ - Equatorial& eclipticToEquatorial(Equatorial& result, const Ecliptic& ecliptic); - /** * Convert from ecliptic to equatorial coordinates. * @@ -447,21 +292,6 @@ public: */ Equatorial& eclipticToEquatorial(Equatorial& result, double eclipLong, double eclipLat); - /** - * Convert from ecliptic longitude to equatorial coordinates. - * - * @param eclipLong The ecliptic longitude - * - * @return The corresponding point in equatorial coordinates. - * @internal - */ - Equatorial& eclipticToEquatorial(Equatorial& result, double eclipLong) ; - - /** - * @internal - */ - Horizon& eclipticToHorizon(Horizon& result, double eclipLong) ; - //------------------------------------------------------------------------- // The Sun //------------------------------------------------------------------------- @@ -484,39 +314,7 @@ public: */ /*public*/ void getSunLongitude(double julianDay, double &longitude, double &meanAnomaly); - /** - * The position of the sun at this object's current date and time, - * in equatorial coordinates. - * @param result fillin for the result - * @internal - */ - Equatorial& getSunPosition(Equatorial& result); - public: - /** - * Constant representing the vernal equinox. - * For use with {@link #getSunTime getSunTime}. - * Note: In this case, "vernal" refers to the northern hemisphere's seasons. - * @internal - */ -// static double VERNAL_EQUINOX(); - - /** - * Constant representing the summer solstice. - * For use with {@link #getSunTime getSunTime}. - * Note: In this case, "summer" refers to the northern hemisphere's seasons. - * @internal - */ - static double SUMMER_SOLSTICE(); - - /** - * Constant representing the autumnal equinox. - * For use with {@link #getSunTime getSunTime}. - * Note: In this case, "autumn" refers to the northern hemisphere's seasons. - * @internal - */ -// static double AUTUMN_EQUINOX(); - /** * Constant representing the winter solstice. * For use with {@link #getSunTime getSunTime}. @@ -532,20 +330,6 @@ public: */ UDate getSunTime(double desired, UBool next); - /** - * Returns the time (GMT) of sunrise or sunset on the local date to which - * this calendar is currently set. - * - * NOTE: This method only works well if this object is set to a - * time near local noon. Because of variations between the local - * official time zone and the geographic longitude, the - * computation can flop over into an adjacent day if this object - * is set to a time near local midnight. - * - * @internal - */ - UDate getSunRiseSet(UBool rise); - //------------------------------------------------------------------------- // The Moon //------------------------------------------------------------------------- @@ -569,22 +353,6 @@ public: */ double getMoonAge(); - /** - * Calculate the phase of the moon at the time set in this object. - * The returned phase is a double in the range - * 0 <= phase < 1, interpreted as follows: - *

- * - * @see #getMoonAge - * @internal - */ - double getMoonPhase(); - class U_I18N_API MoonAge : public UMemory { public: MoonAge(double l) @@ -600,27 +368,6 @@ public: */ static MoonAge NEW_MOON(); - /** - * Constant representing the moon's first quarter. - * For use with {@link #getMoonTime getMoonTime} - * @internal - */ -// static const MoonAge FIRST_QUARTER(); - - /** - * Constant representing a full moon. - * For use with {@link #getMoonTime getMoonTime} - * @internal - */ - static MoonAge FULL_MOON(); - - /** - * Constant representing the moon's last quarter. - * For use with {@link #getMoonTime getMoonTime} - * @internal - */ -// static const MoonAge LAST_QUARTER(); - /** * Find the next or previous time at which the Moon's ecliptic * longitude will have the desired value. @@ -630,21 +377,13 @@ public: * is desired, false for the previous occurrence. * @internal */ - UDate getMoonTime(double desired, UBool next); UDate getMoonTime(const MoonAge& desired, UBool next); - /** - * Returns the time (GMT) of sunrise or sunset on the local date to which - * this calendar is currently set. - * @internal - */ - UDate getMoonRiseSet(UBool rise); - //------------------------------------------------------------------------- // Interpolation methods for finding the time at which a given event occurs //------------------------------------------------------------------------- - // private +public: class AngleFunc : public UMemory { public: virtual double eval(CalendarAstronomer&) = 0; @@ -652,20 +391,10 @@ public: }; friend class AngleFunc; +private: UDate timeOfAngle(AngleFunc& func, double desired, double periodDays, double epsilon, UBool next); - class CoordFunc : public UMemory { - public: - virtual void eval(Equatorial& result, CalendarAstronomer&) = 0; - virtual ~CoordFunc(); - }; - friend class CoordFunc; - - double riseOrSet(CoordFunc& func, UBool rise, - double diameter, double refraction, - double epsilon); - //------------------------------------------------------------------------- // Other utility methods //------------------------------------------------------------------------- @@ -691,29 +420,13 @@ private: */ UDate fTime; - /* These aren't used yet, but they'll be needed for sunset calculations - * and equatorial to horizon coordinate conversions - */ - double fLongitude; - double fLatitude; - double fGmtOffset; - - // // The following fields are used to cache calculated results for improved // performance. These values all depend on the current time setting // of this object, so the clearCache method is provided. - // - double julianDay; - double julianCentury; double sunLongitude; double meanAnomalySun; - double moonLongitude; double moonEclipLong; - double meanAnomalyMoon; - double eclipObliquity; - double siderealT0; - double siderealTime; void clearCache(); diff --git a/icu4c/source/i18n/chnsecal.cpp b/icu4c/source/i18n/chnsecal.cpp index 06a606c4c85..65886ba7088 100644 --- a/icu4c/source/i18n/chnsecal.cpp +++ b/icu4c/source/i18n/chnsecal.cpp @@ -53,11 +53,6 @@ static void debug_chnsecal_msg(const char *pat, ...) #endif -// --- The cache -- -static icu::UMutex astroLock; -static icu::CalendarAstronomer *gAstronomer = nullptr; -static icu::UInitOnce gAstronomerInitOnce {}; - // Lazy Creation & Access synchronized by class CalendarCache with a mutex. static icu::CalendarCache *gWinterSolsticeCache = nullptr; static icu::CalendarCache *gNewYearCache = nullptr; @@ -90,10 +85,6 @@ static const int32_t SYNODIC_GAP = 25; U_CDECL_BEGIN static UBool calendar_chinese_cleanup() { - if (gAstronomer) { - delete gAstronomer; - gAstronomer = nullptr; - } if (gWinterSolsticeCache) { delete gWinterSolsticeCache; gWinterSolsticeCache = nullptr; @@ -180,18 +171,8 @@ const TimeZone* getAstronomerTimeZone() { return gAstronomerTimeZone; } -static void U_CALLCONV initAstronomer() { - gAstronomer = new CalendarAstronomer(); - ucln_i18n_registerCleanup(UCLN_I18N_CHINESE_CALENDAR, calendar_chinese_cleanup); -} - } // namespace anonymous -icu::CalendarAstronomer* getAstronomer() { - umtx_initOnce(gAstronomerInitOnce, &initAstronomer); - return gAstronomer; -} - //------------------------------------------------------------------------- // Minimum / Maximum access functions //------------------------------------------------------------------------- @@ -602,13 +583,10 @@ int32_t winterSolstice(const TimeZone* timeZone, int32_t gyear) { // PST 1298 with a final result of Dec 14 10:31:59 PST 1299. double ms = daysToMillis(timeZone, Grego::fieldsToDay(gyear, UCAL_DECEMBER, 1)); - umtx_lock(&astroLock); - getAstronomer()->setTime(ms); - UDate solarLong = getAstronomer()->getSunTime(CalendarAstronomer::WINTER_SOLSTICE(), true); - umtx_unlock(&astroLock); - // Winter solstice is 270 degrees solar longitude aka Dongzhi - double days = millisToDays(timeZone, solarLong); + double days = millisToDays(timeZone, + CalendarAstronomer(ms) + .getSunTime(CalendarAstronomer::WINTER_SOLSTICE(), true)); if (days < INT32_MIN || days > INT32_MAX) { status = U_ILLEGAL_ARGUMENT_ERROR; return 0; @@ -633,11 +611,10 @@ int32_t winterSolstice(const TimeZone* timeZone, int32_t gyear) { * new moon after or before days */ int32_t newMoonNear(const TimeZone* timeZone, double days, UBool after) { - umtx_lock(&astroLock); - getAstronomer()->setTime(daysToMillis(timeZone, days)); - UDate newMoon = getAstronomer()->getMoonTime(CalendarAstronomer::NEW_MOON(), after); - umtx_unlock(&astroLock); - return (int32_t) millisToDays(timeZone, newMoon); + return (int32_t) millisToDays( + timeZone, + CalendarAstronomer(daysToMillis(timeZone, days)) + .getMoonTime(CalendarAstronomer::NEW_MOON(), after)); } /** @@ -660,13 +637,9 @@ int32_t synodicMonthsBetween(int32_t day1, int32_t day2) { * @param days days after January 1, 1970 0:00 Asia/Shanghai */ int32_t majorSolarTerm(const TimeZone* timeZone, int32_t days) { - umtx_lock(&astroLock); - getAstronomer()->setTime(daysToMillis(timeZone, days)); - UDate solarLongitude = getAstronomer()->getSunLongitude(); - umtx_unlock(&astroLock); - // Compute (floor(solarLongitude / (pi/6)) + 2) % 12 - int32_t term = ( ((int32_t)(6 * solarLongitude / CalendarAstronomer::PI)) + 