ICU-105 Regular Expressions initial check in

X-SVN-Rev: 10050
This commit is contained in:
Andy Heninger 2002-10-22 00:09:32 +00:00
parent c6a0025e15
commit 11891ab0d8
18 changed files with 3437 additions and 7 deletions

View file

@ -942,6 +942,7 @@ private:
friend class TransliterationRule;
friend class RBBIRuleScanner;
friend class RegexCompile;
/**
* Constructs a set from the given pattern. See the class description

View file

@ -63,7 +63,7 @@ class Hashtable;
* @author Alan Liu
* @internal
*/
class UnicodePropertySet /* not : public UObject because all methods are static */ {
class U_COMMON_API UnicodePropertySet /* not : public UObject because all methods are static */ {
public:

View file

@ -62,7 +62,8 @@ nultrans.o remtrans.o titletrn.o tolowtrn.o toupptrn.o anytrans.o \
name2uni.o uni2name.o unitohex.o nortrans.o quant.o transreg.o \
nfrs.o nfrule.o nfsubs.o rbnf.o esctrn.o unesctrn.o \
funcrepl.o strrepl.o tridpars.o \
ucurr.o
ucurr.o \
regexcmp.o rematch.o repattrn.o
STATIC_OBJECTS = $(OBJECTS:.o=.$(STATIC_O))

View file

@ -55,8 +55,8 @@ BSC32=bscmake.exe
# ADD BSC32 /nologo
LINK32=link.exe
# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386
# ADD LINK32 icuuc.lib /nologo /base:"0x4a900000" /dll /machine:I386 /out:"..\..\bin\icuin22.dll" /implib:"..\..\lib\icuin.lib" /libpath:"..\..\lib"
# SUBTRACT LINK32 /pdb:none /debug
# ADD LINK32 icuuc.lib /nologo /base:"0x4a900000" /dll /debug /machine:I386 /out:"..\..\bin\icuin22.dll" /implib:"..\..\lib\icuin.lib" /libpath:"..\..\lib"
# SUBTRACT LINK32 /pdb:none
!ELSEIF "$(CFG)" == "i18n - Win32 Debug"
@ -279,10 +279,22 @@ SOURCE=.\rbt_set.cpp
# End Source File
# Begin Source File
SOURCE=.\regexcmp.cpp
# End Source File
# Begin Source File
SOURCE=.\rematch.cpp
# End Source File
# Begin Source File
SOURCE=.\remtrans.cpp
# End Source File
# Begin Source File
SOURCE=.\repattrn.cpp
# End Source File
# Begin Source File
SOURCE=.\search.cpp
# End Source File
# Begin Source File
@ -1376,6 +1388,65 @@ SOURCE=.\rbt_set.h
# End Source File
# Begin Source File
SOURCE=.\unicode\regex.h
!IF "$(CFG)" == "i18n - Win32 Release"
# Begin Custom Build
InputPath=.\unicode\regex.h
"..\..\include\unicode\regex.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"
copy $(InputPath) ..\..\include\unicode
# End Custom Build
!ELSEIF "$(CFG)" == "i18n - Win32 Debug"
# Begin Custom Build
InputPath=.\unicode\regex.h
"..\..\include\unicode\regex.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"
copy $(InputPath) ..\..\include\unicode
# End Custom Build
!ELSEIF "$(CFG)" == "i18n - Win64 Release"
# Begin Custom Build
InputPath=.\unicode\regex.h
"..\..\include\unicode\regex.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"
copy $(InputPath) ..\..\include\unicode
# End Custom Build
!ELSEIF "$(CFG)" == "i18n - Win64 Debug"
# Begin Custom Build
InputPath=.\unicode\regex.h
"..\..\include\unicode\regex.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"
copy $(InputPath) ..\..\include\unicode
# End Custom Build
!ENDIF
# End Source File
# Begin Source File
SOURCE=.\regexcmp.h
# End Source File
# Begin Source File
SOURCE=.\regexcst.h
# End Source File
# Begin Source File
SOURCE=.\regeximp.h
# End Source File
# Begin Source File
SOURCE=.\remtrans.h
# End Source File
# Begin Source File

View file

@ -0,0 +1,962 @@
//
// file: regexcmp.cpp
//
// Copyright (C) 2002, International Business Machines Corporation and others.
// All Rights Reserved.
//
// This file contains the ICU regular expression scanner, which is responsible
// for preprocessing a regular expression pattern into the tokenized form that
// is used by the match finding engine.
//
#include "unicode/unistr.h"
#include "unicode/uniset.h"
#include "unicode/uchar.h"
#include "unicode/uchriter.h"
#include "unicode/parsepos.h"
#include "unicode/parseerr.h"
#include "unicode/regex.h"
#include "regeximp.h"
#include "upropset.h"
#include "cmemory.h"
#include "cstring.h"
#include "stdio.h" // TODO: Get rid of this
#include "regexcst.h" // Contains state table for the regex pattern parser.
// generated by a Perl script.
#include "regexcmp.h"
#include "uassert.h"
U_NAMESPACE_BEGIN
const char RegexCompile::fgClassID=0;
static const int RESCAN_DEBUG = 0;
//----------------------------------------------------------------------------------------
//
// Unicode Sets for each of the character classes needed for parsing a regex pattern.
// (Initialized with hex values for portability to EBCDIC based machines.
// Really ugly, but there's no good way to avoid it.)
//
// The sets are referred to by name in the regexcst.txt, which is the
// source form of the state transition table. These names are converted
// to indicies in regexcst.h by the perl state table building script.
// The indices are used to access the array gRuleSets.
//
//----------------------------------------------------------------------------------------
// Characters that have no special meaning, and thus do not need to be escaped. Expressed
// as the inverse of those needing escaping -- [^\*\?\+\[\(\)\{\}\^\$\|\\\.]
static const UChar gRuleSet_rule_char_pattern[] = {
// [ ^ \ * \ ? \ + \ [ \ ( / )
0x5b, 0x5e, 0x5c, 0x2a, 0x5c, 0x3f, 0x5c, 0x2b, 0x5c, 0x5b, 0x5c, 0x28, 0x5c, 0x29,
// \ { \ } \ ^ \ $ \ | \ \ \ . ]
0x5c, 0x7b,0x5c, 0x7d, 0x5c, 0x5e, 0x5c, 0x24, 0x5c, 0x7c, 0x5c, 0x5c, 0x5c, 0x2e, 0x5d, 0};
static const UChar gRuleSet_name_char_pattern[] = {
// [ _ \ p { L } \ p { N } ]
0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0};
static const UChar gRuleSet_digit_char_pattern[] = {
// [ 0 - 9 ]
0x5b, 0x30, 0x2d, 0x39, 0x5d, 0};
static const UChar gRuleSet_name_start_char_pattern[] = {
// [ _ \ p { L } ]
0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5d, 0 };
static const UChar kAny[] = {0x61, 0x6e, 0x79, 0x00}; // "any"
static UnicodeSet *gRuleSets[10]; // Array of ptrs to the actual UnicodeSet objects.
//----------------------------------------------------------------------------------------
//
// Constructor.
//
//----------------------------------------------------------------------------------------
RegexCompile::RegexCompile(UErrorCode &status) : fParenStack(status)
{
fStatus = &status;
fScanIndex = 0;
fNextIndex = 0;
fLineNum = 1;
fCharNum = 0;
fQuoteMode = FALSE;
fFreeForm = FALSE;
fMatchOpenParen = -1;
fMatchCloseParen = -1;
if (U_FAILURE(status)) {
return;
}
//
// Set up the constant Unicode Sets.
//
if (gRuleSets[kRuleSet_rule_char-128] == NULL) {
// TODO: Make thread safe.
// TODO: Memory Cleanup on ICU shutdown.
gRuleSets[kRuleSet_rule_char-128] = new UnicodeSet(gRuleSet_rule_char_pattern, status);
gRuleSets[kRuleSet_white_space-128] = new UnicodeSet(UnicodePropertySet::getRuleWhiteSpaceSet(status));
gRuleSets[kRuleSet_digit_char-128] = new UnicodeSet(gRuleSet_digit_char_pattern, status);
if (U_FAILURE(status)) {
delete gRuleSets[kRuleSet_rule_char-128];
delete gRuleSets[kRuleSet_white_space-128];
delete gRuleSets[kRuleSet_digit_char-128];
gRuleSets[kRuleSet_rule_char-128] = NULL;
gRuleSets[kRuleSet_white_space-128] = NULL;
gRuleSets[kRuleSet_digit_char-128] = NULL;
return;
}
}
}
//----------------------------------------------------------------------------------------
//
// Destructor
//
//----------------------------------------------------------------------------------------
RegexCompile::~RegexCompile() {
}
//---------------------------------------------------------------------------------
//
// Compile regex pattern. The state machine for rules parsing is here.
// The state tables are hand-written in the file regexcst.txt,
// and converted to the form used here by a perl
// script regexcst.pl
//
//---------------------------------------------------------------------------------
void RegexCompile::compile(
RegexPattern &rxp, // User level patter object to receive
// the compiled pattern.
const UnicodeString &pat, // Source pat to be compiled.
UParseError &pp, // Error position info
UErrorCode &e) // Error Code
{
fStatus = &e;
fRXPat = &rxp;
fParseErr = &pp;
fStackPtr = 0;
fStack[fStackPtr] = 0;
if (U_FAILURE(*fStatus)) {
return;
}
// There should be no pattern stuff in the RegexPattern object. They can not be reused.
U_ASSERT(fRXPat->fPattern.length() == 0);
// Prepare the RegexPattern object to receive the compiled pattern.
fRXPat->fPattern = pat;
// Initialize the pattern scanning state machine
fPatternLength = pat.length();
uint16_t state = 1;
const RegexTableEl *tableEl;
nextChar(fC); // Fetch the first char from the pattern string.
//
// Main loop for the regex pattern parsing state machine.
// Runs once per state transition.
// Each time through optionally performs, depending on the state table,
// - an advance to the the next pattern char
// - an action to be performed.
// - pushing or popping a state to/from the local state return stack.
// file regexcst.txt is the source for the state table. The logic behind
// recongizing the pattern syntax is there, not here.
//
for (;;) {
// Bail out if anything has gone wrong.
// Regex pattern parsing stops on the first error encountered.
if (U_FAILURE(*fStatus)) {
break;
}
U_ASSERT(state != 0);
// Find the state table element that matches the input char from the rule, or the
// class of the input character. Start with the first table row for this
// state, then linearly scan forward until we find a row that matches the
// character. The last row for each state always matches all characters, so
// the search will stop there, if not before.
//
tableEl = &gRuleParseStateTable[state];
if (RESCAN_DEBUG) {
printf("char, line, col = (\'%c\', %d, %d) state=%s ",
fC.fChar, fLineNum, fCharNum, RegexStateNames[state]);
}
for (;;) { // loop through table rows belonging to this state, looking for one
// that matches the current input char.
if (RESCAN_DEBUG) { printf(".");}
if (tableEl->fCharClass < 127 && fC.fQuoted == FALSE && tableEl->fCharClass == fC.fChar) {
// Table row specified an individual character, not a set, and
// the input character is not quoted, and
// the input character matched it.
break;
}
if (tableEl->fCharClass == 255) {
// Table row specified default, match anything character class.
break;
}
if (tableEl->fCharClass == 254 && fC.fQuoted) {
// Table row specified "quoted" and the char was quoted.
break;
}
if (tableEl->fCharClass == 252 && fC.fChar == (UChar32)-1) {
// Table row specified eof and we hit eof on the input.
break;
}
if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class &&
fC.fQuoted == FALSE && // char is not escaped &&
fC.fChar != (UChar32)-1) { // char is not EOF
UnicodeSet *uniset = gRuleSets[tableEl->fCharClass-128];
if (uniset->contains(fC.fChar)) {
// Table row specified a character class, or set of characters,
// and the current char matches it.
break;
}
}
// No match on this row, advance to the next row for this state,
tableEl++;
}
if (RESCAN_DEBUG) { printf("\n");}
//
// We've found the row of the state table that matches the current input
// character from the rules string.
// Perform any action specified by this row in the state table.
if (doParseActions((EParseAction)tableEl->fAction) == FALSE) {
// Break out of the state machine loop if the
// the action signalled some kind of error, or
// the action was to exit, occurs on normal end-of-rules-input.
break;
}
if (tableEl->fPushState != 0) {
fStackPtr++;
if (fStackPtr >= kStackSize) {
error(U_BRK_INTERNAL_ERROR);
printf("RegexCompile::parse() - state stack overflow.\n");
fStackPtr--;
}
fStack[fStackPtr] = tableEl->fPushState;
}
if (tableEl->fNextChar) {
nextChar(fC);
}
// Get the next state from the table entry, or from the
// state stack if the next state was specified as "pop".
if (tableEl->fNextState != 255) {
state = tableEl->fNextState;
} else {
state = fStack[fStackPtr];
fStackPtr--;
if (fStackPtr < 0) {
error(U_BRK_INTERNAL_ERROR);
printf("RegexCompile::compile() - state stack underflow.\n");
fStackPtr++;
}
}
}
}
//----------------------------------------------------------------------------------------
//
// doParseAction Do some action during regex pattern parsing.
// Called by the parse state machine.
//
//
//----------------------------------------------------------------------------------------
UBool RegexCompile::doParseActions(EParseAction action)
{
UBool returnVal = TRUE;
switch ((Regex_PatternParseAction)action) {
case doPatStart:
// Start of pattern compiles to:
//0 SAVE 2 Fall back to position of FAIL
//1 jmp 3
//2 FAIL Stop if we ever reach here.
//3 NOP Dummy, so start of pattern looks the same as
// the start of an ( grouping.
//4 NOP Resreved, will be replaced by a save if there are
// OR | operators at the top level
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_STATE_SAVE, 2), *fStatus);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_JMP, 3), *fStatus);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_FAIL, 0), *fStatus);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
fParenStack.push(-1, *fStatus); // Begin a Paren Stack Frame
fParenStack.push( 3, *fStatus); // Push location of first NOP
break;
case doPatFinish:
// We've scanned to the end of the pattern
// The end of pattern compiles to:
// URX_END
// which will top the runtime match engine.
// Encountering end of pattern also behaves like a close paren,
// and forces fixups of the State Save at the beginning of the compiled pattern
// and of any OR operations at the top level.
//
handleCloseParen();
// add the END operation to the compiled pattern.
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_END, 0), *fStatus);
// Terminate the pattern compilation state machine.
returnVal = FALSE;
break;
case doOrOperator:
// Scanning a '|', as in (A|B)
{
// Insert a SAVE operation at the start of the pattern section preceding
// this OR at this level. This SAVE will branch the match forward
// to the right hand side of the OR in the event that the left hand
// side fails to match and backtracks. Locate the position for the
// save from the location on the top of the parentheses stack.
int32_t savePosition = fParenStack.popi();
int32_t op = fRXPat->fCompiledPat->elementAti(savePosition);
U_ASSERT(URX_TYPE(op) == URX_NOP); // original contents of reserved location
op = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+1);
fRXPat->fCompiledPat->setElementAt(op, savePosition);
// Append an JMP operation into the compiled pattern. The operand for
// the OR will eventually be the location following the ')' for the
// group. This will be patched in later, when the ')' is encountered.
op = URX_BUILD(URX_JMP, 0);
fRXPat->fCompiledPat->addElement(op, *fStatus);
// Push the position of the newly added JMP op onto the parentheses stack.
// This registers if for fixup when this block's close paren is encountered.
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);
// Append a NOP to the compiled pattern. This is the slot reserved
// for a SAVE in the event that there is yet another '|' following
// this one.
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);
}
break;
case doOpenCaptureParen:
// Open Paren.
// Compile to a
// - NOP, which later may be replaced by a save-state if the
// parenthesized group gets a * quantifier, followed by
// - START_CAPTURE
// - NOP, which may later be replaced by a save-state if there
// is an '|' alternation within the parens.
{
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
fRXPat->fNumCaptureGroups++;
int32_t cop = URX_BUILD(URX_START_CAPTURE, fRXPat->fNumCaptureGroups);
fRXPat->fCompiledPat->addElement(cop, *fStatus);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
// On the Parentheses stack, start a new frame and add the postions
// of the two NOPs. Depending on what follows in the pattern, the
// NOPs may be changed to SAVE_STATE or JMP ops, with a target
// address of the end of the parenthesized group.
fParenStack.push(-2, *fStatus); // Begin a new frame.
fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP
}
break;
case doOpenNonCaptureParen:
// Open Paren.
break;
case doOpenAtomicParen:
// Open Paren.
break;
case doOpenLookAhead:
// Open Paren.
break;
case doOpenLookAheadNeg:
// Open Paren.
break;
case doOpenLookBehind:
// Open Paren.
break;
case doOpenLookBehindNeg:
// Open Paren.
break;
case doExprRParen:
break;
case doCloseParen:
handleCloseParen();
break;
case doNOP:
break;
case doBadOpenParenType:
case doRuleError:
error(U_BRK_RULE_SYNTAX);
returnVal = FALSE;
break;
case doPlus:
// Normal '+' compiles to
// 1. stuff to be repeated (already built)
// 2. state-save 4
// 3. jmp 1
// 4. ...
{
int32_t topLoc; // location of item #1, the start of the stuff to repeat
if (fRXPat->fCompiledPat->size() == fMatchCloseParen)
{
// The thing being repeated (item 1) is a parenthesized block.
// Pick up the location of the top of the block.
topLoc = fMatchOpenParen+1;
} else {
// Repeating just a single item, the last thing in the compiled patternn so far.
topLoc = fRXPat->fCompiledPat->size()-1;
}
// Locate the position in the compiled pattern where the match will continue
// after completing the + (4 in the comment above)
int32_t continueLoc = fRXPat->fCompiledPat->size()+2;
// Emit the STATE_SAVE
int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, continueLoc);
fRXPat->fCompiledPat->addElement(saveStateOp, *fStatus);
// Emit the JMP
int32_t jmpOp = URX_BUILD(URX_JMP, topLoc);
fRXPat->fCompiledPat->addElement(jmpOp, *fStatus);
}
break;
case doOpt:
// Normal (greedy) ? quantifier.
// Compiles to
// 1. state save 3
// 2. body of optional stuff
// 3. ...
// Insert the state save into the compiled pattern, and we're done.
{
int32_t saveStateLoc = blockTopLoc();
int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size());
fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc);
}
break;
case doStar:
// Normal (greedy) * quantifier.
// Compiles to
// 1. STATE_SAVE 3
// 2. body of stuff being iterated over
// 3. JMP 0
// 4. ...
//
{
// location of item #1, the STATE_SAVE
int32_t saveStateLoc = blockTopLoc();
// Locate the position in the compiled pattern where the match will continue
// after completing the *. (4 in the comment above)
int32_t continueLoc = fRXPat->fCompiledPat->size()+1;
// Put together the save state op store it into the compiled code.
int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, continueLoc);
fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc);
// Append the URX_JMP operation to the compiled pattern. Its target
// is the locaton of the state-save, above.
int32_t jmpOp = URX_BUILD(URX_JMP, saveStateLoc);
fRXPat->fCompiledPat->addElement(jmpOp, *fStatus);
}
break;
case doStartString:
// We've just scanned a single "normal" character from the pattern,
// which is a character without special meaning that will need to be
// matched literally. Save it away. It may be the start of a string.
{
fStringOpStart = fRXPat->fLiteralText.length();
fRXPat->fLiteralText.append(fC.fChar);
break;
}
case doStringChar:
// We've just scanned a "normal" character from the pattern, which now
// needs to be appended the the literal match string being that is
// already being assembled.
{
fRXPat->fLiteralText.append(fC.fChar);
break;
}
case doSplitString:
// We've just peeked at a quantifier, e.g. a *, following a scanned string.
// Separate the last character from the string, because the quantifier
// only applies to it, not to the entire string. Emit into the compiled
// pattern:
// - string chars[0..n-2] (as a string, assuming more than one char)
// - string char [n-1] (as a single character)
{
// Locate the positions of the last and next-to-last characters
// in the string. Requires a bit of futzing around to account for
// surrogate pairs, since we want 32 bit code points, not 16 bit code units.
int32_t strLength = fRXPat->fLiteralText.length() - fStringOpStart;
U_ASSERT(strLength > 0);
int32_t lastCharIdx = fRXPat->fLiteralText.length()-1;
lastCharIdx = fRXPat->fLiteralText.getChar32Start(lastCharIdx);
int32_t nextToLastCharIdx = lastCharIdx-1;
if (nextToLastCharIdx > fStringOpStart) {
nextToLastCharIdx = fRXPat->fLiteralText.getChar32Start(nextToLastCharIdx);
}
if (nextToLastCharIdx > fStringOpStart) {
// The string contains three or more code units.
// emit the first through the next-to-last as a string.
int32_t stringToken = URX_BUILD(URX_STRING, fStringOpStart);
fRXPat->fCompiledPat->addElement(stringToken, *fStatus);
stringToken = URX_BUILD(URX_STRING_LEN, lastCharIdx - fStringOpStart);
fRXPat->fCompiledPat->addElement(stringToken, *fStatus);
}
else if (nextToLastCharIdx == fStringOpStart) {
// The string contains exactly two code units.
// emit the first into the compiled pattern as a single char
UChar32 c = fRXPat->fLiteralText.char32At(nextToLastCharIdx);
int32_t charToken = URX_BUILD(URX_ONECHAR, c);
fRXPat->fCompiledPat->addElement(charToken, *fStatus);
}
// In all cases emit the last char as a single character.
UChar32 c = fRXPat->fLiteralText.char32At(lastCharIdx);
int32_t charToken = URX_BUILD(URX_ONECHAR, c);
fRXPat->fCompiledPat->addElement(charToken, *fStatus);
}
break;
case doEndString:
// We have reached the end of a literal string in the pattern.
// Emit the string token into the compiled pattern, or if the string
// has only one character, emit the single character token instead.
{
int32_t strLength = fRXPat->fLiteralText.length() - fStringOpStart;
U_ASSERT(strLength > 0);
int32_t lastCharIdx = fRXPat->fLiteralText.length()-1;
lastCharIdx = fRXPat->fLiteralText.getChar32Start(lastCharIdx);
if (lastCharIdx == fStringOpStart) {
// The string contains exactly one character.
// Emit it into the compiled pattern as a single char.
int32_t charToken = URX_BUILD(URX_ONECHAR, fRXPat->fLiteralText.char32At(fStringOpStart));
fRXPat->fCompiledPat->addElement(charToken, *fStatus);
} else {
// The string contains two or more chars. Emit as a string.
// Compiled string consumes two tokens in the compiled pattern, one
// for the index of the start-of-string, and one for the length.
int32_t stringToken = URX_BUILD(URX_STRING, fStringOpStart);
fRXPat->fCompiledPat->addElement(stringToken, *fStatus);
stringToken = URX_BUILD(URX_STRING_LEN, strLength);
fRXPat->fCompiledPat->addElement(stringToken, *fStatus);
}
}
break;
case doDotAny:
// scanned a ".", match any single character.
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_DOTANY, 0), *fStatus);
break;
case doExprFinished:
break;
case doExit:
returnVal = FALSE;
break;
case doScanUnicodeSet:
{
UnicodeSet *theSet = scanSet();
if (theSet == NULL) {
break;
}
if (theSet->size() > 1) {
// The set contains two or more chars.
// Put it into the compiled pattern as a set.
int32_t setNumber = fRXPat->fSets->size();
fRXPat->fSets->addElement(theSet, *fStatus);
int32_t setOp = URX_BUILD(URX_SETREF, setNumber);
fRXPat->fCompiledPat->addElement(setOp, *fStatus);
}
else
{
// The set contains only a single code point. Put it into
// the compiled pattern as a single char operation rather
// than a set, and discard the set itself.
UChar32 c = theSet->charAt(0);
if (c == -1) {
// Set contained no chars. Stuff an invalid char that can't match.
c = 0x1fffff;
}
int32_t charToken = URX_BUILD(URX_ONECHAR, c);
fRXPat->fCompiledPat->addElement(charToken, *fStatus);
delete theSet;
}
}
break;
default:
error(U_BRK_INTERNAL_ERROR);
returnVal = FALSE;
break;
}
return returnVal;
};
//------------------------------------------------------------------------------
//
// blockTopLoc() Find or create a location in the compiled pattern
// at the start of the operation or block that has
// just been compiled. Needed when a quantifier (* or
// whatever) appears, and we need to add an operation
// at the start of the thing being quantified.
//
// (Parenthesized Blocks) have a slot with a NOP that
// is reserved for this purpose. .* or similar don't
// and a slot needs to be added.
//
//------------------------------------------------------------------------------
int32_t RegexCompile::blockTopLoc() {
int32_t theLoc;
if (fRXPat->fCompiledPat->size() == fMatchCloseParen)
{
// The item just processed is a parenthesized block.
theLoc = fMatchOpenParen; // A slot is already reserved for us.
U_ASSERT(theLoc > 0);
uint32_t opAtTheLoc = fRXPat->fCompiledPat->elementAti(theLoc);
U_ASSERT(URX_TYPE(opAtTheLoc) == URX_NOP);
}
else {
// Item just compiled is a single thing, a ".", or a single char, or a set reference.
// No slot for STATE_SAVE was pre-reserved in the compiled code.
// We need to make space now.
theLoc = fRXPat->fCompiledPat->size()-1;
int32_t opAtTheLoc = fRXPat->fCompiledPat->elementAti(theLoc);
int32_t prevType = URX_TYPE(opAtTheLoc);
U_ASSERT(prevType==URX_ONECHAR || prevType==URX_SETREF || prevType==URX_DOTANY);
int32_t nop = URX_BUILD(URX_NOP, 0);
fRXPat->fCompiledPat->insertElementAt(nop, theLoc, *fStatus);
}
return theLoc;
}
//------------------------------------------------------------------------------
//
// handleCloseParen When compiling a close paren, we need to go back
// and fix up any JMP or SAVE operations within the
// parenthesized block that need to target the end
// of the block. The locations of these are kept on
// the paretheses stack.
//
// This function is called both when encountering a
// real ) and at the end of the pattern.
//
//-------------------------------------------------------------------------------
void RegexCompile::handleCloseParen() {
int32_t patIdx;
int32_t patOp;
U_ASSERT(fParenStack.size() >= 1);
// Fixup any operations within the just-closed parenthesized group
// that need to reference the end of the (block).
// (The first one on popped from the stack is an unused slot for
// alternation (OR) state save, but applying the fixup to it does no harm.)
for (;;) {
patIdx = fParenStack.popi();
if (patIdx < 0) {
break;
}
U_ASSERT(patIdx>0 && patIdx <= fRXPat->fCompiledPat->size());
patOp = fRXPat->fCompiledPat->elementAti(patIdx);
U_ASSERT(URX_VAL(patOp) == 0); // Branch target for JMP should not be set.
patOp |= fRXPat->fCompiledPat->size(); // Set it now.
fRXPat->fCompiledPat->setElementAt(patOp, patIdx);
fMatchOpenParen = patIdx;
}
// DO any additional fixups, depending on the specific kind of
// parentesized grouping this is
switch (patIdx) {
case -1:
// No additional fixups required.
// This is the case with most kinds of groupings.
break;
case -2:
// Capturing Parentheses.
// Insert a End Capture op into the pattern.
// Grab the group number from the start capture op
// and put it into the end-capture op.
{
int32_t captureOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1);
U_ASSERT(URX_TYPE(captureOp) == URX_START_CAPTURE);
int32_t captureGroupNumber = URX_VAL(captureOp);
U_ASSERT(captureGroupNumber > 0);
int32_t endCaptureOp = URX_BUILD(URX_END_CAPTURE, captureGroupNumber);
fRXPat->fCompiledPat->addElement(endCaptureOp, *fStatus);
}
break;
default:
U_ASSERT(FALSE);
}
// remember the next location in the compiled pattern.
// The compilation of Quantifiers will look at this to see whether its looping
// over a parenthesized block or a single item
fMatchCloseParen = fRXPat->fCompiledPat->size();
}
//----------------------------------------------------------------------------------------
//
// Error Report a rule parse error.
// Only report it if no previous error has been recorded.
//
//----------------------------------------------------------------------------------------
void RegexCompile::error(UErrorCode e) {
if (U_SUCCESS(*fStatus)) {
*fStatus = e;
fParseErr->line = fLineNum;
fParseErr->offset = fCharNum;
fParseErr->preContext[0] = 0;
fParseErr->preContext[0] = 0;
}
}
//
// Assorted Unicode character constants.
// Numeric because there is no portable way to enter them as literals.
// (Think EBCDIC).
//
static const UChar chCR = 0x0d; // New lines, for terminating comments.
static const UChar chLF = 0x0a;
static const UChar chNEL = 0x85; // NEL newline variant
static const UChar chLS = 0x2028; // Unicode Line Separator
static const UChar chApos = 0x27; // single quote, for quoted chars.
static const UChar chPound = 0x23; // '#', introduces a comment.
static const UChar chBackSlash = 0x5c; // '\' introduces a char escape
static const UChar chLParen = 0x28;
static const UChar chRParen = 0x29;
//----------------------------------------------------------------------------------------
//
// nextCharLL Low Level Next Char from the regex pattern.
// Get a char from the string,
// keep track of input position for error reporting.
//
//----------------------------------------------------------------------------------------
UChar32 RegexCompile::nextCharLL() {
UChar32 ch;
UnicodeString &pattern = fRXPat->fPattern;
if (fPatternLength==0 || fNextIndex >= fPatternLength) {
return (UChar32)-1;
}
ch = pattern.char32At(fNextIndex);
fNextIndex = pattern.moveIndex32(fNextIndex, 1);
if (ch == chCR ||
ch == chNEL ||
ch == chLS ||
ch == chLF && fLastChar != chCR) {
// Character is starting a new line. Bump up the line number, and
// reset the column to 0.
fLineNum++;
fCharNum=0;
if (fQuoteMode) {
error(U_BRK_NEW_LINE_IN_QUOTED_STRING);
fQuoteMode = FALSE;
}
}
else {
// Character is not starting a new line. Except in the case of a
// LF following a CR, increment the column position.
if (ch != chLF) {
fCharNum++;
}
}
fLastChar = ch;
return ch;
}
//---------------------------------------------------------------------------------
//
// nextChar for rules scanning. At this level, we handle stripping
// out comments and processing backslash character escapes.
// The rest of the rules grammar is handled at the next level up.
//
//---------------------------------------------------------------------------------
void RegexCompile::nextChar(RegexPatternChar &c) {
// Unicode Character constants needed for the processing done by nextChar(),
// in hex because literals wont work on EBCDIC machines.
fScanIndex = fNextIndex;
c.fChar = nextCharLL();
c.fQuoted = FALSE;
if (fQuoteMode) {
c.fQuoted = TRUE;
}
else
{
// We are not in a 'quoted region' of the source.
//
if (c.fChar == chPound) {
// Start of a comment. Consume the rest of it.
// The new-line char that terminates the comment is always returned.
// It will be treated as white-space, and serves to break up anything
// that might otherwise incorrectly clump together with a comment in
// the middle (a variable name, for example.)
for (;;) {
c.fChar = nextCharLL();
if (c.fChar == (UChar32)-1 || // EOF
c.fChar == chCR ||
c.fChar == chLF ||
c.fChar == chNEL ||
c.fChar == chLS) {break;}
}
}
if (c.fChar == (UChar32)-1) {
return;
}
//
// check for backslash escaped characters.
// Use UnicodeString::unescapeAt() to handle them.
//
if (c.fChar == chBackSlash) {
c.fQuoted = TRUE;
int32_t startX = fNextIndex;
c.fChar = fRXPat->fPattern.unescapeAt(fNextIndex);
if (fNextIndex == startX) {
error(U_BRK_HEX_DIGITS_EXPECTED);
}
fCharNum += fNextIndex-startX;
}
}
// putc(c.fChar, stdout);
}
//---------------------------------------------------------------------------------
//
// scanSet Construct a UnicodeSet from the text at the current scan
// position. Advance the scan position to the first character
// after the set.
//
// The scan position is normally under the control of the state machine
// that controls pattern parsing. UnicodeSets, however, are parsed by
// the UnicodeSet constructor, not by the Regex pattern parser.
//
//---------------------------------------------------------------------------------
UnicodeSet *RegexCompile::scanSet() {
UnicodeSet *uset = NULL;
ParsePosition pos;
int startPos;
int i;
if (U_FAILURE(*fStatus)) {
return NULL;
}
pos.setIndex(fScanIndex);
startPos = fScanIndex;
UErrorCode localStatus = U_ZERO_ERROR;
uset = new UnicodeSet(fRXPat->fPattern, pos,
localStatus);
if (U_FAILURE(localStatus)) {
// TODO: Get more accurate position of the error from UnicodeSet's return info.
// UnicodeSet appears to not be reporting correctly at this time.
printf("UnicodeSet parse postion.ErrorIndex = %d\n", pos.getIndex());
error(localStatus);
delete uset;
return NULL;
}
// Advance the current scan postion over the UnicodeSet.
// Don't just set fScanIndex because the line/char positions maintained
// for error reporting would be thrown off.
i = pos.getIndex();
for (;;) {
if (fNextIndex >= i) {
break;
}
nextCharLL();
}
return uset;
};
U_NAMESPACE_END

View file

@ -0,0 +1,157 @@
//
// regexcmp.h
//
// Copyright (C) 2002, International Business Machines Corporation and others.
// All Rights Reserved.
//
// This file contains declarations for the class RegexCompile and for compiled
// regular expression data format
//
#ifndef RBBISCAN_H
#define RBBISCAN_H
#include "unicode/utypes.h"
#include "unicode/uobject.h"
#include "unicode/uniset.h"
#include "unicode/parseerr.h"
#include "uhash.h"
#include "uvector.h"
U_NAMESPACE_BEGIN
static const UBool REGEX_DEBUG = TRUE;
//--------------------------------------------------------------------------------
//
// class RegexCompile does the lowest level, character-at-a-time
// scanning of a regular expression.
//
// The output of the scanner is a tokenized form
// of the RE, plus prebuilt UnicodeSet objects for each
// set of charcters that is referenced.
//
//--------------------------------------------------------------------------------
static const int kStackSize = 100; // The size of the state stack for
// pattern parsing. Corresponds roughly
// to the depth of parentheses nesting
// that is allowed in the rules.
enum EParseAction {dummy01, dummy02}; // Placeholder enum for the specifier for
// actions that are specified in the
// rule parsing state table.
struct RegexTableEl;
class RegexPattern;
class RegexCompile : public UObject {
public:
struct RegexPatternChar {
UChar32 fChar;
UBool fQuoted;
};
RegexCompile(UErrorCode &e);
void compile(RegexPattern &rxp, const UnicodeString &pat, UParseError &pp, UErrorCode &e);
virtual ~RegexCompile();
void nextChar(RegexPatternChar &c); // Get the next char from the input stream.
UBool push(const RegexPatternChar &c); // Push (unget) one character.
// Only a single character may be pushed.
/**
* ICU "poor man's RTTI", returns a UClassID for the actual class.
*
* @draft ICU 2.2
*/
virtual inline UClassID getDynamicClassID() const { return getStaticClassID(); }
/**
* ICU "poor man's RTTI", returns a UClassID for this class.
*
* @draft ICU 2.2
*/
static inline UClassID getStaticClassID() { return (UClassID)&fgClassID; }
private:
UBool doParseActions(EParseAction a);
void error(UErrorCode e); // error reporting convenience function.
UChar32 nextCharLL();
UnicodeSet *scanSet();
void handleCloseParen();
int32_t blockTopLoc(); // Locate a position in the compiled pattern
// at the top of the just completed block
// or operation.
UErrorCode *fStatus;
RegexPattern *fRXPat;
UParseError *fParseErr;
int32_t fScanIndex; // Index of current character being processed
// in the rule input string.
int32_t fNextIndex; // Index of the next character, which
// is the first character not yet scanned.
UBool fQuoteMode; // Scan is in a quoted region
UBool fFreeForm; // Scan mode is free-form, ignore spaces.
int fLineNum; // Line number in input file.
int fCharNum; // Char position within the line.
UChar32 fLastChar; // Previous char, needed to count CR-LF
// as a single line, not two.
RegexPatternChar fC; // Current char for parse state machine
// processing.
int32_t fStringOpStart; // While a literal string is being scanned
// holds the start index within RegexPattern.
// fLiteralText where the string is being stored.
RegexTableEl **fStateTable; // State Transition Table for regex Rule
// parsing. index by p[state][char-class]
uint16_t fStack[kStackSize]; // State stack, holds state pushes
int fStackPtr; // and pops as specified in the state
// transition rules.
int32_t fPatternLength; // Length of the input pattern string.
UStack fParenStack; // parentheses stack. Each frame consists of
// the positions of compiled pattern operations
// needing fixup, followed by negative vallue. The
// first entry in each frame is the position of the
// spot reserved for use when a quantifier
// needs to add a SAVE at the start of a (block)
// The negative value (-1, -2,...) indicates
// the kind of paren that opened the frame. Some
// need special handling on close.
int32_t fMatchOpenParen; // The position in the compiled pattern
// of the slot reserved for a state save
// at the start of the most recently processed
// parenthesized block.
int32_t fMatchCloseParen; // The position in the pattern of the first
// location after the most recently processed
// parenthesized block.
/**
* The address of this static class variable serves as this class's ID
* for ICU "poor man's RTTI".
*/
static const char fgClassID;
};
U_NAMESPACE_END
#endif

