ICU-8826 Regex case insensitive match fixes; also fixes #6074, hitEnd() sometimes fails.

X-SVN-Rev: 31233
This commit is contained in:
Andy Heninger 2012-01-20 00:50:02 +00:00
parent 0a032f2cfe
commit b8315ecf6a
11 changed files with 720 additions and 963 deletions

View file

@ -1,6 +1,6 @@
#******************************************************************************
#
# Copyright (C) 1998-2011, International Business Machines
# Copyright (C) 1998-2012, International Business Machines
# Corporation and others. All Rights Reserved.
#
#******************************************************************************
@ -61,7 +61,7 @@ LIBS = $(LIBICUUC) $(DEFAULT_LIBS)
OBJECTS = ucln_in.o \
fmtable.o format.o msgfmt.o umsg.o numfmt.o unum.o decimfmt.o dcfmtsym.o \
ucurr.o digitlst.o fmtable_cnv.o \
choicfmt.o datefmt.o smpdtfmt.o reldtfmt.o dtfmtsym.o udat.o dtptngen.o \
choicfmt.o datefmt.o smpdtfmt.o reldtfmt.o dtfmtsym.o udat.o dtptngen.o udatpg.o \
nfrs.o nfrule.o nfsubs.o rbnf.o numsys.o ucsdet.o \
ucal.o calendar.o gregocal.o timezone.o simpletz.o olsontz.o \
astro.o taiwncal.o buddhcal.o persncal.o islamcal.o japancal.o gregoimp.o hebrwcal.o \
@ -73,7 +73,7 @@ translit.o utrans.o esctrn.o unesctrn.o funcrepl.o strrepl.o tridpars.o \
cpdtrans.o rbt.o rbt_data.o rbt_pars.o rbt_rule.o rbt_set.o \
nultrans.o remtrans.o casetrn.o titletrn.o tolowtrn.o toupptrn.o anytrans.o \
name2uni.o uni2name.o nortrans.o quant.o transreg.o brktrans.o \
regexcmp.o rematch.o repattrn.o regexst.o regextxt.o udatpg.o uregex.o uregexc.o \
regexcmp.o rematch.o repattrn.o regexst.o regextxt.o regeximp.o uregex.o uregexc.o \
ulocdata.o measfmt.o currfmt.o curramt.o currunit.o measure.o utmscale.o \
csdetect.o csmatch.o csr2022.o csrecog.o csrmbcs.o csrsbcs.o csrucode.o csrutf8.o inputext.o \
wintzimpl.o windtfmt.o winnmfmt.o basictz.o dtrule.o rbtz.o tzrule.o tztrans.o vtzone.o zonemeta.o \

View file

@ -372,6 +372,7 @@
<DisableLanguageExtensions Condition="'$(Configuration)|$(Platform)'=='Release|x64'">false</DisableLanguageExtensions>
</ClCompile>
<ClCompile Include="regexcmp.cpp" />
<ClCompile Include="regeximp.cpp" />
<ClCompile Include="regexst.cpp" />
<ClCompile Include="regextxt.cpp" />
<ClCompile Include="rematch.cpp" />

View file

@ -330,6 +330,9 @@
<ClCompile Include="regexcmp.cpp">
<Filter>regex</Filter>
</ClCompile>
<ClCompile Include="regeximp.cpp">
<Filter>regex</Filter>
</ClCompile>
<ClCompile Include="regexst.cpp">
<Filter>regex</Filter>
</ClCompile>

View file

@ -1,7 +1,7 @@
//
// file: regexcmp.cpp
//
// Copyright (C) 2002-2011 International Business Machines Corporation and others.
// Copyright (C) 2002-2012 International Business Machines Corporation and others.
// All Rights Reserved.
//
// This file contains the ICU regular expression compiler, which is responsible
@ -71,7 +71,6 @@ RegexCompile::RegexCompile(RegexPattern *rxp, UErrorCode &status) :
fMatchOpenParen = -1;
fMatchCloseParen = -1;
fStringOpStart = -1;
if (U_SUCCESS(status) && U_FAILURE(rxp->fDeferredStatus)) {
status = rxp->fDeferredStatus;
@ -399,6 +398,9 @@ UBool RegexCompile::doParseActions(int32_t action)
case doOrOperator:
// Scanning a '|', as in (A|B)
{
// Generate code for any pending literals preceding the '|'
fixLiterals(FALSE);
// Insert a SAVE operation at the start of the pattern section preceding
// this OR at this level. This SAVE will branch the match forward
// to the right hand side of the OR in the event that the left hand
@ -448,6 +450,7 @@ UBool RegexCompile::doParseActions(int32_t action)
// encountered. This will be promoted to a completed capture when (and if) the corresponding
// END_CAPTURE is encountered.
{
fixLiterals();
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
int32_t varsLoc = fRXPat->fFrameSize; // Reserve three slots in match stack frame.
fRXPat->fFrameSize += 3;
@ -477,6 +480,7 @@ UBool RegexCompile::doParseActions(int32_t action)
// - NOP, which may later be replaced by a save-state if there
// is an '|' alternation within the parens.
{
fixLiterals();
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
@ -499,6 +503,7 @@ UBool RegexCompile::doParseActions(int32_t action)
// - NOP, which may later be replaced by a save-state if there
// is an '|' alternation within the parens.
{
fixLiterals();
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
int32_t varLoc = fRXPat->fDataSize; // Reserve a data location for saving the
fRXPat->fDataSize += 1; // state stack ptr.
@ -546,6 +551,7 @@ UBool RegexCompile::doParseActions(int32_t action)
//
// Two data slots are reserved, for saving the stack ptr and the input position.
{
fixLiterals();
int32_t dataLoc = fRXPat->fDataSize;
fRXPat->fDataSize += 2;
int32_t op = URX_BUILD(URX_LA_START, dataLoc);
@ -589,6 +595,7 @@ UBool RegexCompile::doParseActions(int32_t action)
// 7. END_LA // Restore match region, in case look-ahead was using
// an alternate (transparent) region.
{
fixLiterals();
int32_t dataLoc = fRXPat->fDataSize;
fRXPat->fDataSize += 2;
int32_t op = URX_BUILD(URX_LA_START, dataLoc);
@ -632,6 +639,9 @@ UBool RegexCompile::doParseActions(int32_t action)
// 2: Start index of match current match attempt.
// 3: Original Input String len.
// Generate match code for any pending literals.
fixLiterals();
// Allocate data space
int32_t dataLoc = fRXPat->fDataSize;
fRXPat->fDataSize += 4;
@ -685,6 +695,9 @@ UBool RegexCompile::doParseActions(int32_t action)
// 2: Start index of match current match attempt.
// 3: Original Input String len.
// Generate match code for any pending literals.
fixLiterals();
// Allocate data space
int32_t dataLoc = fRXPat->fDataSize;
fRXPat->fDataSize += 4;
@ -1106,6 +1119,7 @@ UBool RegexCompile::doParseActions(int32_t action)
case doDotAny:
// scanned a ".", match any single character.
{
fixLiterals(FALSE);
int32_t op;
if (fModeFlags & UREGEX_DOTALL) {
op = URX_BUILD(URX_DOTANY_ALL, 0);
@ -1120,6 +1134,7 @@ UBool RegexCompile::doParseActions(int32_t action)
case doCaret:
{
fixLiterals(FALSE);
int32_t op = 0;
if ( (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
op = URX_CARET;
@ -1136,6 +1151,7 @@ UBool RegexCompile::doParseActions(int32_t action)
case doDollar:
{
fixLiterals(FALSE);
int32_t op = 0;
if ( (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
op = URX_DOLLAR;
@ -1151,6 +1167,7 @@ UBool RegexCompile::doParseActions(int32_t action)
break;
case doBackslashA:
fixLiterals(FALSE);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_CARET, 0), *fStatus);
break;
@ -1161,6 +1178,7 @@ UBool RegexCompile::doParseActions(int32_t action)
error(U_UNSUPPORTED_ERROR);
}
#endif
fixLiterals(FALSE);
int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B;
fRXPat->fCompiledPat->addElement(URX_BUILD(op, 1), *fStatus);
}
@ -1173,53 +1191,64 @@ UBool RegexCompile::doParseActions(int32_t action)
error(U_UNSUPPORTED_ERROR);
}
#endif
fixLiterals(FALSE);
int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B;
fRXPat->fCompiledPat->addElement(URX_BUILD(op, 0), *fStatus);
}
break;
case doBackslashD:
fixLiterals(FALSE);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_D, 1), *fStatus);
break;
case doBackslashd:
fixLiterals(FALSE);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_D, 0), *fStatus);
break;
case doBackslashG:
fixLiterals(FALSE);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_G, 0), *fStatus);
break;
case doBackslashS:
fixLiterals(FALSE);
fRXPat->fCompiledPat->addElement(
URX_BUILD(URX_STAT_SETREF_N, URX_ISSPACE_SET), *fStatus);
break;
case doBackslashs:
fixLiterals(FALSE);
fRXPat->fCompiledPat->addElement(
URX_BUILD(URX_STATIC_SETREF, URX_ISSPACE_SET), *fStatus);
break;
case doBackslashW:
fixLiterals(FALSE);
fRXPat->fCompiledPat->addElement(
URX_BUILD(URX_STAT_SETREF_N, URX_ISWORD_SET), *fStatus);
break;
case doBackslashw:
fixLiterals(FALSE);
fRXPat->fCompiledPat->addElement(
URX_BUILD(URX_STATIC_SETREF, URX_ISWORD_SET), *fStatus);
break;
case doBackslashX:
fixLiterals(FALSE);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_X, 0), *fStatus);
break;
case doBackslashZ:
fixLiterals(FALSE);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_DOLLAR, 0), *fStatus);
break;
case doBackslashz:
fixLiterals(FALSE);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_Z, 0), *fStatus);
break;
@ -1228,11 +1257,13 @@ UBool RegexCompile::doParseActions(int32_t action)
break;
case doExit:
fixLiterals(FALSE);
returnVal = FALSE;
break;
case doProperty:
{
fixLiterals(FALSE);
UnicodeSet *theSet = scanProp();
compileSet(theSet);
}
@ -1275,7 +1306,9 @@ UBool RegexCompile::doParseActions(int32_t action)
// Because capture groups can be forward-referenced by back-references,
// we fill the operand with the capture group number. At the end
// of compilation, it will be changed to the variable's location.
U_ASSERT(groupNum > 0);
U_ASSERT(groupNum > 0); // Shouldn't happen. '\0' begins an octal escape sequence,
// and shouldn't enter this code path at all.
fixLiterals(FALSE);
int32_t op;
if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
op = URX_BUILD(URX_BACKREF_I, groupNum);
@ -1420,14 +1453,14 @@ UBool RegexCompile::doParseActions(int32_t action)
break;
case doSetMatchMode:
// Emit code to match any pending literals, using the not-yet changed match mode.
fixLiterals();
// We've got a (?i) or similar. The match mode is being changed, but
// the change is not scoped to a parenthesized block.
U_ASSERT(fNewModeFlags < 0);
fModeFlags = fNewModeFlags;
// Prevent any string from spanning across the change of match mode.
// Otherwise the pattern "abc(?i)def" would make a single string of "abcdef"
fixLiterals();
break;
@ -1441,6 +1474,7 @@ UBool RegexCompile::doParseActions(int32_t action)
// - NOP, which may later be replaced by a save-state if there
// is an '|' alternation within the parens.
{
fixLiterals(FALSE);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
@ -1536,6 +1570,7 @@ UBool RegexCompile::doParseActions(int32_t action)
}
case doSetBegin:
fixLiterals(FALSE);
fSetStack.push(new UnicodeSet(), *fStatus);
fSetOpStack.push(setStart, *fStatus);
if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
@ -1737,7 +1772,6 @@ UBool RegexCompile::doParseActions(int32_t action)
break;
}
default:
U_ASSERT(FALSE);
error(U_REGEX_INTERNAL_ERROR);
@ -1759,111 +1793,18 @@ UBool RegexCompile::doParseActions(int32_t action)
// or an escape sequence that reduces to a character.
// Add it to the string containing all literal chars/strings from
// the pattern.
// If we are in a pattern string already, add the new char to it.
// If we aren't in a pattern string, begin one now.
//
//------------------------------------------------------------------------------
void RegexCompile::literalChar(UChar32 c) {
int32_t op; // An operation in the compiled pattern.
int32_t opType;
int32_t patternLoc; // A position in the compiled pattern.
int32_t stringLen;
// If the last thing compiled into the pattern was not a literal char,
// force this new literal char to begin a new string, and not append to the previous.
op = (int32_t)fRXPat->fCompiledPat->lastElementi();
opType = URX_TYPE(op);
if (!(opType == URX_STRING_LEN || opType == URX_ONECHAR || opType == URX_ONECHAR_I)) {
fixLiterals();
}
if (fStringOpStart == -1) {
// First char of a string in the pattern.
// Emit a OneChar op into the compiled pattern.
emitONE_CHAR(c);
// Mark that we might actually be starting a string here
fStringOpStart = fRXPat->fLiteralText.length();
return;
}
op = (int32_t)fRXPat->fCompiledPat->lastElementi();
opType = URX_TYPE(op);
U_ASSERT(opType == URX_ONECHAR || opType == URX_ONECHAR_I || opType == URX_STRING_LEN);
// If the most recently emitted op is a URX_ONECHAR,
if (opType == URX_ONECHAR || opType == URX_ONECHAR_I) {
if (U16_IS_TRAIL(c) && U16_IS_LEAD(URX_VAL(op))) {
// The most recently emitted op is a ONECHAR that was the first half
// of a surrogate pair. Update the ONECHAR's operand to be the
// supplementary code point resulting from both halves of the pair.
c = U16_GET_SUPPLEMENTARY(URX_VAL(op), c);
op = URX_BUILD(opType, c);
patternLoc = fRXPat->fCompiledPat->size() - 1;
fRXPat->fCompiledPat->setElementAt(op, patternLoc);
return;
}
// The most recently emitted op is a ONECHAR.
// We've now received another adjacent char. Change the ONECHAR op
// to a string op.
fRXPat->fLiteralText.append(URX_VAL(op));
if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
op = URX_BUILD(URX_STRING_I, fStringOpStart);
} else {
op = URX_BUILD(URX_STRING, fStringOpStart);
}
patternLoc = fRXPat->fCompiledPat->size() - 1;
fRXPat->fCompiledPat->setElementAt(op, patternLoc);
op = URX_BUILD(URX_STRING_LEN, 0);
fRXPat->fCompiledPat->addElement(op, *fStatus);
}
// We are adding onto an existing string
fRXPat->fLiteralText.append(c);
// The pattern contains a URX_SRING / URX_STRING_LEN. Update the
// string length to reflect the new char we just added to the string.
stringLen = fRXPat->fLiteralText.length() - fStringOpStart;
op = URX_BUILD(URX_STRING_LEN, stringLen);
patternLoc = fRXPat->fCompiledPat->size() - 1;
fRXPat->fCompiledPat->setElementAt(op, patternLoc);
}
//------------------------------------------------------------------------------
//
// emitONE_CHAR emit a ONE_CHAR op into the generated code.
// Choose cased or uncased version, depending on the
// match mode and whether the character itself is cased.
//
//------------------------------------------------------------------------------
void RegexCompile::emitONE_CHAR(UChar32 c) {
int32_t op;
if ((fModeFlags & UREGEX_CASE_INSENSITIVE) &&
u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) {
// We have a cased character, and are in case insensitive matching mode.
//c = u_foldCase(c, U_FOLD_CASE_DEFAULT); // !!!: handled in stripNOPs() now
op = URX_BUILD(URX_ONECHAR_I, c);
} else {
// Uncased char, or case sensitive match mode.
// Either way, just generate a literal compare of the char.
op = URX_BUILD(URX_ONECHAR, c);
}
fRXPat->fCompiledPat->addElement(op, *fStatus);
fLiteralChars.append(c);
}
//------------------------------------------------------------------------------
//
// fixLiterals When compiling something that can follow a literal
// string in a pattern, we need to "fix" any preceding
// string, which will cause any subsequent literals to
// begin a new string, rather than appending to the
// old one.
// string in a pattern, emit the code to match the
// accumulated literal string.
//
// Optionally, split the last char of the string off into
// a single "ONE_CHAR" operation, so that quantifiers can
@ -1872,63 +1813,68 @@ void RegexCompile::emitONE_CHAR(UChar32 c) {
//
//------------------------------------------------------------------------------
void RegexCompile::fixLiterals(UBool split) {
int32_t stringStart = fStringOpStart; // start index of the current literal string
int32_t op; // An op from/for the compiled pattern.
int32_t opType; // An opcode type from the compiled pattern.
int32_t stringLastCharIdx;
UChar32 lastChar;
int32_t stringNextToLastCharIdx;
UChar32 nextToLastChar;
int32_t stringLen;
int32_t op = 0; // An op from/for the compiled pattern.
fStringOpStart = -1;
if (!split) {
// If no literal characters have been scanned but not yet had code generated
// for them, nothing needs to be done.
if (fLiteralChars.length() == 0) {
return;
}
// Split: We need to ensure that the last item in the compiled pattern does
// not refer to a literal string of more than one char. If it does,
// separate the last char from the rest of the string.
int32_t indexOfLastCodePoint = fLiteralChars.moveIndex32(fLiteralChars.length(), -1);
UChar32 lastCodePoint = fLiteralChars.char32At(indexOfLastCodePoint);
// If the last operation from the compiled pattern is not a string,
// nothing needs to be done
op = (int32_t)fRXPat->fCompiledPat->lastElementi();
opType = URX_TYPE(op);
if (opType != URX_STRING_LEN) {
// Split: We need to ensure that the last item in the compiled pattern
// refers only to the last literal scanned in the pattern, so that
// quantifiers (*, +, etc.) affect only it, and not a longer string.
// Split before case folding for case insensitive matches.
if (split) {
fLiteralChars.truncate(indexOfLastCodePoint);
fixLiterals(FALSE); // Recursive call, emit code to match the first part of the string.
// Note that the truncated literal string may be empty, in which case
// nothing will be emitted.
literalChar(lastCodePoint); // Re-add the last code point as if it were a new literal.
fixLiterals(FALSE); // Second recursive call, code for the final code point.
return;
}
stringLen = URX_VAL(op);
//
// Find the position of the last code point in the string (might be a surrogate pair)
//
stringLastCharIdx = fRXPat->fLiteralText.length();
stringLastCharIdx = fRXPat->fLiteralText.moveIndex32(stringLastCharIdx, -1);
lastChar = fRXPat->fLiteralText.char32At(stringLastCharIdx);
// If we are doing case-insensitive matching, case fold the string. This may expand
// the string, e.g. the German sharp-s turns into "ss"
if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
fLiteralChars.foldCase();
indexOfLastCodePoint = fLiteralChars.moveIndex32(fLiteralChars.length(), -1);
lastCodePoint = fLiteralChars.char32At(indexOfLastCodePoint);
}
// The string should always be at least two code points long, meaning that there
// should be something before the last char position that we just found.
U_ASSERT(stringLastCharIdx > stringStart);
stringNextToLastCharIdx = fRXPat->fLiteralText.moveIndex32(stringLastCharIdx, -1);
U_ASSERT(stringNextToLastCharIdx >= stringStart);
nextToLastChar = fRXPat->fLiteralText.char32At(stringNextToLastCharIdx);
if (stringNextToLastCharIdx > stringStart) {
// The length of string remaining after removing one char is two or more.
// Leave the string in the compiled pattern, shorten it by one char,
// and append a URX_ONECHAR op for the last char.
stringLen -= (fRXPat->fLiteralText.length() - stringLastCharIdx);
op = URX_BUILD(URX_STRING_LEN, stringLen);
fRXPat->fCompiledPat->setElementAt(op, fRXPat->fCompiledPat->size() -1);
emitONE_CHAR(lastChar);
if (indexOfLastCodePoint == 0) {
// Single character, emit a URX_ONECHAR op to match it.
if ((fModeFlags & UREGEX_CASE_INSENSITIVE) &&
u_hasBinaryProperty(lastCodePoint, UCHAR_CASE_SENSITIVE)) {
op = URX_BUILD(URX_ONECHAR_I, lastCodePoint);
} else {
op = URX_BUILD(URX_ONECHAR, lastCodePoint);
}
fRXPat->fCompiledPat->addElement(op, *fStatus);
} else {
// The original string consisted of exactly two characters. Replace
// the existing compiled URX_STRING/URX_STRING_LEN ops with a pair
// of URX_ONECHARs.
fRXPat->fCompiledPat->setSize(fRXPat->fCompiledPat->size() -2);
emitONE_CHAR(nextToLastChar);
emitONE_CHAR(lastChar);
// Two or more chars, emit a URX_STRING to match them.
if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
op = URX_BUILD(URX_STRING_I, fRXPat->fLiteralText.length());
} else {
// TODO here: add optimization to split case sensitive strings of length two
// into two single char ops, for efficiency.
op = URX_BUILD(URX_STRING, fRXPat->fLiteralText.length());
}
fRXPat->fCompiledPat->addElement(op, *fStatus);
op = URX_BUILD(URX_STRING_LEN, fLiteralChars.length());
fRXPat->fCompiledPat->addElement(op, *fStatus);
// Add this string into the accumulated strings of the compiled pattern.
fRXPat->fLiteralText.append(fLiteralChars);
}
fLiteralChars.remove();
}
@ -2016,6 +1962,8 @@ void RegexCompile::insertOp(int32_t where) {
//------------------------------------------------------------------------------
int32_t RegexCompile::blockTopLoc(UBool reserveLoc) {
int32_t theLoc;
fixLiterals(TRUE); // Emit code for any pending literals.
// If last item was a string, emit separate op for the its last char.
if (fRXPat->fCompiledPat->size() == fMatchCloseParen)
{
// The item just processed is a parenthesized block.
@ -2024,13 +1972,17 @@ int32_t RegexCompile::blockTopLoc(UBool reserveLoc) {
U_ASSERT(URX_TYPE(((uint32_t)fRXPat->fCompiledPat->elementAti(theLoc))) == URX_NOP);
}
else {
// Item just compiled is a single thing, a ".", or a single char, or a set reference.
// Item just compiled is a single thing, a ".", or a single char, a string or a set reference.
// No slot for STATE_SAVE was pre-reserved in the compiled code.
// We need to make space now.
fixLiterals(TRUE); // If last item was a string, separate the last char.
theLoc = fRXPat->fCompiledPat->size()-1;
int32_t opAtTheLoc = (int32_t)fRXPat->fCompiledPat->elementAti(theLoc);
if (URX_TYPE(opAtTheLoc) == URX_STRING_LEN) {
// Strings take two opcode, we want the position of the first one.
// We can have a string at this point if a single character case-folded to two.
theLoc--;
}
if (reserveLoc) {
/*int32_t opAtTheLoc = fRXPat->fCompiledPat->elementAti(theLoc);*/
int32_t nop = URX_BUILD(URX_NOP, 0);
fRXPat->fCompiledPat->insertElementAt(nop, theLoc, *fStatus);
}
@ -2060,8 +2012,7 @@ void RegexCompile::handleCloseParen() {
return;
}
// Force any literal chars that may follow the close paren to start a new string,
// and not attach to any preceding it.
// Emit code for any pending literals.
fixLiterals(FALSE);
// Fixup any operations within the just-closed parenthesized group
@ -2601,11 +2552,17 @@ void RegexCompile::matchStartType() {
if (currentLen == 0) {
UChar32 c = URX_VAL(op);
if (u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) {
// character may have distinct cased forms. Add all of them
// to the set of possible starting match chars.
UnicodeSet s(c, c);
s.closeOver(USET_CASE_INSENSITIVE);
fRXPat->fInitialChars->addAll(s);
// Disable optimizations on first char of match.
// TODO: Compute the set of chars that case fold to this char, or to
// a string that begins with this char.
// For simple case folding, this code worked:
// UnicodeSet s(c, c);
// s.closeOver(USET_CASE_INSENSITIVE);
// fRXPat->fInitialChars->addAll(s);
fRXPat->fInitialChars->clear();
fRXPat->fInitialChars->complement();
} else {
// Char has no case variants. Just add it as-is to the
// set of possible starting chars.
@ -2729,7 +2686,13 @@ void RegexCompile::matchStartType() {
int32_t stringStartIdx = URX_VAL(op);
UChar32 c = fRXPat->fLiteralText.char32At(stringStartIdx);
UnicodeSet s(c, c);
s.closeOver(USET_CASE_INSENSITIVE);
// TODO: compute correct set of starting chars for full case folding.
// For the moment, say any char can start.
// s.closeOver(USET_CASE_INSENSITIVE);
s.clear();
s.complement();
fRXPat->fInitialChars->addAll(s);
numInitialStrings += 2; // Matching on an initial string not possible.
}
@ -3036,7 +2999,6 @@ int32_t RegexCompile::minMatchLength(int32_t start, int32_t end) {
case URX_STRING:
case URX_STRING_I:
{
loc++;
int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
@ -3045,6 +3007,18 @@ int32_t RegexCompile::minMatchLength(int32_t start, int32_t end) {
break;
case URX_STRING_I:
{
loc++;
// TODO: with full case folding, matching input text may be shorter than
// the string we have here. More smarts could put some bounds on it.
// Assume a min length of one for now. A min length of zero causes
// optimization failures for a pattern like "string"+
// currentLen += URX_VAL(stringLenOp);
currentLen += 1;
}
break;
case URX_CTR_INIT:
case URX_CTR_INIT_NG:
{
@ -3151,6 +3125,16 @@ int32_t RegexCompile::minMatchLength(int32_t start, int32_t end) {
return currentLen;
}
// Increment with overflow check.
// val and delta will both be positive.
static int32_t safeIncrement(int32_t val, int32_t delta) {
if (INT32_MAX - val > delta) {
return val + delta;
} else {
return INT32_MAX;
}
}
//------------------------------------------------------------------------------
@ -3247,15 +3231,15 @@ int32_t RegexCompile::maxMatchLength(int32_t start, int32_t end) {
case URX_DOTANY_ALL:
case URX_DOTANY:
case URX_DOTANY_UNIX:
currentLen+=2;
currentLen = safeIncrement(currentLen, 2);
break;
// Single literal character. Increase current max length by one or two,
// depending on whether the char is in the supplementary range.
case URX_ONECHAR:
currentLen++;
currentLen = safeIncrement(currentLen, 1);
if (URX_VAL(op) > 0x10000) {
currentLen++;
currentLen = safeIncrement(currentLen, 1);
}
break;
@ -3308,14 +3292,19 @@ int32_t RegexCompile::maxMatchLength(int32_t start, int32_t end) {
case URX_STRING:
case URX_STRING_I:
{
loc++;
int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
currentLen += URX_VAL(stringLenOp);
currentLen = safeIncrement(currentLen, URX_VAL(stringLenOp));
break;
}
break;
case URX_STRING_I:
// TODO: Is the case-folded string the longest?
// If so we can optimize this the same as URX_STRING.
loc++;
currentLen = INT32_MAX;
break;
case URX_CTR_INIT:
case URX_CTR_INIT_NG:
@ -3394,10 +3383,6 @@ int32_t RegexCompile::maxMatchLength(int32_t start, int32_t end) {
// back-reference fixup is also performed here (adjusting
// back-reference operands to point to the correct frame offsets).
//
// In addition, case-insensitive character and string literals are
// now case-folded here, rather than when first parsed or at match
// time.
//
//------------------------------------------------------------------------------
void RegexCompile::stripNOPs() {
@ -3421,7 +3406,6 @@ void RegexCompile::stripNOPs() {
}
UnicodeString caseStringBuffer;
int32_t stringDelta = 0;
// Make a second pass over the code, removing the NOPs by moving following
// code up, and patching operands that refer to code locations that
@ -3455,45 +3439,6 @@ void RegexCompile::stripNOPs() {
break;
}
case URX_ONECHAR_I:
{
UChar32 c = URX_VAL(op);
if (u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) {
// We have a cased character to fold
c = u_foldCase(c, U_FOLD_CASE_DEFAULT);
op = URX_BUILD(URX_ONECHAR_I, c);
}
fRXPat->fCompiledPat->setElementAt(op, dst);
dst++;
break;
}
case URX_STRING_I:
{
op = URX_BUILD(URX_STRING_I, URX_VAL(op)+stringDelta);
src++;
int32_t lengthOp = (int32_t)fRXPat->fCompiledPat->elementAti(src);
caseStringBuffer.setTo(fRXPat->fLiteralText, URX_VAL(op), URX_VAL(lengthOp));
caseStringBuffer.foldCase(U_FOLD_CASE_DEFAULT);
int32_t newLen = caseStringBuffer.length();
if (newLen <= URX_VAL(lengthOp)) {
// don't shift if we don't have to, take the tiny memory hit of a smaller string
fRXPat->fLiteralText.replace(URX_VAL(op), newLen, caseStringBuffer);
} else {
// shift other strings over...at least UnicodeString handles this for us!
fRXPat->fLiteralText.replace(URX_VAL(op), URX_VAL(lengthOp), caseStringBuffer);
stringDelta += newLen - URX_VAL(lengthOp);
}
lengthOp = URX_BUILD(URX_STRING_LEN, newLen);
fRXPat->fCompiledPat->setElementAt(op, dst);
fRXPat->fCompiledPat->setElementAt(lengthOp, dst+1);
dst += 2;
break;
}
case URX_BACKREF:
case URX_BACKREF_I:
{
@ -3510,14 +3455,12 @@ void RegexCompile::stripNOPs() {
fRXPat->fNeedsAltInput = TRUE;
break;
}
case URX_STRING:
op = URX_BUILD(URX_STRING, URX_VAL(op)+stringDelta);
// continue
case URX_RESERVED_OP:
case URX_RESERVED_OP_N:
case URX_BACKTRACK:
case URX_END:
case URX_ONECHAR:
case URX_STRING:
case URX_STRING_LEN:
case URX_START_CAPTURE:
case URX_END_CAPTURE:
@ -3543,6 +3486,8 @@ void RegexCompile::stripNOPs() {
case URX_STO_INP_LOC:
case URX_LA_START:
case URX_LA_END:
case URX_ONECHAR_I:
case URX_STRING_I:
case URX_DOLLAR_M:
case URX_CARET_M:
case URX_CARET_M_UNIX:

View file

@ -1,7 +1,7 @@
//
// regexcmp.h
//
// Copyright (C) 2002-2010, International Business Machines Corporation and others.
// Copyright (C) 2002-2012, International Business Machines Corporation and others.
// All Rights Reserved.
//
// This file contains declarations for the class RegexCompile
@ -100,11 +100,9 @@ private:
int32_t LoopOp);
UBool compileInlineInterval(); // Generate inline code for a {min,max} quantifier
void literalChar(UChar32 c); // Compile a literal char
void fixLiterals(UBool split=FALSE); // Fix literal strings.
void fixLiterals(UBool split=FALSE); // Generate code for pending literal characters.
void insertOp(int32_t where); // Open up a slot for a new op in the
// generated code at the specified location.
void emitONE_CHAR(UChar32 c); // Emit a ONE_CHAR op into the compiled code,
// taking case mode into account.
int32_t minMatchLength(int32_t start,
int32_t end);
int32_t maxMatchLength(int32_t start,
@ -162,10 +160,11 @@ private:
// until last flag is scanned.
UBool fSetModeFlag; // true for (?ismx, false for (?-ismx
int32_t fStringOpStart; // While a literal string is being scanned
// holds the start index within RegexPattern.
// fLiteralText where the string is being stored.
UnicodeString fLiteralChars; // Literal chars or strings from the pattern are accumulated here.
// Once completed, meaning that some non-literal pattern
// construct is encountered, the appropriate opcodes
// to match the literal will be generated, and this
// string will be cleared.
int64_t fPatternLength; // Length of the input pattern string.

View file

@ -0,0 +1,120 @@
//
// Copyright (C) 2012 International Business Machines Corporation
// and others. All rights reserved.
//
// file: regeximp.cpp
//
// ICU Regular Expressions,
// miscellaneous implementation functions.
//
#include "unicode/utypes.h"
#if !UCONFIG_NO_REGULAR_EXPRESSIONS
#include "regeximp.h"
#include "unicode/utf16.h"
U_NAMESPACE_BEGIN
CaseFoldingUTextIterator::CaseFoldingUTextIterator(UText &text) :
fUText(text), fcsp(NULL), fFoldChars(NULL), fFoldLength(0) {
fcsp = ucase_getSingleton();
}
CaseFoldingUTextIterator::~CaseFoldingUTextIterator() {}
UChar32 CaseFoldingUTextIterator::next() {
UChar32 foldedC;
UChar32 originalC;
if (fFoldChars == NULL) {
// We are not in a string folding of an earlier character.
// Start handling the next char from the input UText.
originalC = UTEXT_NEXT32(&fUText);
if (originalC == U_SENTINEL) {
return originalC;
}
fFoldLength = ucase_toFullFolding(fcsp, originalC, &fFoldChars, U_FOLD_CASE_DEFAULT);
if (fFoldLength >= UCASE_MAX_STRING_LENGTH || fFoldLength < 0) {
// input code point folds to a single code point, possibly itself.
// See comment in ucase.h for explanation of return values from ucase_toFullFoldings.
if (fFoldLength < 0) {
fFoldLength = ~fFoldLength;
}
foldedC = (UChar32)fFoldLength;
fFoldChars = NULL;
return foldedC;
}
// String foldings fall through here.
fFoldIndex = 0;
}
U16_NEXT(fFoldChars, fFoldIndex, fFoldLength, foldedC);
if (fFoldIndex >= fFoldLength) {
fFoldChars = NULL;
}
return foldedC;
}
UBool CaseFoldingUTextIterator::inExpansion() {
return fFoldChars != NULL;
}
CaseFoldingUCharIterator::CaseFoldingUCharIterator(const UChar *chars, int64_t start, int64_t limit) :
fChars(chars), fIndex(start), fLimit(limit), fcsp(NULL), fFoldChars(NULL), fFoldLength(0) {
fcsp = ucase_getSingleton();
}
CaseFoldingUCharIterator::~CaseFoldingUCharIterator() {}
UChar32 CaseFoldingUCharIterator::next() {
UChar32 foldedC;
UChar32 originalC;
if (fFoldChars == NULL) {
// We are not in a string folding of an earlier character.
// Start handling the next char from the input UText.
if (fIndex >= fLimit) {
return U_SENTINEL;
}
U16_NEXT(fChars, fIndex, fLimit, originalC);
fFoldLength = ucase_toFullFolding(fcsp, originalC, &fFoldChars, U_FOLD_CASE_DEFAULT);
if (fFoldLength >= UCASE_MAX_STRING_LENGTH || fFoldLength < 0) {
// input code point folds to a single code point, possibly itself.
// See comment in ucase.h for explanation of return values from ucase_toFullFoldings.
if (fFoldLength < 0) {
fFoldLength = ~fFoldLength;
}
foldedC = (UChar32)fFoldLength;
fFoldChars = NULL;
return foldedC;
}
// String foldings fall through here.
fFoldIndex = 0;
}
U16_NEXT(fFoldChars, fFoldIndex, fFoldLength, foldedC);
if (fFoldIndex >= fFoldLength) {
fFoldChars = NULL;
}
return foldedC;
}
UBool CaseFoldingUCharIterator::inExpansion() {
return fFoldChars != NULL;
}
int64_t CaseFoldingUCharIterator::getIndex() {
return fIndex;
}
U_NAMESPACE_END
#endif

View file

@ -1,5 +1,5 @@
//
// Copyright (C) 2002-2010 International Business Machines Corporation
// Copyright (C) 2002-2012 International Business Machines Corporation
// and others. All rights reserved.
//
// file: regeximp.h
@ -12,11 +12,21 @@
#ifndef _REGEXIMP_H
#define _REGEXIMP_H
#include "unicode/utypes.h"
#include "unicode/uobject.h"
#include "unicode/uniset.h"
#include "unicode/utext.h"
#include "cmemory.h"
#include "ucase.h"
U_NAMESPACE_BEGIN
#ifdef REGEX_DEBUG /* For debugging, define REGEX_DEBUG in regex.h, not here in this file. */
// For debugging, define REGEX_DEBUG
// To define with configure,
// ./runConfigureICU --enable-debug --disable-release Linux CPPFLAGS="-DREGEX_DEBUG"
#ifdef REGEX_DEBUG
//
// debugging options. Enable one or more of the three #defines immediately following
//
@ -352,6 +362,61 @@ inline void Regex8BitSet::operator = (const Regex8BitSet &s) {
uprv_memcpy(d, s.d, sizeof(d));
}
// Case folded UText Iterator helper class.
// Wraps a UText, provides a case-folded enumeration over its contents.
// Used in implementing case insensitive matching constructs.
// Implementation in rematch.cpp
class CaseFoldingUTextIterator: public UMemory {
public:
CaseFoldingUTextIterator(UText &text);
~CaseFoldingUTextIterator();
UChar32 next(); // Next case folded character
UBool inExpansion(); // True if last char returned from next() and the
// next to be returned both originated from a string
// folding of the same code point from the orignal UText.
private:
UText &fUText;
const UCaseProps *fcsp;
const UChar *fFoldChars;
int32_t fFoldLength;
int32_t fFoldIndex;
};
// Case folded UChar * string iterator.
// Wraps a UChar *, provides a case-folded enumeration over its contents.
// Used in implementing case insensitive matching constructs.
// Implementation in rematch.cpp
class CaseFoldingUCharIterator: public UMemory {
public:
CaseFoldingUCharIterator(const UChar *chars, int64_t start, int64_t limit);
~CaseFoldingUCharIterator();
UChar32 next(); // Next case folded character
UBool inExpansion(); // True if last char returned from next() and the
// next to be returned both originated from a string
// folding of the same code point from the orignal UText.
int64_t getIndex(); // Return the current input buffer index.
private:
const UChar *fChars;
int64_t fIndex;
int64_t fLimit;
const UCaseProps *fcsp;
const UChar *fFoldChars;
int32_t fFoldLength;
int32_t fFoldIndex;
};
U_NAMESPACE_END
#endif

File diff suppressed because it is too large Load diff

View file

@ -1,6 +1,6 @@
/*
**********************************************************************
* Copyright (C) 2002-2011, International Business Machines
* Copyright (C) 2002-2012, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* file name: regex.h
@ -53,24 +53,20 @@
#include "unicode/uregex.h"
// Forward Declarations
U_NAMESPACE_BEGIN
// Forward Declarations...
class RegexMatcher;
class RegexPattern;
class UVector;
class UVector32;
class UVector64;
class UnicodeSet;
struct REStackFrame;
struct Regex8BitSet;
class RuleBasedBreakIterator;
class RegexCImpl;
class RegexMatcher;
class RegexPattern;
struct REStackFrame;
class RuleBasedBreakIterator;
class UnicodeSet;
class UVector;
class UVector32;
class UVector64;
/**
* RBBIPatternDump Debug function, displays the compiled form of a pattern.
@ -1315,9 +1311,9 @@ public:
/**
* Return TRUE if the most recent matching operation touched the
* end of the text being processed. In this case, additional input text could
* change the results of that match.
* Return TRUE if the most recent matching operation attempted to access
* additional input beyond the available input text.
* In this case, additional input text could change the results of the match.
*
* hitEnd() is defined for both successful and unsuccessful matches.
* In either case hitEnd() will return TRUE if if the end of the text was
@ -1859,8 +1855,6 @@ private:
// reported, or that permanently disables this matcher.
RuleBasedBreakIterator *fWordBreakItr;
};
U_NAMESPACE_END

View file

@ -1,6 +1,6 @@
/********************************************************************
* COPYRIGHT:
* Copyright (c) 2002-2011, International Business Machines Corporation and
* Copyright (c) 2002-2012, International Business Machines Corporation and
* others. All Rights Reserved.
********************************************************************/
@ -555,8 +555,13 @@ void RegexTest::Basic() {
// REGEX_TESTLM("a\N{LATIN SMALL LETTER B}c", "abc", FALSE, FALSE);
UParseError pe;
UErrorCode status = U_ZERO_ERROR;
RegexPattern::compile("^(?:a?b?)*$", 0, pe, status);
// REGEX_FIND("(?>(abc{2,4}?))(c*)", "<0>ab<1>cc</1><2>ccc</2></0>ddd");
RegexPattern *pattern;
pattern = RegexPattern::compile("aßx", UREGEX_CASE_INSENSITIVE, pe, status);
RegexPatternDump(pattern);
RegexMatcher *m = pattern->matcher("aßxzzz", status);
UBool result = m->find();
printf("result = %d\n", result);
// REGEX_FIND("", "<0>ab<1>cc</1><2>ccc</2></0>ddd");
// REGEX_FIND("(X([abc=X]+)+X)|(y[abc=]+)", "=XX====================");
}
exit(1);