2 ) % 12; + int32_t term = ( ((int32_t)(6 * CalendarAstronomer(daysToMillis(timeZone, days)) + .getSunLongitude() / CalendarAstronomer::PI)) + 2 ) % 12; if (term < 1) { term += 12; } diff --git a/icu4c/source/i18n/islamcal.cpp b/icu4c/source/i18n/islamcal.cpp index 2a5c2054004..2228c1dae61 100644 --- a/icu4c/source/i18n/islamcal.cpp +++ b/icu4c/source/i18n/islamcal.cpp @@ -55,7 +55,6 @@ static void debug_islamcal_msg(const char *pat, ...) // --- The cache -- // cache of months static icu::CalendarCache *gMonthCache = nullptr; -static icu::CalendarAstronomer *gIslamicCalendarAstro = nullptr; U_CDECL_BEGIN static UBool calendar_islamic_cleanup() { @@ -63,10 +62,6 @@ static UBool calendar_islamic_cleanup() { delete gMonthCache; gMonthCache = nullptr; } - if (gIslamicCalendarAstro) { - delete gIslamicCalendarAstro; - gIslamicCalendarAstro = nullptr; - } return true; } U_CDECL_END @@ -264,6 +259,8 @@ int32_t IslamicCalendar::handleGetLimit(UCalendarDateFields field, ELimitType li // Assorted calculation utilities // +namespace { + // we could compress this down more if we need to static const int8_t umAlQuraYrStartEstimateFix[] = { 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, // 1300.. @@ -306,6 +303,10 @@ inline bool civilLeapYear(int32_t year) { return (14 + 11 * year) % 30 < 11; } +int32_t trueMonthStart(int32_t month); + +} // namespace + /** * Return the day # on which the given year starts. Days are counted * from the Hijri epoch, origin 0. @@ -336,6 +337,18 @@ int64_t IslamicCalendar::monthStart(int32_t year, int32_t month, UErrorCode& sta return trueMonthStart(month); } +namespace { +/** + * Return the "age" of the moon at the given time; this is the difference + * in ecliptic latitude between the moon and the sun. This method simply + * calls CalendarAstronomer.moonAge, converts to degrees, + * and adjusts the resultto be in the range [-180, 180]. + * + * @param time The time at which the moon's age is desired, + * in millis since 1/1/1970. + */ +double moonAge(UDate time); + /** * Find the day number on which a particular month of the true/lunar * Islamic calendar starts. @@ -344,82 +357,46 @@ int64_t IslamicCalendar::monthStart(int32_t year, int32_t month, UErrorCode& sta * * @return The day number on which the given month starts. */ -int32_t IslamicCalendar::trueMonthStart(int32_t month) const -{ +int32_t trueMonthStart(int32_t month) { + ucln_i18n_registerCleanup(UCLN_I18N_ISLAMIC_CALENDAR, calendar_islamic_cleanup); UErrorCode status = U_ZERO_ERROR; int64_t start = CalendarCache::get(&gMonthCache, month, status); - if (start==0) { + if (U_SUCCESS(status) && start==0) { // Make a guess at when the month started, using the average length UDate origin = HIJRA_MILLIS + uprv_floor(month * CalendarAstronomer::SYNODIC_MONTH) * kOneDay; // moonAge will fail due to memory allocation error - double age = moonAge(origin, status); - if (U_FAILURE(status)) { - goto trueMonthStartEnd; - } + double age = moonAge(origin); if (age >= 0) { // The month has already started do { origin -= kOneDay; - age = moonAge(origin, status); - if (U_FAILURE(status)) { - goto trueMonthStartEnd; - } + age = moonAge(origin); } while (age >= 0); } else { // Preceding month has not ended yet. do { origin += kOneDay; - age = moonAge(origin, status); - if (U_FAILURE(status)) { - goto trueMonthStartEnd; - } + age = moonAge(origin); } while (age < 0); } start = ClockMath::floorDivideInt64( (int64_t)((int64_t)origin - HIJRA_MILLIS), (int64_t)kOneDay) + 1; CalendarCache::put(&gMonthCache, month, start, status); } -trueMonthStartEnd : if(U_FAILURE(status)) { start = 0; } return start; } -/** -* Return the "age" of the moon at the given time; this is the difference -* in ecliptic latitude between the moon and the sun. This method simply -* calls CalendarAstronomer.moonAge, converts to degrees, -* and adjusts the result to be in the range [-180, 180]. -* -* @param time The time at which the moon's age is desired, -* in millis since 1/1/1970. -*/ -double IslamicCalendar::moonAge(UDate time, UErrorCode &status) -{ - double age = 0; - - static UMutex astroLock; // pod bay door lock - umtx_lock(&astroLock); - if(gIslamicCalendarAstro == nullptr) { - gIslamicCalendarAstro = new CalendarAstronomer(); - if (gIslamicCalendarAstro == nullptr) { - status = U_MEMORY_ALLOCATION_ERROR; - return age; - } - ucln_i18n_registerCleanup(UCLN_I18N_ISLAMIC_CALENDAR, calendar_islamic_cleanup); - } - gIslamicCalendarAstro->setTime(time); - age = gIslamicCalendarAstro->getMoonAge(); - umtx_unlock(&astroLock); - +double moonAge(UDate time) { // Convert to degrees and normalize... - age = age * 180 / CalendarAstronomer::PI; + double age = CalendarAstronomer(time).getMoonAge() * 180 / CalendarAstronomer::PI; if (age > 180) { age = age - 360; } @@ -427,6 +404,7 @@ double IslamicCalendar::moonAge(UDate time, UErrorCode &status) return age; } +} // namespace //---------------------------------------------------------------------- // Calendar framework //---------------------------------------------------------------------- @@ -536,11 +514,7 @@ void IslamicCalendar::handleComputeFields(int32_t julianDay, UErrorCode &status) int32_t startDate = (int32_t)uprv_floor(month * CalendarAstronomer::SYNODIC_MONTH); - double age = moonAge(internalGetTime(), status); - if (U_FAILURE(status)) { - status = U_MEMORY_ALLOCATION_ERROR; - return; - } + double age = moonAge(internalGetTime()); if ( days - startDate >= 25 && age > 0) { // If we're near the end of the month, assume next month and search backwards month++; diff --git a/icu4c/source/i18n/islamcal.h b/icu4c/source/i18n/islamcal.h index 1c3f04b4b1d..091ddf81c5a 100644 --- a/icu4c/source/i18n/islamcal.h +++ b/icu4c/source/i18n/islamcal.h @@ -211,28 +211,7 @@ class U_I18N_API IslamicCalendar : public Calendar { * @param year The hijri month, 0-based */ virtual int64_t monthStart(int32_t year, int32_t month, UErrorCode& status) const; - - /** - * Find the day number on which a particular month of the true/lunar - * Islamic calendar starts. - * - * @param month The month in question, origin 0 from the Hijri epoch - * - * @return The day number on which the given month starts. - */ - int32_t trueMonthStart(int32_t month) const; - private: - /** - * Return the "age" of the moon at the given time; this is the difference - * in ecliptic latitude between the moon and the sun. This method simply - * calls CalendarAstronomer.moonAge, converts to degrees, - * and adjusts the resultto be in the range [-180, 180]. - * - * @param time The time at which the moon's age is desired, - * in millis since 1/1/1970. - */ - static double moonAge(UDate time, UErrorCode &status); //---------------------------------------------------------------------- // Calendar framework diff --git a/icu4c/source/test/intltest/astrotst.cpp b/icu4c/source/test/intltest/astrotst.cpp index 847dce65a33..c51e6f24746 100644 --- a/icu4c/source/test/intltest/astrotst.cpp +++ b/icu4c/source/test/intltest/astrotst.cpp @@ -23,7 +23,7 @@ #define CASE(id,test) case id: name = #test; if (exec) { logln(#test "---"); logln((UnicodeString)""); test(); } break -AstroTest::AstroTest(): astro(nullptr), gc(nullptr) { +AstroTest::AstroTest(): gc(nullptr) { } void AstroTest::runIndexedTest( int32_t index, UBool exec, const char* &name, char* /*par*/ ) @@ -35,9 +35,8 @@ void AstroTest::runIndexedTest( int32_t index, UBool exec, const char* &name, ch CASE(1,TestLunarPosition); CASE(2,TestCoordinates); CASE(3,TestCoverage); - CASE(4,TestSunriseTimes); - CASE(5,TestBasics); - CASE(6,TestMoonAge); + CASE(4,TestBasics); + CASE(5,TestMoonAge); default: name = ""; break; } } @@ -52,12 +51,12 @@ void AstroTest::runIndexedTest( int32_t index, UBool exec, const char* &name, ch } UPRV_BLOCK_MACRO_END -void AstroTest::initAstro(UErrorCode &status) { +void AstroTest::init(UErrorCode &status) { if(U_FAILURE(status)) return; - if((astro != nullptr) || (gc != nullptr)) { - dataerrln("Err: initAstro() called twice!"); - closeAstro(status); + if(gc != nullptr) { + dataerrln("Err: init() called twice!"); + close(status); if(U_SUCCESS(status)) { status = U_INTERNAL_PROGRAM_ERROR; } @@ -65,15 +64,10 @@ void AstroTest::initAstro(UErrorCode &status) { if(U_FAILURE(status)) return; - astro = new CalendarAstronomer(); gc = Calendar::createInstance(TimeZone::getGMT()->clone(), status); } -void AstroTest::closeAstro(UErrorCode &/*status*/) { - if(astro != nullptr) { - delete astro; - astro = nullptr; - } +void AstroTest::close(UErrorCode &/*status*/) { if(gc != nullptr) { delete gc; gc = nullptr; @@ -82,7 +76,7 @@ void AstroTest::closeAstro(UErrorCode &/*status*/) { void AstroTest::TestSolarLongitude() { UErrorCode status = U_ZERO_ERROR; - initAstro(status); + init(status); ASSERT_OK(status); struct { @@ -97,15 +91,11 @@ void AstroTest::TestSolarLongitude() { gc->clear(); gc->set(tests[i].d[0], tests[i].d[1]-1, tests[i].d[2], tests[i].d[3], tests[i].d[4]); - astro->setDate(gc->getTime(status)); + CalendarAstronomer astro(gc->getTime(status)); - double longitude = astro->getSunLongitude(); - //longitude = 0; - CalendarAstronomer::Equatorial result; - astro->getSunPosition(result); - logln((UnicodeString)"Sun position is " + result.toString() + (UnicodeString)"; " /* + result.toHmsString()*/ + " Sun longitude is " + longitude ); + astro.getSunLongitude(); } - closeAstro(status); + close(status); ASSERT_OK(status); } @@ -113,7 +103,7 @@ void AstroTest::TestSolarLongitude() { void AstroTest::TestLunarPosition() { UErrorCode status = U_ZERO_ERROR; - initAstro(status); + init(status); ASSERT_OK(status); static const double tests[][7] = { @@ -124,13 +114,13 @@ void AstroTest::TestLunarPosition() { for (int32_t i = 0; i < UPRV_LENGTHOF(tests); i++) { gc->clear(); gc->set((int32_t)tests[i][0], (int32_t)tests[i][1]-1, (int32_t)tests[i][2], (int32_t)tests[i][3], (int32_t)tests[i][4]); - astro->setDate(gc->getTime(status)); + CalendarAstronomer astro(gc->getTime(status)); - const CalendarAstronomer::Equatorial& result = astro->getMoonPosition(); + const CalendarAstronomer::Equatorial& result = astro.getMoonPosition(); logln((UnicodeString)"Moon position is " + result.toString() + (UnicodeString)"; " /* + result->toHmsString()*/); } - closeAstro(status); + close(status); ASSERT_OK(status); } @@ -138,13 +128,14 @@ void AstroTest::TestLunarPosition() { void AstroTest::TestCoordinates() { UErrorCode status = U_ZERO_ERROR; - initAstro(status); + init(status); ASSERT_OK(status); CalendarAstronomer::Equatorial result; - astro->eclipticToEquatorial(result, 139.686111 * CalendarAstronomer::PI / 180.0, 4.875278* CalendarAstronomer::PI / 180.0); + CalendarAstronomer astro; + astro.eclipticToEquatorial(result, 139.686111 * CalendarAstronomer::PI / 180.0, 4.875278* CalendarAstronomer::PI / 180.0); logln((UnicodeString)"result is " + result.toString() + (UnicodeString)"; " /* + result.toHmsString()*/ ); - closeAstro(status); + close(status); ASSERT_OK(status); } @@ -152,7 +143,7 @@ void AstroTest::TestCoordinates() { void AstroTest::TestCoverage() { UErrorCode status = U_ZERO_ERROR; - initAstro(status); + init(status); ASSERT_OK(status); GregorianCalendar *cal = new GregorianCalendar(1958, UCAL_AUGUST, 15,status); UDate then = cal->getTime(status); @@ -162,21 +153,14 @@ void AstroTest::TestCoverage() { //Latitude: 34 degrees 05' North //Longitude: 118 degrees 22' West double laLat = 34 + 5./60, laLong = 360 - (118 + 22./60); - CalendarAstronomer *myastro2 = new CalendarAstronomer(laLong, laLat); double eclLat = laLat * CalendarAstronomer::PI / 360; double eclLong = laLong * CalendarAstronomer::PI / 360; - CalendarAstronomer::Ecliptic ecl(eclLat, eclLong); CalendarAstronomer::Equatorial eq; - CalendarAstronomer::Horizon hor; - - logln("ecliptic: " + ecl.toString()); - CalendarAstronomer *myastro3 = new CalendarAstronomer(); - myastro3->setJulianDay((4713 + 2000) * 365.25); CalendarAstronomer *astronomers[] = { - myastro, myastro2, myastro3, myastro2 // check cache + myastro, myastro, myastro // check cache }; for (uint32_t i = 0; i < UPRV_LENGTHOF(astronomers); ++i) { @@ -184,195 +168,19 @@ void AstroTest::TestCoverage() { //logln("astro: " + astro); logln((UnicodeString)" date: " + anAstro->getTime()); - logln((UnicodeString)" cent: " + anAstro->getJulianCentury()); - logln((UnicodeString)" gw sidereal: " + anAstro->getGreenwichSidereal()); - logln((UnicodeString)" loc sidereal: " + anAstro->getLocalSidereal()); - logln((UnicodeString)" equ ecl: " + (anAstro->eclipticToEquatorial(eq,ecl)).toString()); - logln((UnicodeString)" equ long: " + (anAstro->eclipticToEquatorial(eq, eclLong)).toString()); - logln((UnicodeString)" horiz: " + (anAstro->eclipticToHorizon(hor, eclLong)).toString()); - logln((UnicodeString)" sunrise: " + (anAstro->getSunRiseSet(true))); - logln((UnicodeString)" sunset: " + (anAstro->getSunRiseSet(false))); - logln((UnicodeString)" moon phase: " + anAstro->getMoonPhase()); - logln((UnicodeString)" moonrise: " + (anAstro->getMoonRiseSet(true))); - logln((UnicodeString)" moonset: " + (anAstro->getMoonRiseSet(false))); - logln((UnicodeString)" prev summer solstice: " + (anAstro->getSunTime(CalendarAstronomer::SUMMER_SOLSTICE(), false))); - logln((UnicodeString)" next summer solstice: " + (anAstro->getSunTime(CalendarAstronomer::SUMMER_SOLSTICE(), true))); - logln((UnicodeString)" prev full moon: " + (anAstro->getMoonTime(CalendarAstronomer::FULL_MOON(), false))); - logln((UnicodeString)" next full moon: " + (anAstro->getMoonTime(CalendarAstronomer::FULL_MOON(), true))); + logln((UnicodeString)" equ ecl: " + (anAstro->eclipticToEquatorial(eq,eclLat,eclLong)).toString()); } - delete myastro2; - delete myastro3; delete myastro; delete cal; - closeAstro(status); + close(status); ASSERT_OK(status); } - - -void AstroTest::TestSunriseTimes() { - UErrorCode status = U_ZERO_ERROR; - initAstro(status); - ASSERT_OK(status); - - // logln("Sunrise/Sunset times for San Jose, California, USA"); - // CalendarAstronomer *astro2 = new CalendarAstronomer(-121.55, 37.20); - // TimeZone *tz = TimeZone::createTimeZone("America/Los_Angeles"); - - // We'll use a table generated by the UNSO website as our reference - // From: http://aa.usno.navy.mil/ - //-Location: W079 25, N43 40 - //-Rise and Set for the Sun for 2001 - //-Zone: 4h West of Greenwich - int32_t USNO[] = { - 6,59, 19,45, - 6,57, 19,46, - 6,56, 19,47, - 6,54, 19,48, - 6,52, 19,49, - 6,50, 19,51, - 6,48, 19,52, - 6,47, 19,53, - 6,45, 19,54, - 6,43, 19,55, - 6,42, 19,57, - 6,40, 19,58, - 6,38, 19,59, - 6,36, 20, 0, - 6,35, 20, 1, - 6,33, 20, 3, - 6,31, 20, 4, - 6,30, 20, 5, - 6,28, 20, 6, - 6,27, 20, 7, - 6,25, 20, 8, - 6,23, 20,10, - 6,22, 20,11, - 6,20, 20,12, - 6,19, 20,13, - 6,17, 20,14, - 6,16, 20,16, - 6,14, 20,17, - 6,13, 20,18, - 6,11, 20,19, - }; - - logln("Sunrise/Sunset times for Toronto, Canada"); - // long = 79 25", lat = 43 40" - CalendarAstronomer astro3(-(79+25/60), 43+40/60); - - // As of ICU4J 2.8 the ICU4J time zones implement pass-through - // to the underlying JDK. Because of variation in the - // underlying JDKs, we have to use a fixed-offset - // SimpleTimeZone to get consistent behavior between JDKs. - // The offset we want is [-18000000, 3600000] (raw, dst). - // [aliu 10/15/03] - - // TimeZone tz = TimeZone.getTimeZone("America/Montreal"); - SimpleTimeZone tz(-18000000 + 3600000, "Montreal(FIXED)"); - - GregorianCalendar cal(tz.clone(), Locale::getUS(), status); - GregorianCalendar cal2(tz.clone(), Locale::getUS(), status); - cal.clear(); - cal.set(UCAL_YEAR, 2001); - cal.set(UCAL_MONTH, UCAL_APRIL); - cal.set(UCAL_DAY_OF_MONTH, 1); - cal.set(UCAL_HOUR_OF_DAY, 12); // must be near local noon for getSunRiseSet to work - - LocalPointer df_t(DateFormat::createTimeInstance(DateFormat::MEDIUM,Locale::getUS())); - LocalPointer df_d(DateFormat::createDateInstance(DateFormat::MEDIUM,Locale::getUS())); - LocalPointer df_dt(DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS())); - if(!df_t.isValid() || !df_d.isValid() || !df_dt.isValid()) { - dataerrln("couldn't create dateformats."); - closeAstro(status); - return; - } - df_t->adoptTimeZone(tz.clone()); - df_d->adoptTimeZone(tz.clone()); - df_dt->adoptTimeZone(tz.clone()); - - for (int32_t i=0; i < 30; i++) { - logln("setDate\n"); - astro3.setDate(cal.getTime(status)); - logln("getRiseSet(true)\n"); - UDate sunrise = astro3.getSunRiseSet(true); - logln("getRiseSet(false)\n"); - UDate sunset = astro3.getSunRiseSet(false); - logln("end of getRiseSet\n"); - - cal2.setTime(cal.getTime(status), status); - cal2.set(UCAL_SECOND, 0); - cal2.set(UCAL_MILLISECOND, 0); - - cal2.set(UCAL_HOUR_OF_DAY, USNO[4*i+0]); - cal2.set(UCAL_MINUTE, USNO[4*i+1]); - UDate exprise = cal2.getTime(status); - cal2.set(UCAL_HOUR_OF_DAY, USNO[4*i+2]); - cal2.set(UCAL_MINUTE, USNO[4*i+3]); - UDate expset = cal2.getTime(status); - // Compute delta of what we got to the USNO data, in seconds - int32_t deltarise = (int32_t)uprv_fabs((sunrise - exprise) / 1000); - int32_t deltaset = (int32_t)uprv_fabs((sunset - expset) / 1000); - - // Allow a deviation of 0..MAX_DEV seconds - // It would be nice to get down to 60 seconds, but at this - // point that appears to be impossible without a redo of the - // algorithm using something more advanced than Duffett-Smith. - int32_t MAX_DEV = 180; - UnicodeString s1, s2, s3, s4, s5; - if (deltarise > MAX_DEV || deltaset > MAX_DEV) { - if (deltarise > MAX_DEV) { - errln("FAIL: (rise) " + df_d->format(cal.getTime(status),s1) + - ", Sunrise: " + df_dt->format(sunrise, s2) + - " (USNO " + df_t->format(exprise,s3) + - " d=" + deltarise + "s)"); - } else { - logln(df_d->format(cal.getTime(status),s1) + - ", Sunrise: " + df_dt->format(sunrise,s2) + - " (USNO " + df_t->format(exprise,s3) + ")"); - } - s1.remove(); s2.remove(); s3.remove(); s4.remove(); s5.remove(); - if (deltaset > MAX_DEV) { - errln("FAIL: (set) " + df_d->format(cal.getTime(status),s1) + - ", Sunset: " + df_dt->format(sunset,s2) + - " (USNO " + df_t->format(expset,s3) + - " d=" + deltaset + "s)"); - } else { - logln(df_d->format(cal.getTime(status),s1) + - ", Sunset: " + df_dt->format(sunset,s2) + - " (USNO " + df_t->format(expset,s3) + ")"); - } - } else { - logln(df_d->format(cal.getTime(status),s1) + - ", Sunrise: " + df_dt->format(sunrise,s2) + - " (USNO " + df_t->format(exprise,s3) + ")" + - ", Sunset: " + df_dt->format(sunset,s4) + - " (USNO " + df_t->format(expset,s5) + ")"); - } - cal.add(UCAL_DATE, 1, status); - } - - // CalendarAstronomer a = new CalendarAstronomer(-(71+5/60), 42+37/60); - // cal.clear(); - // cal.set(cal.YEAR, 1986); - // cal.set(cal.MONTH, cal.MARCH); - // cal.set(cal.DATE, 10); - // cal.set(cal.YEAR, 1988); - // cal.set(cal.MONTH, cal.JULY); - // cal.set(cal.DATE, 27); - // a.setDate(cal.getTime()); - // long r = a.getSunRiseSet2(true); - closeAstro(status); - ASSERT_OK(status); -} - - - void AstroTest::TestBasics() { UErrorCode status = U_ZERO_ERROR; - initAstro(status); + init(status); if (U_FAILURE(status)) { dataerrln("Got error: %s", u_errorName(status)); return; @@ -383,7 +191,7 @@ void AstroTest::TestBasics() { LocalPointer d3(DateFormat::createDateTimeInstance(DateFormat::MEDIUM,DateFormat::MEDIUM,Locale::getUS())); if (d3.isNull()) { dataerrln("Got error: %s", u_errorName(status)); - closeAstro(status); + close(status); return; } d3->setTimeZone(*TimeZone::getGMT()); @@ -407,8 +215,8 @@ void AstroTest::TestBasics() { UnicodeString s; logln(UnicodeString("cal3 = ") + d3->format(cal3.getTime(status),s)); } - astro->setTime(cal3.getTime(status)); - double jd = astro->getJulianDay() - 2447891.5; + CalendarAstronomer astro(cal3.getTime(status)); + double jd = astro.getJulianDay() - 2447891.5; double exp = -3444.; if (jd == exp) { UnicodeString s; @@ -428,14 +236,14 @@ void AstroTest::TestBasics() { // astro.foo(); ASSERT_OK(status); - closeAstro(status); + close(status); ASSERT_OK(status); } void AstroTest::TestMoonAge(){ UErrorCode status = U_ZERO_ERROR; - initAstro(status); + init(status); ASSERT_OK(status); // more testcases are around the date 05/20/2012 @@ -461,9 +269,9 @@ void AstroTest::TestMoonAge(){ (int32_t)testcase[i][2]+" Hour "+(int32_t)testcase[i][3]+" Minutes "+(int32_t)testcase[i][4]+ " Seconds "+(int32_t)testcase[i][5]); gc->set((int32_t)testcase[i][0], (int32_t)testcase[i][1]-1, (int32_t)testcase[i][2], (int32_t)testcase[i][3], (int32_t)testcase[i][4], (int32_t)testcase[i][5]); - astro->setDate(gc->getTime(status)); + CalendarAstronomer astro(gc->getTime(status)); double expectedAge = (angle[i]*CalendarAstronomer::PI)/180; - double got = astro->getMoonAge(); + double got = astro.getMoonAge(); //logln(testString); if(!(got>expectedAge-precision && gotCalendarAstronomer object that is initialized to - * the specified date and time. - * @internal - */ - public CalendarAstronomer(Date d) { - this(d.getTime()); - } - /** * Construct a new CalendarAstronomer object that is initialized to * the specified time. The time is expressed as a number of milliseconds since @@ -224,32 +215,9 @@ public class CalendarAstronomer { time = aTime; } - /** - * Construct a new CalendarAstronomer object with the given - * latitude and longitude. The object's time is set to the current - * date and time. - *

- * @param longitude The desired longitude, in degrees east of - * the Greenwich meridian. - * - * @param latitude The desired latitude, in degrees. Positive - * values signify North, negative South. - * - * @see java.util.Date#getTime() - * @internal - */ - public CalendarAstronomer(double longitude, double latitude) { - this(); - fLongitude = normPI(longitude * DEG_RAD); - fLatitude = normPI(latitude * DEG_RAD); - fGmtOffset = (long)(fLongitude * 24 * HOUR_MS / PI2); - } - - //------------------------------------------------------------------------- // Time and date getters and setters //------------------------------------------------------------------------- - /** * Set the current date and time of this CalendarAstronomer object. All * astronomical calculations are performed based on this time setting. @@ -266,19 +234,6 @@ public class CalendarAstronomer { clearCache(); } - /** - * Set the current date and time of this CalendarAstronomer object. All - * astronomical calculations are performed based on this time setting. - * - * @param date the time and date, expressed as a Date object. - * - * @see #setTime - * @see #getDate - * @internal - */ - public void setDate(Date date) { - setTime(date.getTime()); - } /** * Set the current date and time of this CalendarAstronomer object. All @@ -341,93 +296,10 @@ public class CalendarAstronomer { return julianDay; } - /** - * Return this object's time expressed in julian centuries: - * the number of centuries after 1/1/1900 AD, 12:00 GMT - * - * @see #getJulianDay - * @internal - */ - public double getJulianCentury() { - if (julianCentury == INVALID) { - julianCentury = (getJulianDay() - 2415020.0) / 36525; - } - return julianCentury; - } - - /** - * Returns the current Greenwich sidereal time, measured in hours - * @internal - */ - public double getGreenwichSidereal() { - if (siderealTime == INVALID) { - // See page 86 of "Practical Astronomy with your Calculator", - // by Peter Duffet-Smith, for details on the algorithm. - - double UT = normalize((double)time/HOUR_MS, 24); - - siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24); - } - return siderealTime; - } - - private double getSiderealOffset() { - if (siderealT0 == INVALID) { - double JD = Math.floor(getJulianDay() - 0.5) + 0.5; - double S = JD - 2451545.0; - double T = S / 36525.0; - siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24); - } - return siderealT0; - } - - /** - * Returns the current local sidereal time, measured in hours - * @internal - */ - public double getLocalSidereal() { - return normalize(getGreenwichSidereal() + (double)fGmtOffset/HOUR_MS, 24); - } - - /** - * Converts local sidereal time to Universal Time. - * - * @param lst The Local Sidereal Time, in hours since sidereal midnight - * on this object's current date. - * - * @return The corresponding Universal Time, in milliseconds since - * 1 Jan 1970, GMT. - */ - private long lstToUT(double lst) { - // Convert to local mean time - double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24); - - // Then find local midnight on this day - long base = DAY_MS * ((time + fGmtOffset)/DAY_MS) - fGmtOffset; - - //out(" lt =" + lt + " hours"); - //out(" base=" + new Date(base)); - - return base + (long)(lt * HOUR_MS); - } - - //------------------------------------------------------------------------- // Coordinate transformations, all based on the current time of this object //------------------------------------------------------------------------- - /** - * Convert from ecliptic to equatorial coordinates. - * - * @param ecliptic A point in the sky in ecliptic coordinates. - * @return The corresponding point in equatorial coordinates. - * @internal - */ - public final Equatorial eclipticToEquatorial(Ecliptic ecliptic) - { - return eclipticToEquatorial(ecliptic.longitude, ecliptic.latitude); - } - /** * Convert from ecliptic to equatorial coordinates. * @@ -457,42 +329,6 @@ public class CalendarAstronomer { Math.asin(sinB*cosE + cosB*sinE*sinL) ); } - /** - * Convert from ecliptic longitude to equatorial coordinates. - * - * @param eclipLong The ecliptic longitude - * - * @return The corresponding point in equatorial coordinates. - * @internal - */ - public final Equatorial eclipticToEquatorial(double eclipLong) - { - return eclipticToEquatorial(eclipLong, 0); // TODO: optimize - } - - /** - * @internal - */ - public Horizon eclipticToHorizon(double eclipLong) - { - Equatorial equatorial = eclipticToEquatorial(eclipLong); - - double H = getLocalSidereal()*PI/12 - equatorial.ascension; // Hour-angle - - double sinH = Math.sin(H); - double cosH = Math.cos(H); - double sinD = Math.sin(equatorial.declination); - double cosD = Math.cos(equatorial.declination); - double sinL = Math.sin(fLatitude); - double cosL = Math.cos(fLatitude); - - double altitude = Math.asin(sinD*sinL + cosD*cosL*cosH); - double azimuth = Math.atan2(-cosD*cosL*sinH, sinD - sinL * Math.sin(altitude)); - - return new Horizon(azimuth, altitude); - } - - //------------------------------------------------------------------------- // The Sun //------------------------------------------------------------------------- @@ -606,44 +442,11 @@ public class CalendarAstronomer { }; } - /** - * The position of the sun at this object's current date and time, - * in equatorial coordinates. - * @internal - */ - public Equatorial getSunPosition() { - return eclipticToEquatorial(getSunLongitude(), 0); - } - private static class SolarLongitude { double value; SolarLongitude(double val) { value = val; } } - /** - * Constant representing the vernal equinox. - * For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}. - * Note: In this case, "vernal" refers to the northern hemisphere's seasons. - * @internal - */ - public static final SolarLongitude VERNAL_EQUINOX = new SolarLongitude(0); - - /** - * Constant representing the summer solstice. - * For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}. - * Note: In this case, "summer" refers to the northern hemisphere's seasons. - * @internal - */ - public static final SolarLongitude SUMMER_SOLSTICE = new SolarLongitude(PI/2); - - /** - * Constant representing the autumnal equinox. - * For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}. - * Note: In this case, "autumn" refers to the northern hemisphere's seasons. - * @internal - */ - public static final SolarLongitude AUTUMN_EQUINOX = new SolarLongitude(PI); - /** * Constant representing the winter solstice. * For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}. @@ -676,312 +479,6 @@ public class CalendarAstronomer { return getSunTime(desired.value, next); } - /** - * Returns the time (GMT) of sunrise or sunset on the local date to which - * this calendar is currently set. - * - * NOTE: This method only works well if this object is set to a - * time near local noon. Because of variations between the local - * official time zone and the geographic longitude, the - * computation can flop over into an adjacent day if this object - * is set to a time near local midnight. - * - * @internal - */ - public long getSunRiseSet(boolean rise) { - long t0 = time; - - // Make a rough guess: 6am or 6pm local time on the current day - long noon = ((time + fGmtOffset)/DAY_MS)*DAY_MS - fGmtOffset + 12*HOUR_MS; - - setTime(noon + (rise ? -6L : 6L) * HOUR_MS); - - long t = riseOrSet(new CoordFunc() { - @Override - public Equatorial eval() { return getSunPosition(); } - }, - rise, - .533 * DEG_RAD, // Angular Diameter - 34 /60.0 * DEG_RAD, // Refraction correction - MINUTE_MS / 12); // Desired accuracy - - setTime(t0); - return t; - } - -// Commented out - currently unused. ICU 2.6, Alan -// //------------------------------------------------------------------------- -// // Alternate Sun Rise/Set -// // See Duffett-Smith p.93 -// //------------------------------------------------------------------------- -// -// // This yields worse results (as compared to USNO data) than getSunRiseSet(). -// /** -// * TODO Make this public when the entire class is package-private. -// */ -// /*public*/ long getSunRiseSet2(boolean rise) { -// // 1. Calculate coordinates of the sun's center for midnight -// double jd = Math.floor(getJulianDay() - 0.5) + 0.5; -// double[] sl = getSunLongitude(jd); -// double lambda1 = sl[0]; -// Equatorial pos1 = eclipticToEquatorial(lambda1, 0); -// -// // 2. Add ... to lambda to get position 24 hours later -// double lambda2 = lambda1 + 0.985647*DEG_RAD; -// Equatorial pos2 = eclipticToEquatorial(lambda2, 0); -// -// // 3. Calculate LSTs of rising and setting for these two positions -// double tanL = Math.tan(fLatitude); -// double H = Math.acos(-tanL * Math.tan(pos1.declination)); -// double lst1r = (PI2 + pos1.ascension - H) * 24 / PI2; -// double lst1s = (pos1.ascension + H) * 24 / PI2; -// H = Math.acos(-tanL * Math.tan(pos2.declination)); -// double lst2r = (PI2-H + pos2.ascension ) * 24 / PI2; -// double lst2s = (H + pos2.ascension ) * 24 / PI2; -// if (lst1r > 24) lst1r -= 24; -// if (lst1s > 24) lst1s -= 24; -// if (lst2r > 24) lst2r -= 24; -// if (lst2s > 24) lst2s -= 24; -// -// // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2. -// double gst1r = lstToGst(lst1r); -// double gst1s = lstToGst(lst1s); -// double gst2r = lstToGst(lst2r); -// double gst2s = lstToGst(lst2s); -// if (gst1r > gst2r) gst2r += 24; -// if (gst1s > gst2s) gst2s += 24; -// -// // 5. Calculate GST at 0h UT of this date -// double t00 = utToGst(0); -// -// // 6. Calculate GST at 0h on the observer's longitude -// double offset = Math.round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg. -// double t00p = t00 - offset*1.002737909; -// if (t00p < 0) t00p += 24; // do NOT normalize -// -// // 7. Adjust -// if (gst1r < t00p) { -// gst1r += 24; -// gst2r += 24; -// } -// if (gst1s < t00p) { -// gst1s += 24; -// gst2s += 24; -// } -// -// // 8. -// double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r); -// double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s); -// -// // 9. Correct for parallax, refraction, and sun's diameter -// double dec = (pos1.declination + pos2.declination) / 2; -// double psi = Math.acos(Math.sin(fLatitude) / Math.cos(dec)); -// double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter -// double y = Math.asin(Math.sin(x) / Math.sin(psi)) * RAD_DEG; -// double delta_t = 240 * y / Math.cos(dec) / 3600; // hours -// -// // 10. Add correction to GSTs, subtract from GSTr -// gstr -= delta_t; -// gsts += delta_t; -// -// // 11. Convert GST to UT and then to local civil time -// double ut = gstToUt(rise ? gstr : gsts); -// //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t); -// long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day -// return midnight + (long) (ut * 3600000); -// } - -// Commented out - currently unused. ICU 2.6, Alan -// /** -// * Convert local sidereal time to Greenwich sidereal time. -// * Section 15. Duffett-Smith p.21 -// * @param lst in hours (0..24) -// * @return GST in hours (0..24) -// */ -// double lstToGst(double lst) { -// double delta = fLongitude * 24 / PI2; -// return normalize(lst - delta, 24); -// } - -// Commented out - currently unused. ICU 2.6, Alan -// /** -// * Convert UT to GST on this date. -// * Section 12. Duffett-Smith p.17 -// * @param ut in hours -// * @return GST in hours -// */ -// double utToGst(double ut) { -// return normalize(getT0() + ut*1.002737909, 24); -// } - -// Commented out - currently unused. ICU 2.6, Alan -// /** -// * Convert GST to UT on this date. -// * Section 13. Duffett-Smith p.18 -// * @param gst in hours -// * @return UT in hours -// */ -// double gstToUt(double gst) { -// return normalize(gst - getT0(), 24) * 0.9972695663; -// } - -// Commented out - currently unused. ICU 2.6, Alan -// double getT0() { -// // Common computation for UT <=> GST -// -// // Find JD for 0h UT -// double jd = Math.floor(getJulianDay() - 0.5) + 0.5; -// -// double s = jd - 2451545.0; -// double t = s / 36525.0; -// double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t; -// return t0; -// } - -// Commented out - currently unused. ICU 2.6, Alan -// //------------------------------------------------------------------------- -// // Alternate Sun Rise/Set -// // See sci.astro FAQ -// // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html -// //------------------------------------------------------------------------- -// -// // Note: This method appears to produce inferior accuracy as -// // compared to getSunRiseSet(). -// -// /** -// * TODO Make this public when the entire class is package-private. -// */ -// /*public*/ long getSunRiseSet3(boolean rise) { -// -// // Compute day number for 0.0 Jan 2000 epoch -// double d = (double)(time - EPOCH_2000_MS) / DAY_MS; -// -// // Now compute the Local Sidereal Time, LST: -// // -// double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/ -// fLongitude*RAD_DEG; -// // -// // (east long. positive). Note that LST is here expressed in degrees, -// // where 15 degrees corresponds to one hour. Since LST really is an angle, -// // it's convenient to use one unit---degrees---throughout. -// -// // COMPUTING THE SUN'S POSITION -// // ---------------------------- -// // -// // To be able to compute the Sun's rise/set times, you need to be able to -// // compute the Sun's position at any time. First compute the "day -// // number" d as outlined above, for the desired moment. Next compute: -// // -// double oblecl = 23.4393 - 3.563E-7 * d; -// // -// double w = 282.9404 + 4.70935E-5 * d; -// double M = 356.0470 + 0.9856002585 * d; -// double e = 0.016709 - 1.151E-9 * d; -// // -// // This is the obliquity of the ecliptic, plus some of the elements of -// // the Sun's apparent orbit (i.e., really the Earth's orbit): w = -// // argument of perihelion, M = mean anomaly, e = eccentricity. -// // Semi-major axis is here assumed to be exactly 1.0 (while not strictly -// // true, this is still an accurate approximation). Next compute E, the -// // eccentric anomaly: -// // -// double E = M + e*(180/PI) * Math.sin(M*DEG_RAD) * ( 1.0 + e*Math.cos(M*DEG_RAD) ); -// // -// // where E and M are in degrees. This is it---no further iterations are -// // needed because we know e has a sufficiently small value. Next compute -// // the true anomaly, v, and the distance, r: -// // -// /* r * cos(v) = */ double A = Math.cos(E*DEG_RAD) - e; -// /* r * sin(v) = */ double B = Math.sqrt(1 - e*e) * Math.sin(E*DEG_RAD); -// // -// // and -// // -// // r = sqrt( A*A + B*B ) -// double v = Math.atan2( B, A )*RAD_DEG; -// // -// // The Sun's true longitude, slon, can now be computed: -// // -// double slon = v + w; -// // -// // Since the Sun is always at the ecliptic (or at least very very close to -// // it), we can use simplified formulae to convert slon (the Sun's ecliptic -// // longitude) to sRA and sDec (the Sun's RA and Dec): -// // -// // sin(slon) * cos(oblecl) -// // tan(sRA) = ------------------------- -// // cos(slon) -// // -// // sin(sDec) = sin(oblecl) * sin(slon) -// // -// // As was the case when computing az, the Azimuth, if possible use an -// // atan2() function to compute sRA. -// -// double sRA = Math.atan2(Math.sin(slon*DEG_RAD) * Math.cos(oblecl*DEG_RAD), Math.cos(slon*DEG_RAD))*RAD_DEG; -// -// double sin_sDec = Math.sin(oblecl*DEG_RAD) * Math.sin(slon*DEG_RAD); -// double sDec = Math.asin(sin_sDec)*RAD_DEG; -// -// // COMPUTING RISE AND SET TIMES -// // ---------------------------- -// // -// // To compute when an object rises or sets, you must compute when it -// // passes the meridian and the HA of rise/set. Then the rise time is -// // the meridian time minus HA for rise/set, and the set time is the -// // meridian time plus the HA for rise/set. -// // -// // To find the meridian time, compute the Local Sidereal Time at 0h local -// // time (or 0h UT if you prefer to work in UT) as outlined above---name -// // that quantity LST0. The Meridian Time, MT, will now be: -// // -// // MT = RA - LST0 -// double MT = normalize(sRA - LST, 360); -// // -// // where "RA" is the object's Right Ascension (in degrees!). If negative, -// // add 360 deg to MT. If the object is the Sun, leave the time as it is, -// // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from -// // sidereal to solar time. Now, compute HA for rise/set, name that -// // quantity HA0: -// // -// // sin(h0) - sin(lat) * sin(Dec) -// // cos(HA0) = --------------------------------- -// // cos(lat) * cos(Dec) -// // -// // where h0 is the altitude selected to represent rise/set. For a purely -// // mathematical horizon, set h0 = 0 and simplify to: -// // -// // cos(HA0) = - tan(lat) * tan(Dec) -// // -// // If you want to account for refraction on the atmosphere, set h0 = -35/60 -// // degrees (-35 arc minutes), and if you want to compute the rise/set times -// // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes). -// // -// double h0 = -50/60 * DEG_RAD; -// -// double HA0 = Math.acos( -// (Math.sin(h0) - Math.sin(fLatitude) * sin_sDec) / -// (Math.cos(fLatitude) * Math.cos(sDec*DEG_RAD)))*RAD_DEG; -// -// // When HA0 has been computed, leave it as it is for the Sun but multiply -// // by 365.2422/366.2422 for stellar objects, to convert from sidereal to -// // solar time. Finally compute: -// // -// // Rise time = MT - HA0 -// // Set time = MT + HA0 -// // -// // convert the times from degrees to hours by dividing by 15. -// // -// // If you'd like to check that your calculations are accurate or just -// // need a quick result, check the USNO's Sun or Moon Rise/Set Table, -// // . -// -// double result = MT + (rise ? -HA0 : HA0); // in degrees -// -// // Find UT midnight on this day -// long midnight = DAY_MS * (time / DAY_MS); -// -// return midnight + (long) (result * 3600000 / 15); -// } - //------------------------------------------------------------------------- // The Moon //------------------------------------------------------------------------- @@ -1048,7 +545,7 @@ public class CalendarAstronomer { double a4 = 0.2140*PI/180 * Math.sin(2 * meanAnomalyMoon); // Now find the moon's corrected longitude - moonLongitude = meanLongitude + evection + center - annual + a4; + double moonLongitude = meanLongitude + evection + center - annual + a4; // // And finally, find the variation, caused by the fact that the sun's @@ -1102,26 +599,6 @@ public class CalendarAstronomer { return norm2PI(moonEclipLong - sunLongitude); } - /** - * Calculate the phase of the moon at the time set in this object. - * The returned phase is a double in the range - * 0 <= phase < 1, interpreted as follows: - *

    - *
  • 0.00: New moon - *
  • 0.25: First quarter - *
  • 0.50: Full moon - *
  • 0.75: Last quarter - *
- * - * @see #getMoonAge - * @internal - */ - public double getMoonPhase() { - // See page 147 of "Practical Astronomy with your Calculator", - // by Peter Duffet-Smith, for details on the algorithm. - return 0.5 * (1 - Math.cos(getMoonAge())); - } - private static class MoonAge { double value; MoonAge(double val) { value = val; } @@ -1134,27 +611,6 @@ public class CalendarAstronomer { */ public static final MoonAge NEW_MOON = new MoonAge(0); - /** - * Constant representing the moon's first quarter. - * For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime} - * @internal - */ - public static final MoonAge FIRST_QUARTER = new MoonAge(PI/2); - - /** - * Constant representing a full moon. - * For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime} - * @internal - */ - public static final MoonAge FULL_MOON = new MoonAge(PI); - - /** - * Constant representing the moon's last quarter. - * For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime} - * @internal - */ - public static final MoonAge LAST_QUARTER = new MoonAge((PI*3)/2); - /** * Find the next or previous time at which the Moon's ecliptic * longitude will have the desired value. @@ -1188,23 +644,6 @@ public class CalendarAstronomer { return getMoonTime(desired.value, next); } - /** - * Returns the time (GMT) of sunrise or sunset on the local date to which - * this calendar is currently set. - * @internal - */ - public long getMoonRiseSet(boolean rise) - { - return riseOrSet(new CoordFunc() { - @Override - public Equatorial eval() { return getMoonPosition(); } - }, - rise, - .533 * DEG_RAD, // Angular Diameter - 34 /60.0 * DEG_RAD, // Refraction correction - MINUTE_MS); // Desired accuracy - } - //------------------------------------------------------------------------- // Interpolation methods for finding the time at which a given event occurs //------------------------------------------------------------------------- @@ -1281,48 +720,6 @@ public class CalendarAstronomer { return time; } - private interface CoordFunc { - public Equatorial eval(); - } - - private long riseOrSet(CoordFunc func, boolean rise, - double diameter, double refraction, - long epsilon) - { - Equatorial pos = null; - double tanL = Math.tan(fLatitude); - long deltaT = Long.MAX_VALUE; - int count = 0; - - // - // Calculate the object's position at the current time, then use that - // position to calculate the time of rising or setting. The position - // will be different at that time, so iterate until the error is allowable. - // - do { - // See "Practical Astronomy With Your Calculator, section 33. - pos = func.eval(); - double angle = Math.acos(-tanL * Math.tan(pos.declination)); - double lst = ((rise ? PI2-angle : angle) + pos.ascension ) * 24 / PI2; - - // Convert from LST to Universal Time. - long newTime = lstToUT( lst ); - - deltaT = newTime - time; - setTime(newTime); - } - while (++ count < 5 && Math.abs(deltaT) > epsilon); - - // Calculate the correction due to refraction and the object's angular diameter - double cosD = Math.cos(pos.declination); - double psi = Math.acos(Math.sin(fLatitude) / cosD); - double x = diameter / 2 + refraction; - double y = Math.asin(Math.sin(x) / Math.sin(psi)); - long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS); - - return time + (rise ? -delta : delta); - } - //------------------------------------------------------------------------- // Other utility methods //------------------------------------------------------------------------- @@ -1389,19 +786,16 @@ public class CalendarAstronomer { * measured in radians. */ private double eclipticObliquity() { - if (eclipObliquity == INVALID) { - final double epoch = 2451545.0; // 2000 AD, January 1.5 + final double epoch = 2451545.0; // 2000 AD, January 1.5 - double T = (getJulianDay() - epoch) / 36525; + double T = (getJulianDay() - epoch) / 36525; - eclipObliquity = 23.439292 + double eclipObliquity = 23.439292 - 46.815/3600 * T - 0.0006/3600 * T*T + 0.00181/3600 * T*T*T; - eclipObliquity *= DEG_RAD; - } - return eclipObliquity; + return eclipObliquity * DEG_RAD; } @@ -1415,13 +809,6 @@ public class CalendarAstronomer { */ private long time; - /* These aren't used yet, but they'll be needed for sunset calculations - * and equatorial to horizon coordinate conversions - */ - private double fLongitude = 0.0; - private double fLatitude = 0.0; - private long fGmtOffset = 0; - // // The following fields are used to cache calculated results for improved // performance. These values all depend on the current time setting @@ -1430,52 +817,20 @@ public class CalendarAstronomer { static final private double INVALID = Double.MIN_VALUE; private transient double julianDay = INVALID; - private transient double julianCentury = INVALID; private transient double sunLongitude = INVALID; private transient double meanAnomalySun = INVALID; - private transient double moonLongitude = INVALID; private transient double moonEclipLong = INVALID; - //private transient double meanAnomalyMoon = INVALID; - private transient double eclipObliquity = INVALID; - private transient double siderealT0 = INVALID; - private transient double siderealTime = INVALID; private transient Equatorial moonPosition = null; private void clearCache() { julianDay = INVALID; - julianCentury = INVALID; sunLongitude = INVALID; meanAnomalySun = INVALID; - moonLongitude = INVALID; moonEclipLong = INVALID; - //meanAnomalyMoon = INVALID; - eclipObliquity = INVALID; - siderealTime = INVALID; - siderealT0 = INVALID; moonPosition = null; } - //private static void out(String s) { - // System.out.println(s); - //} - - //private static String deg(double rad) { - // return Double.toString(rad * RAD_DEG); - //} - - //private static String hours(long ms) { - // return Double.toString((double)ms / HOUR_MS) + " hours"; - //} - - /** - * @internal - */ - public String local(long localMillis) { - return new Date(localMillis - TimeZone.getDefault().getRawOffset()).toString(); - } - - /** * Represents the position of an object in the sky relative to the ecliptic, * the plane of the earth's orbit around the Sun. @@ -1490,7 +845,6 @@ public class CalendarAstronomer { * value without worrying about whether other code will modify them. * * @see CalendarAstronomer.Equatorial - * @see CalendarAstronomer.Horizon * @internal */ public static final class Ecliptic { @@ -1550,7 +904,6 @@ public class CalendarAstronomer { * value without worrying about whether other code will modify them. * * @see CalendarAstronomer.Ecliptic - * @see CalendarAstronomer.Horizon * @internal */ public static final class Equatorial { @@ -1603,59 +956,6 @@ public class CalendarAstronomer { public final double declination; } - /** - * Represents the position of an object in the sky relative to - * the local horizon. - * The Altitude represents the object's elevation above the horizon, - * with objects below the horizon having a negative altitude. - * The Azimuth is the geographic direction of the object from the - * observer's position, with 0 representing north. The azimuth increases - * clockwise from north. - *

- * Note that Horizon objects are immutable and cannot be modified - * once they are constructed. This allows them to be passed and returned by - * value without worrying about whether other code will modify them. - * - * @see CalendarAstronomer.Ecliptic - * @see CalendarAstronomer.Equatorial - * @internal - */ - public static final class Horizon { - /** - * Constructs a Horizon coordinate object. - *

- * @param alt The altitude, measured in radians above the horizon. - * @param azim The azimuth, measured in radians clockwise from north. - * @internal - */ - public Horizon(double alt, double azim) { - altitude = alt; - azimuth = azim; - } - - /** - * Return a string representation of this object, with the - * angles measured in degrees. - * @internal - */ - @Override - public String toString() { - return Double.toString(altitude*RAD_DEG) + "," + (azimuth*RAD_DEG); - } - - /** - * The object's altitude above the horizon, in radians. - * @internal - */ - public final double altitude; - - /** - * The object's direction, in radians clockwise from north. - * @internal - */ - public final double azimuth; - } - static private String radToHms(double angle) { int hrs = (int) (angle*RAD_HOUR); int min = (int)((angle*RAD_HOUR - hrs) * 60); diff --git a/icu4j/main/core/src/main/java/com/ibm/icu/util/ChineseCalendar.java b/icu4j/main/core/src/main/java/com/ibm/icu/util/ChineseCalendar.java index c21f02833e4..d136b9d7fe0 100644 --- a/icu4j/main/core/src/main/java/com/ibm/icu/util/ChineseCalendar.java +++ b/icu4j/main/core/src/main/java/com/ibm/icu/util/ChineseCalendar.java @@ -110,12 +110,6 @@ public class ChineseCalendar extends Calendar { */ private TimeZone zoneAstro; - /** - * We have one instance per object, and we don't synchronize it because - * Calendar doesn't support multithreaded execution in the first place. - */ - private transient CalendarAstronomer astro = new CalendarAstronomer(); - /** * Cache that maps Gregorian year to local days of winter solstice. * @see #winterSolstice @@ -709,10 +703,9 @@ public class ChineseCalendar extends Calendar { // PST 1298 with a final result of Dec 14 10:31:59 PST 1299. long ms = daysToMillis(computeGregorianMonthStart(gyear, DECEMBER) + 1 - EPOCH_JULIAN_DAY); - astro.setTime(ms); // Winter solstice is 270 degrees solar longitude aka Dongzhi - long solarLong = astro.getSunTime(CalendarAstronomer.WINTER_SOLSTICE, + long solarLong = (new CalendarAstronomer(ms)).getSunTime(CalendarAstronomer.WINTER_SOLSTICE, true); cacheValue = millisToDays(solarLong); winterSolsticeCache.put(gyear, cacheValue); @@ -730,9 +723,7 @@ public class ChineseCalendar extends Calendar { * new moon after or before days */ private int newMoonNear(int days, boolean after) { - - astro.setTime(daysToMillis(days)); - long newMoon = astro.getMoonTime(CalendarAstronomer.NEW_MOON, after); + long newMoon = (new CalendarAstronomer(daysToMillis(days))).getMoonTime(CalendarAstronomer.NEW_MOON, after); return millisToDays(newMoon); } @@ -755,11 +746,8 @@ public class ChineseCalendar extends Calendar { * @param days days after January 1, 1970 0:00 Asia/Shanghai */ private int majorSolarTerm(int days) { - - astro.setTime(daysToMillis(days)); - // Compute (floor(solarLongitude / (pi/6)) + 2) % 12 - int term = ((int) Math.floor(6 * astro.getSunLongitude() / Math.PI) + 2) % 12; + int term = ((int) Math.floor(6 * (new CalendarAstronomer(daysToMillis(days))).getSunLongitude() / Math.PI) + 2) % 12; if (term < 1) { term += 12; } @@ -1055,7 +1043,6 @@ public class ChineseCalendar extends Calendar { stream.defaultReadObject(); /* set up the transient caches... */ - astro = new CalendarAstronomer(); winterSolsticeCache = new CalendarCache(); newYearCache = new CalendarCache(); } diff --git a/icu4j/main/core/src/main/java/com/ibm/icu/util/IslamicCalendar.java b/icu4j/main/core/src/main/java/com/ibm/icu/util/IslamicCalendar.java index 7d1182f69b7..32dc3328588 100644 --- a/icu4j/main/core/src/main/java/com/ibm/icu/util/IslamicCalendar.java +++ b/icu4j/main/core/src/main/java/com/ibm/icu/util/IslamicCalendar.java @@ -938,12 +938,7 @@ public class IslamicCalendar extends Calendar { */ static final double moonAge(long time) { - double age = 0; - - synchronized(astro) { - astro.setTime(time); - age = astro.getMoonAge(); - } + double age = (new CalendarAstronomer(time)).getMoonAge(); // Convert to degrees and normalize... age = age * 180 / Math.PI; if (age > 180) { @@ -957,9 +952,6 @@ public class IslamicCalendar extends Calendar { // Internal data.... // - // And an Astronomer object for the moon age calculations - private static CalendarAstronomer astro = new CalendarAstronomer(); - private static CalendarCache cache = new CalendarCache(); /** diff --git a/icu4j/main/core/src/test/java/com/ibm/icu/dev/test/calendar/AstroTest.java b/icu4j/main/core/src/test/java/com/ibm/icu/dev/test/calendar/AstroTest.java index b8dc6e0dd9a..aaef1b79606 100644 --- a/icu4j/main/core/src/test/java/com/ibm/icu/dev/test/calendar/AstroTest.java +++ b/icu4j/main/core/src/test/java/com/ibm/icu/dev/test/calendar/AstroTest.java @@ -36,7 +36,6 @@ public class AstroTest extends CoreTestFmwk { @Test public void TestSolarLongitude() { GregorianCalendar gc = new GregorianCalendar(new SimpleTimeZone(0, "UTC")); - CalendarAstronomer astro = new CalendarAstronomer(); // year, month, day, hour, minute, longitude (radians), ascension(radians), declination(radians) final double tests[][] = { { 1980, 7, 27, 00, 00, 2.166442986535465, 2.2070499713207730, 0.3355704075759270 }, @@ -47,7 +46,7 @@ public class AstroTest extends CoreTestFmwk { gc.clear(); gc.set((int)tests[i][0], (int)tests[i][1]-1, (int)tests[i][2], (int)tests[i][3], (int) tests[i][4]); - astro.setDate(gc.getTime()); + CalendarAstronomer astro = new CalendarAstronomer(gc.getTimeInMillis()); double longitude = astro.getSunLongitude(); if (longitude != tests[i][5]) { @@ -61,36 +60,12 @@ public class AstroTest extends CoreTestFmwk { ") for test " + i); } } - Equatorial result = astro.getSunPosition(); - if (result.ascension != tests[i][6]) { - if ((float)result.ascension == (float)tests[i][6]) { - logln("result.ascension(" + result.ascension + - ") != tests[i][6](" + tests[i][6] + - ") in double for test " + i); - } else { - errln("FAIL: result.ascension(" + result.ascension + - ") != tests[i][6](" + tests[i][6] + - ") for test " + i); - } - } - if (result.declination != tests[i][7]) { - if ((float)result.declination == (float)tests[i][7]) { - logln("result.declination(" + result.declination + - ") != tests[i][7](" + tests[i][7] + - ") in double for test " + i); - } else { - errln("FAIL: result.declination(" + result.declination + - ") != tests[i][7](" + tests[i][7] + - ") for test " + i); - } - } } } @Test public void TestLunarPosition() { GregorianCalendar gc = new GregorianCalendar(new SimpleTimeZone(0, "UTC")); - CalendarAstronomer astro = new CalendarAstronomer(); // year, month, day, hour, minute, ascension(radians), declination(radians) final double tests[][] = { { 1979, 2, 26, 16, 00, -0.3778379118188744, -0.1399698825594198 }, @@ -100,7 +75,7 @@ public class AstroTest extends CoreTestFmwk { for (int i = 0; i < tests.length; i++) { gc.clear(); gc.set((int)tests[i][0], (int)tests[i][1]-1, (int)tests[i][2], (int)tests[i][3], (int) tests[i][4]); - astro.setDate(gc.getTime()); + CalendarAstronomer astro = new CalendarAstronomer(gc.getTimeInMillis()); Equatorial result = astro.getMoonPosition(); if (result.ascension != tests[i][5]) { @@ -138,24 +113,17 @@ public class AstroTest extends CoreTestFmwk { @Test public void TestCoverage() { GregorianCalendar cal = new GregorianCalendar(1958, Calendar.AUGUST, 15); - Date then = cal.getTime(); - CalendarAstronomer myastro = new CalendarAstronomer(then); + CalendarAstronomer myastro = new CalendarAstronomer(cal.getTimeInMillis()); //Latitude: 34 degrees 05' North //Longitude: 118 degrees 22' West double laLat = 34 + 5d/60, laLong = 360 - (118 + 22d/60); - CalendarAstronomer myastro2 = new CalendarAstronomer(laLong, laLat); double eclLat = laLat * Math.PI / 360; double eclLong = laLong * Math.PI / 360; - Ecliptic ecl = new Ecliptic(eclLat, eclLong); - logln("ecliptic: " + ecl); - - CalendarAstronomer myastro3 = new CalendarAstronomer(); - myastro3.setJulianDay((4713 + 2000) * 365.25); CalendarAstronomer[] astronomers = { - myastro, myastro2, myastro3, myastro2 // check cache + myastro, myastro, myastro // check cache }; @@ -165,176 +133,21 @@ public class AstroTest extends CoreTestFmwk { logln("astro: " + astro); logln(" time: " + astro.getTime()); logln(" date: " + astro.getDate()); - logln(" cent: " + astro.getJulianCentury()); - logln(" gw sidereal: " + astro.getGreenwichSidereal()); - logln(" loc sidereal: " + astro.getLocalSidereal()); - logln(" equ ecl: " + astro.eclipticToEquatorial(ecl)); - logln(" equ long: " + astro.eclipticToEquatorial(eclLong)); - logln(" horiz: " + astro.eclipticToHorizon(eclLong)); - logln(" sunrise: " + new Date(astro.getSunRiseSet(true))); - logln(" sunset: " + new Date(astro.getSunRiseSet(false))); - logln(" moon phase: " + astro.getMoonPhase()); - logln(" moonrise: " + new Date(astro.getMoonRiseSet(true))); - logln(" moonset: " + new Date(astro.getMoonRiseSet(false))); - logln(" prev summer solstice: " + new Date(astro.getSunTime(CalendarAstronomer.SUMMER_SOLSTICE, false))); - logln(" next summer solstice: " + new Date(astro.getSunTime(CalendarAstronomer.SUMMER_SOLSTICE, true))); - logln(" prev full moon: " + new Date(astro.getMoonTime(CalendarAstronomer.FULL_MOON, false))); - logln(" next full moon: " + new Date(astro.getMoonTime(CalendarAstronomer.FULL_MOON, true))); + logln(" equ long: " + astro.eclipticToEquatorial(eclLat, eclLong)); } } - static final long DAY_MS = 24*60*60*1000L; - - @Test - public void TestSunriseTimes() { - - // logln("Sunrise/Sunset times for San Jose, California, USA"); - // CalendarAstronomer astro = new CalendarAstronomer(-121.55, 37.20); - // TimeZone tz = TimeZone.getTimeZone("America/Los_Angeles"); - - // We'll use a table generated by the UNSO website as our reference - // From: http://aa.usno.navy.mil/ - //-Location: W079 25, N43 40 - //-Rise and Set for the Sun for 2001 - //-Zone: 4h West of Greenwich - int[] USNO = { - 6,59, 19,45, - 6,57, 19,46, - 6,56, 19,47, - 6,54, 19,48, - 6,52, 19,49, - 6,50, 19,51, - 6,48, 19,52, - 6,47, 19,53, - 6,45, 19,54, - 6,43, 19,55, - 6,42, 19,57, - 6,40, 19,58, - 6,38, 19,59, - 6,36, 20, 0, - 6,35, 20, 1, - 6,33, 20, 3, - 6,31, 20, 4, - 6,30, 20, 5, - 6,28, 20, 6, - 6,27, 20, 7, - 6,25, 20, 8, - 6,23, 20,10, - 6,22, 20,11, - 6,20, 20,12, - 6,19, 20,13, - 6,17, 20,14, - 6,16, 20,16, - 6,14, 20,17, - 6,13, 20,18, - 6,11, 20,19, - }; - - logln("Sunrise/Sunset times for Toronto, Canada"); - CalendarAstronomer astro = new CalendarAstronomer(-(79+25/60), 43+40/60); - - // As of ICU4J 2.8 the ICU4J time zones implement pass-through - // to the underlying JDK. Because of variation in the - // underlying JDKs, we have to use a fixed-offset - // SimpleTimeZone to get consistent behavior between JDKs. - // The offset we want is [-18000000, 3600000] (raw, dst). - // [aliu 10/15/03] - - // TimeZone tz = TimeZone.getTimeZone("America/Montreal"); - TimeZone tz = new SimpleTimeZone(-18000000 + 3600000, "Montreal(FIXED)"); - - GregorianCalendar cal = new GregorianCalendar(tz, Locale.US); - GregorianCalendar cal2 = new GregorianCalendar(tz, Locale.US); - cal.clear(); - cal.set(Calendar.YEAR, 2001); - cal.set(Calendar.MONTH, Calendar.APRIL); - cal.set(Calendar.DAY_OF_MONTH, 1); - cal.set(Calendar.HOUR_OF_DAY, 12); // must be near local noon for getSunRiseSet to work - - DateFormat df = DateFormat.getTimeInstance(cal, DateFormat.MEDIUM, Locale.US); - DateFormat df2 = DateFormat.getDateTimeInstance(cal, DateFormat.MEDIUM, DateFormat.MEDIUM, Locale.US); - DateFormat day = DateFormat.getDateInstance(cal, DateFormat.MEDIUM, Locale.US); - - for (int i=0; i < 30; i++) { - astro.setDate(cal.getTime()); - - Date sunrise = new Date(astro.getSunRiseSet(true)); - Date sunset = new Date(astro.getSunRiseSet(false)); - - cal2.setTime(cal.getTime()); - cal2.set(Calendar.SECOND, 0); - cal2.set(Calendar.MILLISECOND, 0); - - cal2.set(Calendar.HOUR_OF_DAY, USNO[4*i+0]); - cal2.set(Calendar.MINUTE, USNO[4*i+1]); - Date exprise = cal2.getTime(); - cal2.set(Calendar.HOUR_OF_DAY, USNO[4*i+2]); - cal2.set(Calendar.MINUTE, USNO[4*i+3]); - Date expset = cal2.getTime(); - // Compute delta of what we got to the USNO data, in seconds - int deltarise = Math.abs((int)(sunrise.getTime() - exprise.getTime()) / 1000); - int deltaset = Math.abs((int)(sunset.getTime() - expset.getTime()) / 1000); - - // Allow a deviation of 0..MAX_DEV seconds - // It would be nice to get down to 60 seconds, but at this - // point that appears to be impossible without a redo of the - // algorithm using something more advanced than Duffett-Smith. - final int MAX_DEV = 180; - if (deltarise > MAX_DEV || deltaset > MAX_DEV) { - if (deltarise > MAX_DEV) { - errln("FAIL: " + day.format(cal.getTime()) + - ", Sunrise: " + df2.format(sunrise) + - " (USNO " + df.format(exprise) + - " d=" + deltarise + "s)"); - } else { - logln(day.format(cal.getTime()) + - ", Sunrise: " + df.format(sunrise) + - " (USNO " + df.format(exprise) + ")"); - } - if (deltaset > MAX_DEV) { - errln("FAIL: " + day.format(cal.getTime()) + - ", Sunset: " + df2.format(sunset) + - " (USNO " + df.format(expset) + - " d=" + deltaset + "s)"); - } else { - logln(day.format(cal.getTime()) + - ", Sunset: " + df.format(sunset) + - " (USNO " + df.format(expset) + ")"); - } - } else { - logln(day.format(cal.getTime()) + - ", Sunrise: " + df.format(sunrise) + - " (USNO " + df.format(exprise) + ")" + - ", Sunset: " + df.format(sunset) + - " (USNO " + df.format(expset) + ")"); - } - cal.add(Calendar.DATE, 1); - } - -// CalendarAstronomer a = new CalendarAstronomer(-(71+5/60), 42+37/60); -// cal.clear(); -// cal.set(cal.YEAR, 1986); -// cal.set(cal.MONTH, cal.MARCH); -// cal.set(cal.DATE, 10); -// cal.set(cal.YEAR, 1988); -// cal.set(cal.MONTH, cal.JULY); -// cal.set(cal.DATE, 27); -// a.setDate(cal.getTime()); -// long r = a.getSunRiseSet2(true); - } - @Test public void TestBasics() { // Check that our JD computation is the same as the book's (p. 88) - CalendarAstronomer astro = new CalendarAstronomer(); GregorianCalendar cal3 = new GregorianCalendar(TimeZone.getTimeZone("GMT"), Locale.US); DateFormat d3 = DateFormat.getDateTimeInstance(cal3, DateFormat.MEDIUM,DateFormat.MEDIUM,Locale.US); cal3.clear(); cal3.set(Calendar.YEAR, 1980); cal3.set(Calendar.MONTH, Calendar.JULY); cal3.set(Calendar.DATE, 27); - astro.setDate(cal3.getTime()); + CalendarAstronomer astro = new CalendarAstronomer(cal3.getTimeInMillis()); double jd = astro.getJulianDay() - 2447891.5; double exp = -3444; if (jd == exp) { @@ -357,7 +170,6 @@ public class AstroTest extends CoreTestFmwk { @Test public void TestMoonAge(){ GregorianCalendar gc = new GregorianCalendar(new SimpleTimeZone(0,"GMT")); - CalendarAstronomer calastro = new CalendarAstronomer(); // more testcases are around the date 05/20/2012 //ticket#3785 UDate ud0 = 1337557623000.0; double testcase[][] = {{2012, 5, 20 , 16 , 48, 59}, @@ -380,7 +192,7 @@ public class AstroTest extends CoreTestFmwk { (int)testcase[i][2]+" Hour "+(int)testcase[i][3]+" Minutes "+(int)testcase[i][4]+ " Seconds "+(int)testcase[i][5]; gc.set((int)testcase[i][0],(int)testcase[i][1]-1,(int)testcase[i][2],(int)testcase[i][3],(int)testcase[i][4], (int)testcase[i][5]); - calastro.setDate(gc.getTime()); + CalendarAstronomer calastro = new CalendarAstronomer(gc.getTimeInMillis()); double expectedAge = (angle[i]*PI)/180; double got = calastro.getMoonAge(); logln(testString); diff --git a/icu4j/main/core/src/test/java/com/ibm/icu/dev/test/calendar/IBMCalendarTest.java b/icu4j/main/core/src/test/java/com/ibm/icu/dev/test/calendar/IBMCalendarTest.java index 5404088af20..9322764fa4d 100644 --- a/icu4j/main/core/src/test/java/com/ibm/icu/dev/test/calendar/IBMCalendarTest.java +++ b/icu4j/main/core/src/test/java/com/ibm/icu/dev/test/calendar/IBMCalendarTest.java @@ -975,7 +975,6 @@ public class IBMCalendarTest extends CalendarTestFmwk { // CalendarAstronomer // (This class should probably be made package-private.) CalendarAstronomer astro = new CalendarAstronomer(); - /*String s = */astro.local(0); // ChineseCalendar ChineseCalendar ccal = new ChineseCalendar(TimeZone.getDefault(),