View file

@ -0,0 +1,220 @@
//---------------------------------------------------------------------------------
//
// Generated Header File. Do not edit by hand.
// This file contains the state table for the ICU Regular Expression Pattern Parser
// It is generated by the Perl script "regexcst.pl" from
// the rule parser state definitions file "regexcst.txt".
//
// Copyright (C) 2002 International Business Machines Corporation
// and others. All rights reserved.
//
//---------------------------------------------------------------------------------
#ifndef RBBIRPT_H
#define RBBIRPT_H
U_NAMESPACE_BEGIN
//
// Character classes for regex pattern scanning.
//
static const uint8_t kRuleSet_digit_char = 128;
static const uint8_t kRuleSet_white_space = 129;
static const uint8_t kRuleSet_rule_char = 130;
enum Regex_PatternParseAction {
doExprOrOperator,
doCloseParen,
doTagValue,
doOrOperator,
doOpenCaptureParen,
doBadOpenParenType,
doRuleError,
doStartString,
doNGOpt,
doPossesiveStar,
doOpenLookBehind,
doExprRParen,
doStar,
doPossesivePlus,
doNGStar,
doOpenLookAheadNeg,
doPlus,
doOpenNonCaptureParen,
doNGPlus,
doPatFinish,
doIntervalMinValue,
doIntervalDigit,
doPossesiveOpt,
doOpt,
doOpenAtomicParen,
doStringChar,
doOpenLookAhead,
doNumberExpectedError,
doDotAny,
doExprFinished,
doScanUnicodeSet,
doNOP,
doExit,
doPatStart,
doEndString,
doOpenLookBehindNeg,
doSplitString,
rbbiLastAction};
//-------------------------------------------------------------------------------
//
// RegexTableEl represents the structure of a row in the transition table
// for the pattern parser state machine.
//-------------------------------------------------------------------------------
struct RegexTableEl {
Regex_PatternParseAction fAction;
uint8_t fCharClass; // 0-127: an individual ASCII character
// 128-255: character class index
uint8_t fNextState; // 0-250: normal next-state numbers
// 255: pop next-state from stack.
uint8_t fPushState;
UBool fNextChar;
};
static const struct RegexTableEl gRuleParseStateTable[] = {
{doNOP, 0, 0, 0, TRUE}
, {doPatStart, 255, 3, 2, FALSE} // 1 start
, {doPatFinish, 255, 2,0, FALSE} // 2 finish
, {doStartString, 254, 10,0, TRUE} // 3 term
, {doStartString, 130, 10,0, TRUE} // 4
, {doScanUnicodeSet, 91 /* [ */, 17,0, TRUE} // 5
, {doNOP, 40 /* ( */, 29, 17, TRUE} // 6
, {doDotAny, 46 /* . */, 17,0, TRUE} // 7
, {doNOP, 253, 255,0, FALSE} // 8
, {doRuleError, 255, 67,0, FALSE} // 9
, {doStringChar, 254, 10,0, TRUE} // 10 string
, {doStringChar, 130, 10,0, TRUE} // 11
, {doSplitString, 63 /* ? */, 17,0, FALSE} // 12
, {doSplitString, 43 /* + */, 17,0, FALSE} // 13
, {doSplitString, 42 /* * */, 17,0, FALSE} // 14
, {doSplitString, 123 /* { */, 17,0, FALSE} // 15
, {doEndString, 255, 17,0, FALSE} // 16
, {doNOP, 42 /* * */, 40,0, TRUE} // 17 expr-quant
, {doNOP, 43 /* + */, 43,0, TRUE} // 18
, {doNOP, 63 /* ? */, 46,0, TRUE} // 19
, {doNOP, 255, 21,0, FALSE} // 20
, {doNOP, 254, 3,0, FALSE} // 21 expr-cont
, {doNOP, 130, 3,0, FALSE} // 22
, {doNOP, 91 /* [ */, 3,0, FALSE} // 23
, {doNOP, 40 /* ( */, 3,0, FALSE} // 24
, {doNOP, 46 /* . */, 3,0, FALSE} // 25
, {doOrOperator, 124 /* | */, 3,0, TRUE} // 26
, {doCloseParen, 41 /* ) */, 255,0, TRUE} // 27
, {doExprFinished, 255, 255,0, FALSE} // 28
, {doNOP, 63 /* ? */, 31,0, TRUE} // 29 open-paren
, {doOpenCaptureParen, 255, 3, 17, FALSE} // 30
, {doOpenNonCaptureParen, 58 /* : */, 3, 17, TRUE} // 31 open-paren-extended
, {doOpenAtomicParen, 62 /* > */, 3, 17, TRUE} // 32
, {doOpenLookAhead, 61 /* = */, 3, 21, TRUE} // 33
, {doOpenLookAheadNeg, 33 /* ! */, 3, 21, TRUE} // 34
, {doNOP, 60 /* < */, 37,0, TRUE} // 35
, {doBadOpenParenType, 255, 67,0, FALSE} // 36
, {doOpenLookBehind, 61 /* = */, 3, 21, TRUE} // 37 open-paren-lookbehind
, {doOpenLookBehindNeg, 33 /* ! */, 3, 21, TRUE} // 38
, {doBadOpenParenType, 255, 67,0, FALSE} // 39
, {doNGStar, 63 /* ? */, 21,0, TRUE} // 40 quant-star
, {doPossesiveStar, 43 /* + */, 21,0, TRUE} // 41
, {doStar, 255, 21,0, FALSE} // 42
, {doNGPlus, 63 /* ? */, 21,0, TRUE} // 43 quant-plus
, {doPossesivePlus, 43 /* + */, 21,0, TRUE} // 44
, {doPlus, 255, 21,0, FALSE} // 45
, {doNGOpt, 63 /* ? */, 21,0, TRUE} // 46 quant-opt
, {doPossesiveOpt, 43 /* + */, 21,0, TRUE} // 47
, {doOpt, 255, 21,0, FALSE} // 48
, {doNOP, 129, 49,0, TRUE} // 49 interval-open
, {doIntervalMinValue, 128, 52,0, FALSE} // 50
, {doNumberExpectedError, 255, 67,0, FALSE} // 51
, {doNOP, 129, 56,0, TRUE} // 52 interval-value
, {doNOP, 125 /* } */, 56,0, FALSE} // 53
, {doIntervalDigit, 128, 52,0, TRUE} // 54
, {doNumberExpectedError, 255, 67,0, FALSE} // 55
, {doNOP, 129, 56,0, TRUE} // 56 interval-close
, {doTagValue, 125 /* } */, 59,0, TRUE} // 57
, {doNumberExpectedError, 255, 67,0, FALSE} // 58
, {doNOP, 254, 3,0, FALSE} // 59 expr-cont-no-interval
, {doNOP, 130, 3,0, FALSE} // 60
, {doNOP, 91 /* [ */, 3,0, FALSE} // 61
, {doNOP, 40 /* ( */, 3,0, FALSE} // 62
, {doNOP, 46 /* . */, 3,0, FALSE} // 63
, {doExprOrOperator, 124 /* | */, 3,0, TRUE} // 64
, {doExprRParen, 41 /* ) */, 255,0, TRUE} // 65
, {doExprFinished, 255, 255,0, FALSE} // 66
, {doExit, 255, 67,0, TRUE} // 67 errorDeath
};
static const char *RegexStateNames[] = { 0,
"start",
"finish",
"term",
0,
0,
0,
0,
0,
0,
"string",
0,
0,
0,
0,
0,
0,
"expr-quant",
0,
0,
0,
"expr-cont",
0,
0,
0,
0,
0,
0,
0,
"open-paren",
0,
"open-paren-extended",
0,
0,
0,
0,
0,
"open-paren-lookbehind",
0,
0,
"quant-star",
0,
0,
"quant-plus",
0,
0,
"quant-opt",
0,
0,
"interval-open",
0,
0,
"interval-value",
0,
0,
0,
"interval-close",
0,
0,
"expr-cont-no-interval",
0,
0,
0,
0,
0,
0,
0,
"errorDeath",
0};
U_NAMESPACE_END
#endif

326
icu4c/source/i18n/regexcst.pl Executable file
View file

@ -0,0 +1,326 @@
#
# regexcst.pl
# Compile the regular expression paser state table data into initialized C data.
# Usage:
# cd icu/source/i18n
# perl regexcst.pl < regexcst.txt > regexcst.h
#
# The output file, regexcst.h, is included by some of the .cpp regex
# implementation files. This perl script is NOT run as part
# of a normal ICU build. It is run by hand when needed, and the
# regexcst.h generated file is put back into cvs.
#
# See regexcst.txt for a description of the input format for this script.
#
# This script is derived from rbbicst.pl, which peforms the same function
# for the Rule Based Break Iterator Rule Parser. Perhaps they could be
# merged?
#
#*********************************************************************
# Copyright (C) 2002 International Business Machines Corporation *
# and others. All rights reserved. *
#*********************************************************************
$num_states = 1; # Always the state number for the line being compiled.
$line_num = 0; # The line number in the input file.
$states{"pop"} = 255; # Add the "pop" to the list of defined state names.
# This prevents any state from being labelled with "pop",
# and resolves references to "pop" in the next state field.
line_loop: while (<>) {
chomp();
$line = $_;
@fields = split();
$line_num++;
# Remove # comments, which are any fields beginning with a #, plus all
# that follow on the line.
for ($i=0; $i<@fields; $i++) {
if ($fields[$i] =~ /^#/) {
@fields = @fields[0 .. $i-1];
last;
}
}
# ignore blank lines, and those with no fields left after stripping comments..
if (@fields == 0) {
next;
}
#
# State Label: handling.
# Does the first token end with a ":"? If so, it's the name of a state.
# Put in a hash, together with the current state number,
# so that we can later look up the number from the name.
#
if (@fields[0] =~ /.*:$/) {
$state_name = @fields[0];
$state_name =~ s/://; # strip off the colon from the state name.
if ($states{$state_name} != 0) {
print " rbbicst: at line $line-num duplicate definition of state $state_name\n";
}
$states{$state_name} = $num_states;
$stateNames[$num_states] = $state_name;
# if the label was the only thing on this line, go on to the next line,
# otherwise assume that a state definition is on the same line and fall through.
if (@fields == 1) {
next line_loop;
}
shift @fields; # shift off label field in preparation
# for handling the rest of the line.
}
#
# State Transition line.
# syntax is this,
# character [n] target-state [^push-state] [function-name]
# where
# [something] is an optional something
# character is either a single quoted character e.g. '['
# or a name of a character class, e.g. white_space
#
$state_line_num[$num_states] = $line_num; # remember line number with each state
# so we can make better error messages later.
#
# First field, character class or literal character for this transition.
#
if ($fields[0] =~ /^'.'$/) {
# We've got a quoted literal character.
$state_literal_chars[$num_states] = $fields[0];
$state_literal_chars[$num_states] =~ s/'//g;
} else {
# We've got the name of a character class.
$state_char_class[$num_states] = $fields[0];
if ($fields[0] =~ /[\W]/) {
print " rbbicsts: at line $line_num, bad character literal or character class name.\n";
print " scanning $fields[0]\n";
exit(-1);
}
}
shift @fields;
#
# do the 'n' flag
#
$state_flag[$num_states] = "FALSE";
if ($fields[0] eq "n") {
$state_flag[$num_states] = "TRUE";
shift @fields;
}
#
# do the destination state.
#
$state_dest_state[$num_states] = $fields[0];
if ($fields[0] eq "") {
print " rbbicsts: at line $line_num, destination state missing.\n";
exit(-1);
}
shift @fields;
#
# do the push state, if present.
#
if ($fields[0] =~ /^\^/) {
$fields[0] =~ s/^\^//;
$state_push_state[$num_states] = $fields[0];
if ($fields[0] eq "" ) {
print " rbbicsts: at line $line_num, expected state after ^ (no spaces).\n";
exit(-1);
}
shift @fields;
}
#
# Lastly, do the optional action name.
#
if ($fields[0] ne "") {
$state_func_name[$num_states] = $fields[0];
shift @fields;
}
#
# There should be no fields left on the line at this point.
#
if (@fields > 0) {
print " rbbicsts: at line $line_num, unexpected extra stuff on input line.\n";
print " scanning $fields[0]\n";
}
$num_states++;
}
#
# We've read in the whole file, now go back and output the
# C source code for the state transition table.
#
# We read all states first, before writing anything, so that the state numbers
# for the destination states are all available to be written.
#
#
# Make hashes for the names of the character classes and
# for the names of the actions that appeared.
#
for ($state=1; $state < $num_states; $state++) {
if ($state_char_class[$state] ne "") {
if ($charClasses{$state_char_class[$state]} == 0) {
$charClasses{$state_char_class[$state]} = 1;
}
}
if ($state_func_name[$state] eq "") {
$state_func_name[$state] = "doNOP";
}
if ($actions{$state_action_name[$state]} == 0) {
$actions{$state_func_name[$state]} = 1;
}
}
#
# Check that all of the destination states have been defined
#
#
$states{"exit"} = 0; # Predefined state name, terminates state machine.
for ($state=1; $state<$num_states; $state++) {
if ($states{$state_dest_state[$state]} == 0 && $state_dest_state[$state] ne "exit") {
print "Error at line $state_line_num[$state]: target state \"$state_dest_state[$state]\" is not defined.\n";
$errors++;
}
if ($state_push_state[$state] ne "" && $states{$state_push_state[$state]} == 0) {
print "Error at line $state_line_num[$state]: target state \"$state_push_state[$state]\" is not defined.\n";
$errors++;
}
}
die if ($errors>0);
print "//---------------------------------------------------------------------------------\n";
print "//\n";
print "// Generated Header File. Do not edit by hand.\n";
print "// This file contains the state table for the ICU Regular Expression Pattern Parser\n";
print "// It is generated by the Perl script \"regexcst.pl\" from\n";
print "// the rule parser state definitions file \"regexcst.txt\".\n";
print "//\n";
print "// Copyright (C) 2002 International Business Machines Corporation \n";
print "// and others. All rights reserved. \n";
print "//\n";
print "//---------------------------------------------------------------------------------\n";
print "#ifndef RBBIRPT_H\n";
print "#define RBBIRPT_H\n";
print "\n";
print "U_NAMESPACE_BEGIN\n";
#
# Emit the constants for indicies of Unicode Sets
# Define one constant for each of the character classes encountered.
# At the same time, store the index corresponding to the set name back into hash.
#
print "//\n";
print "// Character classes for regex pattern scanning.\n";
print "//\n";
$i = 128; # State Table values for Unicode char sets range from 128-250.
# Sets "default", "quoted", etc. get special handling.
# They have no corresponding UnicodeSet object in the state machine,
# but are handled by special case code. So we emit no reference
# to a UnicodeSet object to them here.
foreach $setName (keys %charClasses) {
if ($setName eq "default") {
$charClasses{$setName} = 255;}
elsif ($setName eq "quoted") {
$charClasses{$setName} = 254;}
elsif ($setName eq "eof") {
$charClasses{$setName} = 253;}
else {
# Normal character class. Fill in array with a ptr to the corresponding UnicodeSet in the state machine.
print " static const uint8_t kRuleSet_$setName = $i;\n";
$charClasses{$setName} = $i;
$i++;
}
}
print "\n\n";
#
# Emit the enum for the actions to be performed.
#
print "enum Regex_PatternParseAction {\n";
foreach $act (keys %actions) {
print " $act,\n";
}
print " rbbiLastAction};\n\n";
#
# Emit the struct definition for transtion table elements.
#
print "//-------------------------------------------------------------------------------\n";
print "//\n";
print "// RegexTableEl represents the structure of a row in the transition table\n";
print "// for the pattern parser state machine.\n";
print "//-------------------------------------------------------------------------------\n";
print "struct RegexTableEl {\n";
print " Regex_PatternParseAction fAction;\n";
print " uint8_t fCharClass; // 0-127: an individual ASCII character\n";
print " // 128-255: character class index\n";
print " uint8_t fNextState; // 0-250: normal next-state numbers\n";
print " // 255: pop next-state from stack.\n";
print " uint8_t fPushState;\n";
print " UBool fNextChar;\n";
print "};\n\n";
#
# emit the state transition table
#
print "static const struct RegexTableEl gRuleParseStateTable[] = {\n";
print " {doNOP, 0, 0, 0, TRUE}\n"; # State 0 is a dummy. Real states start with index = 1.
for ($state=1; $state < $num_states; $state++) {
print " , {$state_func_name[$state],";
if ($state_literal_chars[$state] ne "") {
$c = $state_literal_chars[$state];
printf(" %d /* $c */,", ord($c)); # use numeric value, so EBCDIC machines are ok.
}else {
print " $charClasses{$state_char_class[$state]},";
}
print " $states{$state_dest_state[$state]},";
# The push-state field is optional. If omitted, fill field with a zero, which flags
# the state machine that there is no push state.
if ($state_push_state[$state] eq "") {
print "0, ";
} else {
print " $states{$state_push_state[$state]},";
}
print " $state_flag[$state]} ";
# Put out a C++ comment showing the number (index) of this state row,
# and, if this is the first row of the table for this state, the state name.
print " // $state ";
if ($stateNames[$state] ne "") {
print " $stateNames[$state]";
}
print "\n";
};
print " };\n";
#
# emit a mapping array from state numbers to state names.
#
# This array is used for producing debugging output from the pattern parser.
#
print "static const char *RegexStateNames[] = {";
for ($state=0; $state<$num_states; $state++) {
if ($stateNames[$state] ne "") {
print " \"$stateNames[$state]\",\n";
} else {
print " 0,\n";
}
}
print " 0};\n\n";
print "U_NAMESPACE_END\n";
print "#endif\n";

View file

@ -0,0 +1,231 @@
#*****************************************************************************
#
# Copyright (C) 2002, International Business Machines Corporation and others.
# All Rights Reserved.
#
#*****************************************************************************
#
# file: regexcst.txt
# ICU Regular Expression Parser State Table
#
# This state table is used when reading and parsing a regular expression pattern
# The pattern parser uses a state machine; the data in this file define the
# state transitions that occur for each input character.
#
# *** This file defines the regex pattern grammar. This is it.
# *** The determination of what is accepted is here.
#
# This file is processed by a perl script "regexcst.pl" to produce initialized C arrays
# that are then built with the rule parser.
#
#
# Here is the syntax of the state definitions in this file:
#
#
#StateName:
# input-char n next-state ^push-state action
# input-char n next-state ^push-state action
# | | | | |
# | | | | |--- action to be performed by state machine
# | | | | See function RBBIRuleScanner::doParseActions()
# | | | |
# | | | |--- Push this named state onto the state stack.
# | | | Later, when next state is specified as "pop",
# | | | the pushed state will become the current state.
# | | |
# | | |--- Transition to this state if the current input character matches the input
# | | character or char class in the left hand column. "pop" causes the next
# | | state to be popped from the state stack.
# | |
# | |--- When making the state transition specified on this line, advance to the next
# | character from the input only if 'n' appears here.
# |
# |--- Character or named character classes to test for. If the current character being scanned
# matches, peform the actions and go to the state specified on this line.
# The input character is tested sequentally, in the order written. The characters and
# character classes tested for do not need to be mutually exclusive. The first match wins.
#
#
# start state, scan position is at the beginning of the pattern.
#
start:
default term ^finish doPatStart
#
# finish - We've scanned off the end of the pattern string.
# The "doPatFinish" action will stop the pattern scanning state machine.
#
finish:
default finish doPatFinish
#
# term. Eat through a single rule character, or a composite thing, which
# could be a parenthesized expression or a Unicode Set.
#
term:
quoted n string doStartString
rule_char n string doStartString
'[' n expr-quant doScanUnicodeSet
'(' n open-paren ^expr-quant
'.' n expr-quant doDotAny
eof pop
default errorDeath doRuleError
#
# string We've encountered a literal character, or an escaped character.
# Continue with any additional literal chars, building the sequence
# into a string.
#
string:
quoted n string doStringChar
rule_char n string doStringChar
# If the string ends in a quatinfier, we need to split off the last character so that
# the quantifier effects only it, and not the entire string. (e.g. "ABC*")
'?' expr-quant doSplitString
'+' expr-quant doSplitString
'*' expr-quant doSplitString
'{' expr-quant doSplitString
default expr-quant doEndString
#
# expr-quant We've just finished scanning a term, now look for the optional
# trailing quantifier - *, +, ?, *?, etc.
#
expr-quant:
'*' n quant-star
'+' n quant-plus
'?' n quant-opt
default expr-cont
#
# expr-cont Expression, continuation. At a point where additional terms are
# allowed, but not required.
#
expr-cont:
quoted term
rule_char term
'[' term
'(' term
'.' term
'|' n term doOrOperator
')' n pop doCloseParen
default pop doExprFinished
#
# open-paren We've got an open paren. We need to scan further to
# determine what kind of quantifier it is - plain (, (?:, (?>, or whatever.
#
open-paren:
'?' n open-paren-extended
default term ^expr-quant doOpenCaptureParen
open-paren-extended:
':' n term ^expr-quant doOpenNonCaptureParen # (?:
'>' n term ^expr-quant doOpenAtomicParen # (?>
'=' n term ^expr-cont doOpenLookAhead # (?=
'!' n term ^expr-cont doOpenLookAheadNeg # (?!
'<' n open-paren-lookbehind
default errorDeath doBadOpenParenType
open-paren-lookbehind:
'=' n term ^expr-cont doOpenLookBehind # (?<=
'!' n term ^expr-cont doOpenLookBehindNeg # (?<!
default errorDeath doBadOpenParenType
#
# quant-star Scanning a '*' quantifier. Need to look ahead to decide
# between plain '*', '*?', '*+'
#
quant-star:
'?' n expr-cont doNGStar # *?
'+' n expr-cont doPossesiveStar # *+
default expr-cont doStar
#
# quant-plus Scanning a '+' quantifier. Need to look ahead to decide
# between plain '+', '+?', '++'
#
quant-plus:
'?' n expr-cont doNGPlus # *?
'+' n expr-cont doPossesivePlus # *+
default expr-cont doPlus
#
# quant-opt Scanning a '?' quantifier. Need to look ahead to decide
# between plain '?', '??', '?+'
#
quant-opt:
'?' n expr-cont doNGOpt # *?
'+' n expr-cont doPossesiveOpt # *+
default expr-cont doOpt
#
# Interval scanning a '{', the opening delimiter for an interval specification
# {number} or {min, max}
#
interval-open:
white_space n interval-open
digit_char interval-value doIntervalMinValue
default errorDeath doNumberExpectedError
interval-value:
white_space n interval-close
'}' interval-close
digit_char n interval-value doIntervalDigit
default errorDeath doNumberExpectedError
interval-close:
white_space n interval-close
'}' n expr-cont-no-interval doTagValue
default errorDeath doNumberExpectedError
#
# expr-cont-no-tag Expression, continuation. At a point where additional terms are
# allowed, but not required. Just like
# expr-cont, above, except that no interval
# specification {min, max} is permitted.
#
expr-cont-no-interval:
quoted term
rule_char term
'[' term
'(' term
'.' term
'|' n term doExprOrOperator
')' n pop doExprRParen
default pop doExprFinished
#
# errorDeath. This state is specified as the next state whenever a syntax error
# in the source rules is detected. Barring bugs, the state machine will never
# actually get here, but will stop because of the action associated with the error.
# But, just in case, this state asks the state machine to exit.
errorDeath:
default n errorDeath doExit

View file

@ -0,0 +1,46 @@
//
// Copyright (C) 2002 International Business Machines Corporation
// and others. All rights reserved.
//
// file: regeximp.h
//
// ICU Regular Expressions, declarations of internal implementation types
// and constants that are common between the pattern compiler and the
// runtime execution engine.
//
#ifndef _REGEXIMP_H
#define _REGEXIMP_H
//
// Opcode types In the compiled form of the regex, these are the type, or opcodes,
// of the entries.
//
static const uint32_t URX_UNUSED1 = 1;
static const uint32_t URX_END = 2;
static const uint32_t URX_ONECHAR = 3;
static const uint32_t URX_STRING = 4; // Value field is index of string start
static const uint32_t URX_STRING_LEN = 5; // Value field is string length (code units)
static const uint32_t URX_STATE_SAVE = 6; // Value field is pattern position to push
static const uint32_t URX_NOP = 7;
static const uint32_t URX_START_CAPTURE = 8; // Value field is capture group number.
static const uint32_t URX_END_CAPTURE = 9; // Value field is capture group number
static const uint32_t URX_UNUSED10 = 10; // Value field is index in pattern to
// loop back to.
static const uint32_t URX_SETREF = 11; // Value field is index of set in array of sets.
static const uint32_t URX_DOTANY = 12;
static const uint32_t URX_JMP = 13; // Value field is destination position in
// the pattern.
static const uint32_t URX_FAIL = 14; // Stop match operation; No match.
//
// Convenience macros for assembling and disassembling a compiled operation.
//
#define URX_BUILD(type, val) (int32_t)((type << 24) | (val))
#define URX_TYPE(x) ((x) >> 24)
#define URX_VAL(x) ((x) & 0xffffff)
#endif

View file

@ -0,0 +1,391 @@
//
// file: rematch.cpp
//
/*
**********************************************************************
* Copyright (C) 2002 International Business Machines Corporation *
* and others. All rights reserved. *
**********************************************************************
*/
#include "unicode/utypes.h"
#include "unicode/regex.h"
#include "unicode/uniset.h"
#include "uassert.h"
#include "uvector.h"
#include "regeximp.h"
#include "stdio.h"
U_NAMESPACE_BEGIN
//-----------------------------------------------------------------------------
//
// Constructor and Destructor
//
//-----------------------------------------------------------------------------
RegexMatcher::RegexMatcher(const RegexPattern *pat) {
fPattern = pat;
fInput = NULL;
fInputLength = 0;
UErrorCode status = U_ZERO_ERROR;
fBackTrackStack = new UStack(status); // TODO: do something with status.
fCaptureStarts = new UVector(status);
fCaptureEnds = new UVector(status);
int i;
for (i=0; i<fPattern->fNumCaptureGroups; i++) {
fCaptureStarts->addElement(-1, status);
fCaptureEnds ->addElement(-1, status);
}
reset();
}
RegexMatcher::RegexMatcher(const RegexMatcher &other) {
U_ASSERT(TRUE);
}
RegexMatcher::~RegexMatcher() {
delete fBackTrackStack;
}
RegexMatcher &RegexMatcher::appendReplacement(UnicodeString &dest,
const UnicodeString &replacement) {
return *this;
}
UnicodeString &RegexMatcher::appendTail(UnicodeString &dest) {
return dest;
}
uint32_t RegexMatcher::end(UErrorCode &err) const {
return 0;
}
uint32_t RegexMatcher::end(int group, UErrorCode &err) const {
return 0;
}
UBool RegexMatcher::find() {
return FALSE;
}
UBool RegexMatcher::find(uint32_t start, UErrorCode &err) {
return FALSE;
}
UnicodeString RegexMatcher::group(UErrorCode &err) const {
return UnicodeString();
}
UnicodeString RegexMatcher::group(int group, UErrorCode &err) const {
return UnicodeString();
}
int RegexMatcher::groupCount() const {
return 0;
}
const UnicodeString &RegexMatcher::input() const {
return *fInput;
}
UBool RegexMatcher::lookingAt(UErrorCode &status) {
reset();
MatchAt(0, status);
return fLastMatch;
}
UBool RegexMatcher::matches(UErrorCode &status) {
reset();
MatchAt(0, status);
UBool success = (fLastMatch && fLastMatchEnd==fInputLength);
return success;
}
const RegexPattern &RegexMatcher::pattern() const {
return *fPattern;
}
UnicodeString RegexMatcher::replaceAll(const UnicodeString &replacement, UErrorCode &err) {
return UnicodeString();
}
UnicodeString RegexMatcher::replaceFirst(const UnicodeString &replacement, UErrorCode &err) {
return UnicodeString();
}
RegexMatcher &RegexMatcher::reset() {
fLastMatchStart = -1;
fLastMatchEnd = 0;
int i;
for (i=0; i<fPattern->fNumCaptureGroups; i++) {
fCaptureStarts->setElementAt(i, -1);
}
return *this;
}
RegexMatcher &RegexMatcher::reset(const UnicodeString &input) {
fInput = &input;
fInputLength = input.length();
reset();
return *this;
}
int RegexMatcher::start(UErrorCode &err) const {
return 0;
}
int RegexMatcher::start(int group, UErrorCode &err) const {
return 0;
}
//--------------------------------------------------------------------------------
//
// backTrack Within the match engine, this function is called when
// a local match failure occurs, and the match needs to back
// track and proceed down another path.
//
// Note: Inline function. Keep its body above MatchAt().
//
//--------------------------------------------------------------------------------
void RegexMatcher::backTrack(int32_t &inputIdx, int32_t &patIdx) {
inputIdx = fBackTrackStack->popi();
patIdx = fBackTrackStack->popi();
int i;
for (i=0; i<fPattern->fNumCaptureGroups; i++) {
if (fCaptureStarts->elementAti(i) >= inputIdx) {
fCaptureStarts->setElementAt(i, -1);
}
}
}
//--------------------------------------------------------------------------------
//
// MatchAt This is the actual matching engine.
//
//--------------------------------------------------------------------------------
void RegexMatcher::MatchAt(int32_t startIdx, UErrorCode &status) {
int32_t inputIdx = startIdx; // Current position in the input string.
int32_t patIdx = 0; // Current position in the compiled pattern.
UBool isMatch = FALSE; // True if the we have a match.
int32_t op; // Operation from the compiled pattern, split into
int32_t opType; // the opcode
int32_t opValue; // and the operand value.
if (U_FAILURE(status)) {
return;
}
// Cache frequently referenced items from the compiled pattern
// in local variables.
//
UVector *pat = fPattern->fCompiledPat;
const UnicodeString *litText = &fPattern->fLiteralText;
UVector *sets = fPattern->fSets;
//
// Main loop for interpreting the compiled pattern.
// One iteration of the loop per pattern operation performed.
//
for (;;) {
op = pat->elementAti(patIdx);
opType = URX_TYPE(op);
opValue = URX_VAL(op);
// printf("%d %d \"%c\"\n", patIdx, inputIdx, fInput->char32At(inputIdx));
patIdx++;
switch (opType) {
case URX_NOP:
break;
case URX_ONECHAR:
{
UChar32 inputChar = fInput->char32At(inputIdx);
if (inputChar == opValue) {
// TODO: handle the bogus 0xffff return from char32At for index out of range.
inputIdx = fInput->moveIndex32(inputIdx, 1);
} else {
// No match. Back up matching to a saved state
backTrack(inputIdx, patIdx);
}
break;
}
case URX_STRING:
{
int32_t stringStartIdx, stringLen;
stringStartIdx = opValue;
op = pat->elementAti(patIdx);
patIdx++;
opType = URX_TYPE(op);
opValue = URX_VAL(op);
U_ASSERT(opType == URX_STRING_LEN);
stringLen = opValue;
if (fInput->compareBetween(inputIdx,
inputIdx+stringLen,
*litText,
stringStartIdx,
stringStartIdx+stringLen) == 0)
{
inputIdx += stringLen;
} else {
// No match. Back up matching to a saved state
backTrack(inputIdx, patIdx);
}
}
break;
case URX_STATE_SAVE:
// When saving state for backtracking, the pattern position that a
// backtrack should (eventually) continue at is "opValue".
fBackTrackStack->push(opValue, status);
fBackTrackStack->push(inputIdx, status);
break;
case URX_END:
// The match loop will exit via this path on a successful match,
// when we reach the end of the pattern.
isMatch = TRUE;
goto breakFromLoop;
case URX_START_CAPTURE:
U_ASSERT(opValue > 0 && opValue <= fPattern->fNumCaptureGroups);
fCaptureStarts->setElementAt(inputIdx, opValue);
fCaptureEnds ->setElementAt((int32_t)0, opValue);
break;
case URX_END_CAPTURE:
U_ASSERT(opValue > 0 && opValue <= fPattern->fNumCaptureGroups);
fCaptureEnds->setElementAt(inputIdx, opValue);
break;
case URX_SETREF:
if (inputIdx < fInputLength) {
// There is input left. Pick up one char and test it for set membership.
UChar32 c = fInput->char32At(inputIdx);
U_ASSERT(opValue > 0 && opValue < sets->size());
UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
if (s->contains(c)) {
// The character is in the set. A Match.
inputIdx = fInput->moveIndex32(inputIdx, 1);
break;
}
}
// Either at end of input, or the character wasn't in the set.
// Either way, we need to back track out.
backTrack(inputIdx, patIdx);
break;
case URX_DOTANY:
// . matches anything, but does not match if we've run out of input.
if (inputIdx < fInputLength) {
// There is input left. Advance one character in it.
inputIdx = fInput->moveIndex32(inputIdx, 1);
} else {
backTrack(inputIdx, patIdx);
}
break;
case URX_JMP:
patIdx = opValue;
break;
case URX_FAIL:
isMatch = FALSE;
goto breakFromLoop;
default:
// Trouble. The compiled pattern contains an entry with an
// unrecognized type tag.
U_ASSERT(false);
}
if (U_FAILURE(status)) {
break;
}
}
breakFromLoop:
fLastMatch = isMatch;
if (isMatch) {
fLastMatchStart = startIdx;
fLastMatchEnd = inputIdx;
}
return;
}
const char RegexMatcher::fgClassID = 0;
U_NAMESPACE_END

View file

@ -0,0 +1,284 @@
//
// file: repattrn.cpp
//
/*
**********************************************************************
* Copyright (C) 2002 International Business Machines Corporation *
* and others. All rights reserved. *
**********************************************************************
*/
#include "unicode/utypes.h"
#include "unicode/regex.h"
#include "uassert.h"
#include "uvector.h"
#include "regexcmp.h"
#include "regeximp.h"
#include "stdio.h" // TODO: get rid of this...
U_NAMESPACE_BEGIN
//--------------------------------------------------------------------------
//
// RegexPattern Constructors and destructor
//
//--------------------------------------------------------------------------
RegexPattern::RegexPattern() {
UErrorCode status = U_ZERO_ERROR;
fFlags = 0;
fCompiledPat = NULL;
fSets = NULL;
fBadState = FALSE;
fNumCaptureGroups = 0;
fCompiledPat = new UVector(status);
// fSets is a vector of all UnicodeSets built for this pattern.
// Reserve element 0, to allow a sanity check against refs to element 0.
fSets = new UVector(status);
fSets->addElement((int32_t)0, status);
if (U_FAILURE(status)) {
fBadState = TRUE;
delete fCompiledPat;
delete fSets;
fCompiledPat = NULL;
fSets = NULL;
}
};
RegexPattern::RegexPattern(const RegexPattern &other) : UObject(other) {
// TODO. Need to add a reasonable assign or copy constructor
// to UVector.
U_ASSERT(FALSE);
};
RegexPattern::~RegexPattern() {
delete fCompiledPat;
int i;
for (i=0; i<fSets->size(); i++) {
UnicodeSet *s;
s = (UnicodeSet *)fSets->elementAt(i);
if (s != NULL) {
delete s;
}
}
delete fSets;
fSets = NULL;
};
RegexPattern *RegexPattern::clone() const {
RegexPattern *copy = new RegexPattern(*this);
return copy;
};
//---------------------------------------------------------------------
//
// compile
//
//---------------------------------------------------------------------
RegexPattern *RegexPattern::compile(
const UnicodeString &regex,
uint32_t flags,
UParseError &pe,
UErrorCode &err) {
if (U_FAILURE(err)) {
return NULL;
}
RegexPattern *This = new RegexPattern;
if (This == NULL) {
err = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
RegexCompile compiler(err);
compiler.compile(*This, regex, pe, err);
return This;
};
//---------------------------------------------------------------------
//
// flags
//
//---------------------------------------------------------------------
uint32_t RegexPattern::flags() const {
return fFlags;
}
//---------------------------------------------------------------------
//
// matcher(UnicodeString, err)
//
//---------------------------------------------------------------------
RegexMatcher *RegexPattern::matcher(const UnicodeString &input,
UErrorCode &err) const {
RegexMatcher *retMatcher = NULL;
if (U_FAILURE(err)) {return NULL;};
retMatcher = new RegexMatcher(this);
if (retMatcher == NULL) {
err = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
retMatcher->reset(input);
return retMatcher;
};
//---------------------------------------------------------------------
//
// pattern
//
//---------------------------------------------------------------------
UnicodeString RegexPattern::pattern() const {
return fPattern;
}
//---------------------------------------------------------------------
//
// split
//
//---------------------------------------------------------------------
uint32_t RegexPattern::split(const UnicodeString &input,
UnicodeString dest[],
uint32_t destCapacity,
UErrorCode &err) const
{
if (U_FAILURE(err)) {
return 0;
};
// TODO:
return 0;
}
//---------------------------------------------------------------------
//
// hashcode
//
//---------------------------------------------------------------------
int32_t RegexPattern::hashCode(void) const {
return 0; // TODO: Do something better here
};
//---------------------------------------------------------------------
//
// dump Output the compiled form of the pattern.
// Debugging function only.
//
//---------------------------------------------------------------------
static char *opNames[] = {
"ZERO",
"?1",
"END",
"ONECHAR",
"STRING",
"STRING_LEN",
"STATE_SAVE",
"NOP",
"START_CAPTURE",
"END_CAPTURE",
"?10",
"SETREF",
"DOTANY",
"JMP",
"FAIL"
};
void RegexPattern::dump() {
int index;
int i;
UChar c;
int32_t op;
int32_t pinnedType;
int32_t type;
int32_t val;
int32_t stringStart;
printf("Original Pattern: ");
for (i=0; i<fPattern.length(); i++) {
printf("%c", fPattern.charAt(i));
}
printf("\n");
printf("Pattern Valid?: %s\n", fBadState? "no" : "yes");
printf("\nIndex Binary Type Operand\n"
"-------------------------------------------\n");
for (index = 0; ; index++) {
op = fCompiledPat->elementAti(index);
val = URX_VAL(op);
type = URX_TYPE(op);
pinnedType = type;
if (pinnedType >= sizeof(opNames)/sizeof(char *)) {
pinnedType = 0;
}
printf("%4d %08x %-15s ", index, op, opNames[pinnedType]);
switch (type) {
case URX_NOP:
case URX_DOTANY:
case URX_FAIL:
// Types with no operand field of interest.
break;
case URX_START_CAPTURE:
case URX_END_CAPTURE:
case URX_SETREF:
case URX_STATE_SAVE:
case URX_JMP:
// types with an integer operand field.
printf("%d", val);
break;
case URX_ONECHAR:
printf("%c", val<256?val:'?');
break;
case URX_STRING:
stringStart = val;
break;
case URX_STRING_LEN:
for (i=stringStart; i<stringStart+val; i++) {
c = fLiteralText[i];
if (c >= 256) {c = '?';};
printf("%c", c);
}
break;
case URX_END:
goto breakFromLoop;
default:
printf("??????");
break;
}
printf("\n");
}
breakFromLoop:
printf("\n\n");
};
const char RegexPattern::fgClassID = 0;
U_NAMESPACE_END

