ICU-1325 add USNO reference data to check sunrise and sunset times; add basic computation test

X-SVN-Rev: 10876
This commit is contained in:
Alan Liu 2003-01-20 20:02:45 +00:00
parent c9cd0500a9
commit e5d724909c

View file

@ -5,8 +5,8 @@
*******************************************************************************
*
* $Source: /xsrl/Nsvn/icu/icu4j/src/com/ibm/icu/dev/test/calendar/AstroTest.java,v $
* $Date: 2002/10/24 19:31:46 $
* $Revision: 1.8 $
* $Date: 2003/01/20 20:02:45 $
* $Revision: 1.9 $
*
*****************************************************************************************
*/
@ -121,35 +121,157 @@ public class AstroTest extends TestFmwk {
}
}
static final long DAY_MS = 24*60*60*1000L;
public void TestSunriseTimes() {
// logln("Sunrise/Sunset times for San Jose, California, USA");
// CalendarAstronomer astro = new CalendarAstronomer(-121.55, 37.20);
// TimeZone tz = TimeZone.getTimeZone("America/Los_Angeles");
// We'll use a table generated by the UNSO website as our reference
// From: http://aa.usno.navy.mil/
//-Location: W079 25, N43 40
//-Rise and Set for the Sun for 2001
//-Zone: 4h West of Greenwich
int[] USNO = {
6,59, 19,45,
6,57, 19,46,
6,56, 19,47,
6,54, 19,48,
6,52, 19,49,
6,50, 19,51,
6,48, 19,52,
6,47, 19,53,
6,45, 19,54,
6,43, 19,55,
6,42, 19,57,
6,40, 19,58,
6,38, 19,59,
6,36, 20, 0,
6,35, 20, 1,
6,33, 20, 3,
6,31, 20, 4,
6,30, 20, 5,
6,28, 20, 6,
6,27, 20, 7,
6,25, 20, 8,
6,23, 20,10,
6,22, 20,11,
6,20, 20,12,
6,19, 20,13,
6,17, 20,14,
6,16, 20,16,
6,14, 20,17,
6,13, 20,18,
6,11, 20,19,
};
logln("Sunrise/Sunset times for Toronto, Canada");
CalendarAstronomer astro = new CalendarAstronomer(-79.38, 43.65);
TimeZone tz = TimeZone.getTimeZone("America/Detroit");
CalendarAstronomer astro = new CalendarAstronomer(-(79+25/60), 43+40/60);
TimeZone tz = TimeZone.getTimeZone("America/Montreal");
GregorianCalendar cal = new GregorianCalendar(tz, Locale.US);
GregorianCalendar cal2 = new GregorianCalendar(tz, Locale.US);
cal.set(cal.YEAR, 2001);
cal.set(cal.MONTH, cal.APRIL);
cal.set(cal.DAY_OF_MONTH, 1);
DateFormat df = DateFormat.getTimeInstance(cal, DateFormat.MEDIUM, Locale.US);
DateFormat df2 = DateFormat.getDateTimeInstance(cal, DateFormat.MEDIUM, DateFormat.MEDIUM, Locale.US);
DateFormat day = DateFormat.getDateInstance(cal, DateFormat.MEDIUM, Locale.US);
for (int i=0; i < 30; i++) {
astro.setDate(cal.getTime());
Date sunrise = new Date(astro.getSunRiseSet(true));
Date sunset = new Date(astro.getSunRiseSet(false));
logln("Date: " + day.format(cal.getTime()) +
", Sunrise: " + df.format(sunrise) +
", Sunset: " + df.format(sunset));
cal2.setTime(cal.getTime());
cal2.set(Calendar.SECOND, 0);
cal2.set(Calendar.MILLISECOND, 0);
cal2.set(Calendar.HOUR_OF_DAY, USNO[4*i+0]);
cal2.set(Calendar.MINUTE, USNO[4*i+1]);
Date exprise = cal2.getTime();
cal2.set(Calendar.HOUR_OF_DAY, USNO[4*i+2]);
cal2.set(Calendar.MINUTE, USNO[4*i+3]);
Date expset = cal2.getTime();
// Compute delta of what we got to the USNO data, in seconds
int deltarise = Math.abs((int)(sunrise.getTime() - exprise.getTime()) / 1000);
int deltaset = Math.abs((int)(sunset.getTime() - expset.getTime()) / 1000);
// Allow a deviation of 0..MAX_DEV seconds
// It would be nice to get down to 60 seconds, but at this
// point that appears to be impossible without a redo of the
// algorithm using something more advanced than Duffett-Smith.
final int MAX_DEV = 180;
if (deltarise > MAX_DEV || deltaset > MAX_DEV) {
if (deltarise > MAX_DEV) {
errln("FAIL: " + day.format(cal.getTime()) +
", Sunrise: " + df2.format(sunrise) +
" (USNO " + df.format(exprise) +
" d=" + deltarise + "s)");
} else {
logln(day.format(cal.getTime()) +
", Sunrise: " + df.format(sunrise) +
" (USNO " + df.format(exprise) + ")");
}
if (deltaset > MAX_DEV) {
errln("FAIL: " + day.format(cal.getTime()) +
", Sunset: " + df2.format(sunset) +
" (USNO " + df.format(expset) +
" d=" + deltaset + "s)");
} else {
logln(day.format(cal.getTime()) +
", Sunset: " + df.format(sunset) +
" (USNO " + df.format(expset) + ")");
}
} else {
logln(day.format(cal.getTime()) +
", Sunrise: " + df.format(sunrise) +
" (USNO " + df.format(exprise) + ")" +
", Sunset: " + df.format(sunset) +
" (USNO " + df.format(expset) + ")");
}
cal.add(Calendar.DATE, 1);
}
// CalendarAstronomer a = new CalendarAstronomer(-(71+5/60), 42+37/60);
// cal.clear();
// cal.set(cal.YEAR, 1986);
// cal.set(cal.MONTH, cal.MARCH);
// cal.set(cal.DATE, 10);
// cal.set(cal.YEAR, 1988);
// cal.set(cal.MONTH, cal.JULY);
// cal.set(cal.DATE, 27);
// a.setDate(cal.getTime());
// long r = a.getSunRiseSet2(true);
}
public void TestBasics() {
// Check that our JD computation is the same as the book's (p. 88)
GregorianCalendar cal3 = new GregorianCalendar(TimeZone.getTimeZone("GMT"), Locale.US);
DateFormat d3 = DateFormat.getDateTimeInstance(cal3, DateFormat.MEDIUM,DateFormat.MEDIUM,Locale.US);
cal3.clear();
cal3.set(cal3.YEAR, 1980);
cal3.set(cal3.MONTH, Calendar.JULY);
cal3.set(cal3.DATE, 27);
astro.setDate(cal3.getTime());
double jd = astro.getJulianDay() - 2447891.5;
double exp = -3444;
if (jd == exp) {
logln(d3.format(cal3.getTime()) + " => " + jd);
} else {
errln("FAIL: " + d3.format(cal3.getTime()) + " => " + jd +
", expected " + exp);
}
// cal3.clear();
// cal3.set(cal3.YEAR, 1990);
// cal3.set(cal3.MONTH, Calendar.JANUARY);
// cal3.set(cal3.DATE, 1);
// cal3.add(cal3.DATE, -1);
// astro.setDate(cal3.getTime());
// astro.foo();
}
}