View file

@ -1,4 +1,4 @@
# Copyright (c) 2001-2011 International Business Machines
# Copyright (c) 2001-2012 International Business Machines
# Corporation and others. All Rights Reserved.
#
# file:
@ -13,8 +13,8 @@
# <tagged string> = text, with the start and end of each
# capture group tagged with <n>...</n>. The overall match,
# if any, is group 0, as in <0>matched text</0>
#
# A region can be specified with <r>...</r> tags.
# Standard ICU unescape will be applied, allowing \u, \U, etc. to appear.
#
# <flags> = any combination of
# i case insensitive match
@ -116,6 +116,24 @@
"xyz$" Yz "xyza"
"xyz$" yz "<0>xyz</0>"
#
# HitEnd
#
"abcd" Lz "a"
"abcd" Lz "ab"
"abcd" Lz "abc"
"abcd" LZ "<0>abcd</0>"
"abcd" LZ "<0>abcd</0>e"
"abcd" LZ "abcx"
"abcd" LZ "abx"
"abcd" Lzi "a"
"abcd" Lzi "ab"
"abcd" Lzi "abc"
"abcd" LZi "<0>abcd</0>"
"abcd" LZi "<0>abcd</0>e"
"abcd" LZi "abcx"
"abcd" LZi "abx"
#
# All Unicode line endings recognized.
# 0a, 0b, 0c, 0d, 0x85, 0x2028, 0x2029
@ -176,6 +194,7 @@
"(hello)|(goodbye)" "<0><2>goodbye</2></0>"
"abc( +( inner(X?) +) xyz)" "leading cruft <0>abc<1> <2> inner<3></3> </2> xyz</1></0> cruft"
"\s*([ixsmdt]*)([:letter:]*)" "<0> <1>d</1><2></2></0> "
"(a|b)c*d" "a<0><1>b</1>cd</0>"
# Non-capturing parens (?: stuff). Groups, but does not capture.
"(?:abc)*(tail)" "<0>abcabcabc<1>tail</1></0>"
@ -452,6 +471,40 @@
"ab(?:c|(d?))(\1)" "<0>ab<1></1><2></2></0>e"
"ab(?:c|(d?))(\1)" "<0>ab<1></1><2></2></0>"
# Back References that hit/don't hit end
"(abcd) \1" z "abcd abc"
"(abcd) \1" Z "<0><1>abcd</1> abcd</0>"
"(abcd) \1" Z "<0><1>abcd</1> abcd</0> "
# Case Insensitve back references that hit/don't hit end.
"(abcd) \1" zi "abcd abc"
"(abcd) \1" Zi "<0><1>abcd</1> ABCD</0>"
"(abcd) \1" Zi "<0><1>abcd</1> ABCD</0> "
# Back references that hit/don't hit boundary limits.
"(abcd) \1" z "<r>abcd abc</r>d "
"(abcd) \1" Z "<r><0><1>abcd</1> abcd</0></r> "
"(abcd) \1" Z "<r><0><1>abcd</1> abcd</0> </r>"
"(abcd) \1" zi "<r>abcd abc</r>d "
"(abcd) \1" Zi "<r><0><1>abcd</1> abcd</0></r> "
"(abcd) \1" Zi "<r><0><1>abcd</1> abcd</0> </r>"
# Back reference that fails match near the end of input without actually hitting the end.
"(abcd) \1" ZL "abcd abd"
"(abcd) \1" ZLi "abcd abd"
# Back reference to a zero-length match. They are always a successful match.
"ab(x?)cd(\1)ef" "<0>ab<1></1>cd<2></2>ef</0>"
"ab(x?)cd(\1)ef" i "<0>ab<1></1>cd<2></2>ef</0>"
# Back refs to capture groups that didn't participate in the match.
"ab(?:(c)|(d))\1" "abde"
"ab(?:(c)|(d))\1" "<0>ab<1>c</1>c</0>e"
"ab(?:(c)|(d))\1" i "abde"
"ab(?:(c)|(d))\1" i "<0>ab<1>c</1>c</0>e"
# Case Insensitive
"aBc" i "<0>ABC</0>"
"a[^bc]d" i "ABD"
@ -602,6 +655,7 @@
"\ud800\udc00*" "<0>\U00010000\U00010000\U00010000</0>\U00010001"
"\ud800\ud800\udc00" "<0>\ud800\U00010000</0>\U00010000\U00010000\U00010001"
"(\ud800)(\udc00)" "\U00010000"
"\U00010001+" "<0>\U00010001\U00010001</0>\udc01"
#
# hitEnd with find()
@ -1030,6 +1084,41 @@
#
"((.??)+|A)*" "<0><1><2></2></1></0>AAAAABBBBBCCCCCDDDDEEEEE"
#
# Bug 8826. Incorrect results with case insensitive matches.
#
"AS(X)" i "aßx"
"AS.*" i "aßx" # Expansion of sharp s can't split between pattern terms.
"ASßS" i "<0>aßß</0>" # All one literal string, does match.
"ASß{1}S" i "aßß" # Pattern with terms, no match.
"aßx" i "<0>assx</0>"
"aßx" i "<0>ASSX</0>"
"aßx" i "<0>aßx</0>"
"ASS(.)" i "<0>aß<1>x</1></0>"
# Case Insensitive, probe some corner cases.
"ass+" i "aß" # Second 's' in pattern is qualified, can't combine with first.
"as+" i "aß"
"aßs" i "as" # Can't match half of a ß
"aß+" i "<0>assssssss</0>s"
"aß+" i "<0>assßSssSSS</0>s"
"a(ß?)+" i "<0>assssssss<1></1></0>s"
"a(ß?)+" i "<0>a<1></1></0>zzzzzzzzs"
"\U00010400" i "<0>\U00010428</0>" # case folded supplemental code point.
"sstuff" i "<0>ßtuff</0>" # exercise optimizations on what chars can start a match.
"sstuff" i "s<0>ßtuff</0>" # exercise optimizations on what chars can start a match.
"ßtuff" i "s<0>sstuff</0>"
"ßtuff" i "s<0>Sstuff</0>"
"a(..)\1" i "<0>A<1>bc</1>BC</0>def"
"(ß)\1" i "aa<0><1>ss</1>ß</0>zz" # Case insensitive back reference
"..(.)\1" i "<0>aa<1>ß</1>ss</0>"
"ab(..)\1" i "xx<0>ab<1>ss</1>ß</0>ss"
" (ss) ((\1.*)|(.*))" i "<0> <1>ss</1> <2><4>sß</4></2></0>" # The back reference 'ss' must not match in 'sß'
# Random debugging, Temporary
#
#"^(?:a?b?)*$" "a--"