View file

@ -0,0 +1,430 @@
/*
**********************************************************************
* Copyright (C) 2002, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
*/
#ifndef REGEX_H
#define REGEX_H
#include "unicode/utypes.h"
#include "unicode/uobject.h"
#include "unicode/unistr.h"
#include "unicode/parseerr.h"
U_NAMESPACE_BEGIN
// Forward Declarations...
class RegexMatcher;
class UVector;
class UStack;
//---------------------------------------------------------------------------------
//
// Flags for Regular Expression Modes.
// TODO: Move to C header once one exists.
// All flags default to off or false
// All are as defined by Java Regexes.
//
//---------------------------------------------------------------------------------
enum {
UREGEX_CANON_EQ = 128, // Forces normalization of pattern and strings.
UREGEX_CASE_INSENSITIVE = 2, // Enable case insensitive matching.
UREGEX_COMMENTS = 4, // Allow white space and comments within patterns
UREGEX_DOTALL = 32, // If set, "." matches line terminators.
// otherwise matching stops at line end.
UREGEX_MULTILINE = 8, // Control behavior of "$" and "^".
// If set, recognize line terminators within string
// otherwise, match only at start and end of
// input string
UREGEX_UNICODE_CASE = 64, // If set, use full Unicode case folding for case
// insensitive matches. Otherwise, case insensitive
// matching only affects chars in the ASCII range.
// TODO: do we want to support this option at all?
UREGEX_UNIX_LINES = 1 // If set, only \n is recognized as a line terminator.
// otherwise recognize all Unicode line endings.
};
//---------------------------------------------------------------------------------
//
// class RegexPattern
//
//---------------------------------------------------------------------------------
class U_I18N_API RegexPattern: public UObject {
public:
RegexPattern();
RegexPattern(const RegexPattern &other);
virtual ~RegexPattern();
UBool operator==(const RegexPattern& that) const;
inline UBool operator!=(const RegexPattern& that) const;
RegexPattern &operator =(const RegexPattern &other);
virtual RegexPattern *clone() const;
// TODO: Do we really want a hashCode function on this class?
virtual int32_t hashCode(void) const;
/**
* Compiles the given regular expression into a pattern
*/
static RegexPattern *compile( const UnicodeString &regex,
UParseError &pe,
UErrorCode &err);
/**
* Compiles the given regular expression into a pattern with the given flags
*/
static RegexPattern *compile( const UnicodeString &regex,
uint32_t flags,
UParseError &pe,
UErrorCode &err);
/**
* Return the flags for this pattern
*/
virtual uint32_t flags() const;
/*
* Creates a matcher that will match the given input against this pattern.
*/
virtual RegexMatcher *matcher(const UnicodeString &input,
UErrorCode &err) const;
/*
* Compiles the given regular expression and attempts to match the given input against it.
*/
static UBool matches(const UnicodeString &regex,
const UnicodeString &input,
UParseError &pe,
UErrorCode &err);
/*
* Returns the regular expression from which this pattern was compiled.
*/
virtual UnicodeString pattern() const;
/*
* Split a string around matches of the pattern. Somewhat like split() form Perl.
* @param input The string to be split into fields. The field delimiters
* match the pattern (in the "this" object)
* @param dest An array of UnicodeStrings to receive the results of the split.
* This is an array of actual UnicodeString objects, not an
* array of pointers to strings. Local (stack based) arrays can
* work well here.
* @param destCapacity The number of elements in the destination array.
* If the number of fields found is less than destCapacity, the
* extra strings in the destination array are not altered.
* If the number of destination strings is less than the number
* of fields, the trailing part of the input string, including any
* field delimiters, is placed in the last destination string.
* @return The number of fields into which the input string was split.
*/
virtual uint32_t split(const UnicodeString &input,
UnicodeString dest[],
uint32_t destCapacity,
UErrorCode &err) const;
//
// dump Debug function, displays the compiled form of a pattern.
//
void dump();
/**
* ICU "poor man's RTTI", returns a UClassID for the actual class.
*
* @draft ICU 2.2
*/
virtual inline UClassID getDynamicClassID() const { return getStaticClassID(); }
/**
* ICU "poor man's RTTI", returns a UClassID for this class.
*
* @draft ICU 2.2
*/
static inline UClassID getStaticClassID() { return (UClassID)&fgClassID; }
static const char fgClassID;
private:
//
// Implementation Data
//
UnicodeString fPattern; // The original pattern string.
uint32_t fFlags; // The flags used when compiling the pattern.
// TODO: make an enum type for the flags.
UVector *fCompiledPat; // The compiled, tokenized pattern.
UnicodeString fLiteralText; // Any literal string data from the pattern,
// after un-escaping, for use during the match.
UVector *fSets; // Any UnicodeSets referenced from the pattern.
UBool fBadState; // True if any prior error has left this
// RegexPattern unusable.
int32_t fNumCaptureGroups;
friend class RegexCompile;
friend class RegexMatcher;
};
//--------------------------------------------------------------------------------
//
// class RegexMatcher
//
//--------------------------------------------------------------------------------
class U_I18N_API RegexMatcher: public UObject {
public:
/* Destructor. Note that there are no public constructors; creation is
* done with RegexPattern::matcher().
*/
virtual ~RegexMatcher();
/*
* Implements a replace operation intended to be used as part of an
* incremental find-and-replace.
*
* The input sequence, starting from the append position and ending at
* the start of the current match is appended to the destination string.
*
* Then the replacement string is appended to the output string,
* including handling any substitutions of captured text.
*
* The append position is set to the position of the first
* character following the match in the input string.
*
* Returns: This Matcher
*
* error: Illegal state - no match yet attemtped, or last match failed.
* IndexOutOfBounds - caputure string number from replacement string.
*/
virtual RegexMatcher &appendReplacement(UnicodeString &dest,
const UnicodeString &replacement);
/*
* This method reads characters from the input sequence,
* starting at the append position, and appends them to the
* destination string. It is intended to be invoked after one
* or more invocations of the appendReplacement method in order
* to copy the remainder of the input sequence.
*
* @return the destination string.
*/
virtual UnicodeString &appendTail(UnicodeString &dest);
/*
* Returns the index of the last character matched, plus one.
* error: Illegal state - no match yet attemtped, or last match failed.
*/
virtual uint32_t end(UErrorCode &err) const;
/*
* Returns the index of the last character, plus one, of the subsequence
* captured by the given group during the previous match operation.
* Errors: Illegal state, index out of bounds
*/
virtual uint32_t end(int group, UErrorCode &err) const;
/*
* Attempts to find the next subsequence of the input sequence that matches the pattern.
*/
virtual UBool find();
/*
* Resets this matcher and then attempts to find the next subsequence of the
* input sequence that matches the pattern, starting at the specified index.
* Errors: Index out of bounds.
*/
virtual UBool find(uint32_t start, UErrorCode &err);
/*
* Returns the input subsequence matched by the previous match.
* If the pattern can match an empty string, and empty string may be returned.
* Errors: illegal state (no match has yet been attempted.)
*/
virtual UnicodeString group(UErrorCode &err) const;
/*
* Returns the input subsequence captured by the given group during the previous match operation.
* Group(0) is the entire match.
* Errors: Index out of bounds, illegal state (no match has yet been attempted.)
*/
virtual UnicodeString group(int group, UErrorCode &err) const;
/*
* Returns the number of capturing groups in this matcher's pattern.
*/
virtual int groupCount() const;
/*
* Returns the input string being matched.
*/
virtual const UnicodeString &input() const;
/*
* Attempts to match the input string, starting at the beginning, against the pattern.
* Like the matches method, this method always starts at the beginning of the input string;
* unlike that method, it does not require that the entire input sequence be matched.
*
* If the match succeeds then more information can be obtained via the start, end,
* and group methods.
*/
virtual UBool lookingAt(UErrorCode &err);
/*
* Attempts to match the entire input sequence against the pattern.
*/
virtual UBool matches(UErrorCode &err);
/*
* Returns the pattern that is interpreted by this matcher.
*/
virtual const RegexPattern &pattern() const;
/*
* Replaces every subsequence of the input sequence that matches the pattern
* with the given replacement string.
*
* This method first resets this matcher. It then scans the input sequence
* looking for matches of the pattern. Characters that are not part of any
* match are left unchanged; each match is replaced in the result by the
* replacement string. The replacement string may contain references to
* captured subsequences as in the appendReplacement method.
*
* @return The target string. Depending on how the RegexMatcher was
* created, this may either be the original input string or a copy
*
* Error: Index out of bounds (replacement string capture group)
*
*/
virtual UnicodeString replaceAll(const UnicodeString &replacement, UErrorCode &err);
/*
* Replaces the first subsequence of the input sequence that matches
* the pattern with the given replacement string.
* This method first resets this matcher. It then scans the input sequence
* looking for a match of the pattern. Characters that are not part
* of the match are appended directly to the result string; the match is replaced
* in the result by the replacement string. The replacement string may contain
* references to captured subsequences as in the appendReplacement method.
*
* Error: Index out of bounds (replacement string capture group)
* Illegal state (no match)
* Note: Javadoc doesn't list exceptions, but they gotta be there for consistency
*/
virtual UnicodeString replaceFirst(const UnicodeString &replacement, UErrorCode &err);
/*
* Resets this matcher.
*/
virtual RegexMatcher &reset();
/*
* Resets this matcher with a new input sequence.
*/
virtual RegexMatcher &reset(const UnicodeString &input);
/*
* Returns the start index of the previous match.
* Error: Illegal State (no previous match)
*/
virtual int start(UErrorCode &err) const;
/*
* Returns the start index of the subsequence captured by the given group
* during the previous match operation.
*
* Error: Illegal State (no previous match)
* Index out of bounds (no group with specified index)
*/
virtual int start(int group, UErrorCode &err) const;
/**
* ICU "poor man's RTTI", returns a UClassID for the actual class.
*
* @draft ICU 2.2
*/
virtual inline UClassID getDynamicClassID() const { return getStaticClassID(); }
/**
* ICU "poor man's RTTI", returns a UClassID for this class.
*
* @draft ICU 2.2
*/
static inline UClassID getStaticClassID() { return (UClassID)&fgClassID; }
static const char fgClassID;
private:
// Constructors and other object boilerplate are private.
// Creation by users is through factory method in RegexPattern
RegexMatcher(const RegexPattern *pat);
RegexMatcher(const RegexMatcher &other);
RegexMatcher &operator =(const RegexMatcher &rhs);
friend class RegexPattern;
inline void backTrack(int32_t &inputIdx, int32_t &patIdx);
//
// MatchAt This is the internal interface to the match engine itself.
// Match status comes back in matcher member variables.
//
virtual void MatchAt(int32_t startIdx, UErrorCode &status);
const RegexPattern *fPattern;
const UnicodeString *fInput;
int32_t fInputLength;
UBool fLastMatch; // True if the last match was successful.
int32_t fLastMatchStart;
int32_t fLastMatchEnd;
UStack *fBackTrackStack;
UVector *fCaptureStarts;
UVector *fCaptureEnds;
};
U_NAMESPACE_END
#endif

View file

@ -36,7 +36,7 @@ tsmthred.o tsmutex.o tsnmfmt.o tsputil.o tstnorm.o tzbdtest.o \
tzregts.o tztest.o ucdtest.o usettest.o ustrtest.o strcase.o transtst.o strtest.o thcoll.o \
itrbbi.o rbbiapts.o rbbitst.o ittrans.o transapi.o cpdtrtst.o unhxtrts.o hxuntrts.o \
ufltlgts.o testutil.o transrt.o trnserr.o normconf.o sfwdchit.o \
jamotest.o srchtest.o reptest.o biditst.o \
jamotest.o srchtest.o reptest.o biditst.o regextst.o \
itrbnf.o itrbnfrt.o tstdtmod.o testdata.o datamap.o ucaconf.o
DEPS = $(OBJECTS:.o=.d)

View file

@ -374,6 +374,10 @@ SOURCE=.\regcoll.cpp
# End Source File
# Begin Source File
SOURCE=.\regextst.cpp
# End Source File
# Begin Source File
SOURCE=.\reptest.cpp
# End Source File
# Begin Source File
@ -747,6 +751,10 @@ SOURCE=.\regcoll.h
# End Source File
# Begin Source File
SOURCE=.\regextst.h
# End Source File
# Begin Source File
SOURCE=.\reptest.h
# End Source File
# Begin Source File

View file

@ -26,6 +26,7 @@
#include "itrbnf.h"
#include "itrbnfrt.h"
#include "normconf.h"
#include "regextst.h"
#include "tstnorm.h"
#include "canittst.h"
@ -67,8 +68,12 @@ void MajorTestLevel::runIndexedTest( int32_t index, UBool exec, const char* &nam
#endif
break;
case 3: name = "unused";
// Used to be text bounds.
case 3: name = "regex";
if (exec) {
logln("TestSuite Regex---"); logln();
RegexTest test;
callTest( test, par );
}
break;
case 4: name = "format";

View file

@ -0,0 +1,269 @@
/********************************************************************
* COPYRIGHT:
* Copyright (c) 2002, International Business Machines Corporation and
* others. All Rights Reserved.
********************************************************************/
//
// regex.cpp
//
// ICU Regular Expressions test, part of intltest.
//
#include "unicode/utypes.h"
#include "intltest.h"
#include "regextst.h"
RegexTest::RegexTest()
{
};
RegexTest::~RegexTest()
{
};
void RegexTest::runIndexedTest( int32_t index, UBool exec, const char* &name, char* /*par*/ )
{
if (exec) logln("TestSuite RegexTest: ");
switch (index) {
case 0: name = "TestRegexAPI";
if(exec) TestRegexAPI(); break;
default: name = ""; break; //needed to end loop
}
}
//---------------------------------------------------------------------------
//
// REGEX_TESTLM Macro + invocation function to simplify writing quick tests
// for the LookingAt() and Match() functions.
//
// usage:
// REGEX_TESTLM("pattern", "input text", lookingAt expected, matches expected);
//
// The expected results are UBool - TRUE or FALSE.
// The input text is unescaped. The pattern is not.
//
//
//---------------------------------------------------------------------------
#define REGEX_CHECK_STATUS {if (U_FAILURE(status)) {errln("RegexTest failure at line %d. status=%d\n", \
__LINE__, status); return;}}
#define REGEX_ASSERT(expr) {if ((expr)==FALSE) {errln("RegexTest failure at line %d.\n", __LINE__);};}
#define REGEX_TESTLM(pat, text, looking, match) doRegexLMTest(pat, text, looking, match, __LINE__);
UBool RegexTest::doRegexLMTest(char *pat, char *text, UBool looking, UBool match, int line) {
const UnicodeString pattern(pat);
const UnicodeString inputText(text);
UErrorCode status = U_ZERO_ERROR;
UParseError pe;
RegexPattern *REPattern = NULL;
RegexMatcher *REMatcher = NULL;
UBool retVal = TRUE;
UnicodeString patString(pat);
REPattern = RegexPattern::compile(patString, 0, pe, status);
if (U_FAILURE(status)) {
errln("RegexTest failure in RegexPattern::compile() at line %d. Status = %d\n", line, status);
return FALSE;
}
UnicodeString inputString(inputText);
UnicodeString unEscapedInput = inputString.unescape();
REMatcher = REPattern->matcher(unEscapedInput, status);
if (U_FAILURE(status)) {
errln("RegexTest failure in REPattern::matcher() at line %d. Status = %d\n", line, status);
return FALSE;
}
UBool actualmatch;
actualmatch = REMatcher->lookingAt(status);
if (U_FAILURE(status)) {
errln("RegexTest failure in lookingAt() at line %d. Status = %d\n", line, status);
retVal = FALSE;
}
if (actualmatch != looking) {
errln("RegexTest: wrong return from lookingAt() at line %d.\n", line);
retVal = FALSE;
}
status = U_ZERO_ERROR;
actualmatch = REMatcher->matches(status);
if (U_FAILURE(status)) {
errln("RegexTest failure in matches() at line %d. Status = %d\n", line, status);
retVal = FALSE;
}
if (actualmatch != match) {
errln("RegexTest: wrong return from matches() at line %d.\n", line);
retVal = FALSE;
}
if (retVal == FALSE) {
REPattern->dump();
}
delete REPattern;
delete REMatcher;
return retVal;
}
//---------------------------------------------------------------------------
//
// TestRegexAPI
//
//---------------------------------------------------------------------------
void RegexTest::TestRegexAPI() {
UParseError pe;
UErrorCode status=U_ZERO_ERROR;
RegexPattern pat1; // Test default constructor to not crash.
RegexPattern *pat2;
int32_t flags = 0;
//
// Debug - slide failing test cases early
//
#if 0
REGEX_TESTLM("b+", "", FALSE, FALSE);
return;
#endif
//
// Simple pattern compilation
//
UnicodeString re("abc");
pat2 = RegexPattern::compile(re, flags, pe, status);
REGEX_CHECK_STATUS;
UnicodeString inStr1 = "abcdef this is a test";
UnicodeString instr2 = "not abc";
UnicodeString empty = "";
//
// Matcher creation and reset.
//
RegexMatcher *m1 = pat2->matcher(inStr1, status);
REGEX_CHECK_STATUS;
REGEX_ASSERT(m1->lookingAt(status) == TRUE);
m1->reset(instr2);
REGEX_ASSERT(m1->lookingAt(status) == FALSE);
m1->reset(inStr1);
REGEX_ASSERT(m1->lookingAt(status) == TRUE);
m1->reset(empty);
REGEX_ASSERT(m1->lookingAt(status) == FALSE);
delete m1;
delete pat2;
//
// Pattern with parentheses
//
REGEX_TESTLM("st(abc)ring", "stabcring thing", TRUE, FALSE);
REGEX_TESTLM("st(abc)ring", "stabcring", TRUE, TRUE);
REGEX_TESTLM("st(abc)ring", "stabcrung", FALSE, FALSE);
//
// Patterns with *
//
REGEX_TESTLM("st(abc)*ring", "string", TRUE, TRUE);
REGEX_TESTLM("st(abc)*ring", "stabcring", TRUE, TRUE);
REGEX_TESTLM("st(abc)*ring", "stabcabcring", TRUE, TRUE);
REGEX_TESTLM("st(abc)*ring", "stabcabcdring", FALSE, FALSE);
REGEX_TESTLM("st(abc)*ring", "stabcabcabcring etc.", TRUE, FALSE);
REGEX_TESTLM("a*", "", TRUE, TRUE);
REGEX_TESTLM("a*", "b", TRUE, FALSE);
//
// Patterns with "."
//
REGEX_TESTLM(".", "abc", TRUE, FALSE);
REGEX_TESTLM("...", "abc", TRUE, TRUE);
REGEX_TESTLM("....", "abc", FALSE, FALSE);
REGEX_TESTLM(".*", "abcxyz123", TRUE, TRUE);
REGEX_TESTLM("ab.*xyz", "abcdefghij", FALSE, FALSE);
REGEX_TESTLM("ab.*xyz", "abcdefg...wxyz", TRUE, TRUE);
REGEX_TESTLM("ab.*xyz", "abcde...wxyz...abc..xyz", TRUE, TRUE);
REGEX_TESTLM("ab.*xyz", "abcde...wxyz...abc..xyz...", TRUE, FALSE);
//
// Patterns with * applied to chars at end of literal string
//
REGEX_TESTLM("abc*", "ab", TRUE, TRUE);
REGEX_TESTLM("abc*", "abccccc", TRUE, TRUE);
//
// Supplemental chars match as single chars, not a pair of surrogates.
//
REGEX_TESTLM(".", "\\U00011000", TRUE, TRUE);
REGEX_TESTLM("...", "\\U00011000x\\U00012002", TRUE, TRUE);
REGEX_TESTLM("...", "\\U00011000x\\U00012002y", TRUE, FALSE);
//
// UnicodeSets in the pattern
//
REGEX_TESTLM("[1-6]", "1", TRUE, TRUE);
REGEX_TESTLM("[1-6]", "3", TRUE, TRUE);
REGEX_TESTLM("[1-6]", "7", FALSE, FALSE);
REGEX_TESTLM("a[1-6]", "a3", TRUE, TRUE);
REGEX_TESTLM("a[1-6]", "a3", TRUE, TRUE);
REGEX_TESTLM("a[1-6]b", "a3b", TRUE, TRUE);
REGEX_TESTLM("a[0-9]*b", "a123b", TRUE, TRUE);
REGEX_TESTLM("a[0-9]*b", "abc", TRUE, FALSE);
REGEX_TESTLM("[\\p{Nd}]*", "123456", TRUE, TRUE);
REGEX_TESTLM("[\\p{Nd}]*", "a123456", TRUE, FALSE); // note that * matches 0 occurences.
REGEX_TESTLM("[a][b][[:Zs:]]*", "ab ", TRUE, TRUE);
//
// OR operator in patterns
//
REGEX_TESTLM("(a|b)", "a", TRUE, TRUE);
REGEX_TESTLM("(a|b)", "b", TRUE, TRUE);
REGEX_TESTLM("(a|b)", "c", FALSE, FALSE);
REGEX_TESTLM("a|b", "b", TRUE, TRUE);
REGEX_TESTLM("(a|b|c)*", "aabcaaccbcabc", TRUE, TRUE);
REGEX_TESTLM("(a|b|c)*", "aabcaaccbcabdc", TRUE, FALSE);
REGEX_TESTLM("(a(b|c|d)(x|y|z)*|123)", "ac", TRUE, TRUE);
REGEX_TESTLM("(a(b|c|d)(x|y|z)*|123)", "123", TRUE, TRUE);
REGEX_TESTLM("(a|(1|2)*)(b|c|d)(x|y|z)*|123", "123", TRUE, TRUE);
REGEX_TESTLM("(a|(1|2)*)(b|c|d)(x|y|z)*|123", "222211111czzzzw", TRUE, FALSE);
//
// +
//
REGEX_TESTLM("ab+", "abbc", TRUE, FALSE);
REGEX_TESTLM("ab+c", "ac", FALSE, FALSE);
REGEX_TESTLM("b+", "", FALSE, FALSE);
REGEX_TESTLM("(abc|def)+", "defabc", TRUE, TRUE);
REGEX_TESTLM(".+y", "zippity dooy dah ", TRUE, FALSE);
REGEX_TESTLM(".+y", "zippity dooy", TRUE, TRUE);
//
// ?
//
REGEX_TESTLM("ab?", "ab", TRUE, TRUE);
REGEX_TESTLM("ab?", "a", TRUE, TRUE);
REGEX_TESTLM("ab?", "ac", TRUE, FALSE);
REGEX_TESTLM("ab?", "abb", TRUE, FALSE);
REGEX_TESTLM("a(b|c)?d", "abd", TRUE, TRUE);
REGEX_TESTLM("a(b|c)?d", "acd", TRUE, TRUE);
REGEX_TESTLM("a(b|c)?d", "ad", TRUE, TRUE);
REGEX_TESTLM("a(b|c)?d", "abcd", FALSE, FALSE);
REGEX_TESTLM("a(b|c)?d", "ab", FALSE, FALSE);
};

View file

@ -0,0 +1,28 @@
/********************************************************************
* COPYRIGHT:
* Copyright (c) 2002, International Business Machines Corporation and
* others. All Rights Reserved.
********************************************************************/
#ifndef REGEXTST_H
#define REGEXTST_H
#include "intltest.h"
#include "unicode/regex.h"
class RegexTest: public IntlTest {
public:
RegexTest();
virtual ~RegexTest();
virtual void runIndexedTest(int32_t index, UBool exec, const char* &name, char* par = NULL );
virtual void TestRegexAPI();
virtual UBool doRegexLMTest(char *pat, char *text, UBool looking, UBool match, int line);
};
#endif