mirror of
https://github.com/unicode-org/icu.git
synced 2025-04-10 15:42:14 +00:00
ICU-22058 make pointer argument in floorDivide optional
Check the third argument and not set if it is a nullptr
This commit is contained in:
parent
da5b047dbe
commit
bb0e745e25
1 changed files with 16 additions and 11 deletions
|
@ -37,11 +37,13 @@ int32_t ClockMath::floorDivide(double numerator, int32_t denominator,
|
|||
// For an integer n and representable ⌊x/n⌋, ⌊RN(x/n)⌋=⌊x/n⌋, where RN is
|
||||
// rounding to nearest.
|
||||
double quotient = uprv_floor(numerator / denominator);
|
||||
// For doubles x and n, where n is an integer and ⌊x+n⌋ < 2³¹, the
|
||||
// expression `(int32_t) (x + n)` evaluated with rounding to nearest
|
||||
// differs from ⌊x+n⌋ if 0 < ⌈x⌉−x ≪ x+n, as `x + n` is rounded up to
|
||||
// n+⌈x⌉ = ⌊x+n⌋ + 1. Rewriting it as ⌊x⌋+n makes the addition exact.
|
||||
*remainder = (int32_t) (uprv_floor(numerator) - (quotient * denominator));
|
||||
if (remainder != nullptr) {
|
||||
// For doubles x and n, where n is an integer and ⌊x+n⌋ < 2³¹, the
|
||||
// expression `(int32_t) (x + n)` evaluated with rounding to nearest
|
||||
// differs from ⌊x+n⌋ if 0 < ⌈x⌉−x ≪ x+n, as `x + n` is rounded up to
|
||||
// n+⌈x⌉ = ⌊x+n⌋ + 1. Rewriting it as ⌊x⌋+n makes the addition exact.
|
||||
*remainder = (int32_t) (uprv_floor(numerator) - (quotient * denominator));
|
||||
}
|
||||
return (int32_t) quotient;
|
||||
}
|
||||
|
||||
|
@ -50,16 +52,16 @@ double ClockMath::floorDivide(double dividend, double divisor,
|
|||
// Only designed to work for positive divisors
|
||||
U_ASSERT(divisor > 0);
|
||||
double quotient = floorDivide(dividend, divisor);
|
||||
*remainder = dividend - (quotient * divisor);
|
||||
double r = dividend - (quotient * divisor);
|
||||
// N.B. For certain large dividends, on certain platforms, there
|
||||
// is a bug such that the quotient is off by one. If you doubt
|
||||
// this to be true, set a breakpoint below and run cintltst.
|
||||
if (*remainder < 0 || *remainder >= divisor) {
|
||||
if (r < 0 || r >= divisor) {
|
||||
// E.g. 6.7317038241449352e+022 / 86400000.0 is wrong on my
|
||||
// machine (too high by one). 4.1792057231752762e+024 /
|
||||
// 86400000.0 is wrong the other way (too low).
|
||||
double q = quotient;
|
||||
quotient += (*remainder < 0) ? -1 : +1;
|
||||
quotient += (r < 0) ? -1 : +1;
|
||||
if (q == quotient) {
|
||||
// For quotients > ~2^53, we won't be able to add or
|
||||
// subtract one, since the LSB of the mantissa will be >
|
||||
|
@ -70,12 +72,15 @@ double ClockMath::floorDivide(double dividend, double divisor,
|
|||
// values give back an approximate answer rather than
|
||||
// crashing. For example, UDate values above a ~10^25
|
||||
// might all have a time of midnight.
|
||||
*remainder = 0;
|
||||
r = 0;
|
||||
} else {
|
||||
*remainder = dividend - (quotient * divisor);
|
||||
r = dividend - (quotient * divisor);
|
||||
}
|
||||
}
|
||||
U_ASSERT(0 <= *remainder && *remainder < divisor);
|
||||
U_ASSERT(0 <= r && r < divisor);
|
||||
if (remainder != nullptr) {
|
||||
*remainder = r;
|
||||
}
|
||||
return quotient;
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue