ICU-20920 Add support for CLDR 37 unit identifiers in ICU4C

See #964
This commit is contained in:
Shane F. Carr 2020-03-24 18:28:50 +00:00
parent 2ced2624fc
commit fc6612cc56
21 changed files with 2020 additions and 142 deletions

View file

@ -274,7 +274,10 @@ inline T *LocalMemory<T>::allocateInsteadAndCopy(int32_t newCapacity, int32_t le
*
* WARNING: MaybeStackArray only works with primitive (plain-old data) types.
* It does NOT know how to call a destructor! If you work with classes with
* destructors, consider LocalArray in localpointer.h or MemoryPool.
* destructors, consider:
*
* - LocalArray in localpointer.h if you know the length ahead of time
* - MaybeStackVector if you know the length at runtime
*/
template<typename T, int32_t stackCapacity>
class MaybeStackArray {
@ -684,26 +687,26 @@ inline H *MaybeStackHeaderAndArray<H, T, stackCapacity>::orphanOrClone(int32_t l
template<typename T, int32_t stackCapacity = 8>
class MemoryPool : public UMemory {
public:
MemoryPool() : count(0), pool() {}
MemoryPool() : fCount(0), fPool() {}
~MemoryPool() {
for (int32_t i = 0; i < count; ++i) {
delete pool[i];
for (int32_t i = 0; i < fCount; ++i) {
delete fPool[i];
}
}
MemoryPool(const MemoryPool&) = delete;
MemoryPool& operator=(const MemoryPool&) = delete;
MemoryPool(MemoryPool&& other) U_NOEXCEPT : count(other.count),
pool(std::move(other.pool)) {
other.count = 0;
MemoryPool(MemoryPool&& other) U_NOEXCEPT : fCount(other.fCount),
fPool(std::move(other.fPool)) {
other.fCount = 0;
}
MemoryPool& operator=(MemoryPool&& other) U_NOEXCEPT {
count = other.count;
pool = std::move(other.pool);
other.count = 0;
fCount = other.fCount;
fPool = std::move(other.fPool);
other.fCount = 0;
return *this;
}
@ -716,20 +719,101 @@ public:
*/
template<typename... Args>
T* create(Args&&... args) {
int32_t capacity = pool.getCapacity();
if (count == capacity &&
pool.resize(capacity == stackCapacity ? 4 * capacity : 2 * capacity,
capacity) == nullptr) {
int32_t capacity = fPool.getCapacity();
if (fCount == capacity &&
fPool.resize(capacity == stackCapacity ? 4 * capacity : 2 * capacity,
capacity) == nullptr) {
return nullptr;
}
return pool[count++] = new T(std::forward<Args>(args)...);
return fPool[fCount++] = new T(std::forward<Args>(args)...);
}
private:
int32_t count;
MaybeStackArray<T*, stackCapacity> pool;
/**
* @return Number of elements that have been allocated.
*/
int32_t count() const {
return fCount;
}
protected:
int32_t fCount;
MaybeStackArray<T*, stackCapacity> fPool;
};
/**
* An internal Vector-like implementation based on MemoryPool.
*
* Heap-allocates each element and stores pointers.
*
* To append an item to the vector, use emplaceBack.
*
* MaybeStackVector<MyType> vector;
* MyType* element = vector.emplaceBack();
* if (!element) {
* status = U_MEMORY_ALLOCATION_ERROR;
* }
* // do stuff with element
*
* To loop over the vector, use a for loop with indices:
*
* for (int32_t i = 0; i < vector.length(); i++) {
* MyType* element = vector[i];
* }
*/
template<typename T, int32_t stackCapacity = 8>
class MaybeStackVector : protected MemoryPool<T, stackCapacity> {
public:
using MemoryPool<T, stackCapacity>::MemoryPool;
using MemoryPool<T, stackCapacity>::operator=;
template<typename... Args>
T* emplaceBack(Args&&... args) {
return this->create(args...);
}
int32_t length() const {
return this->fCount;
}
T** getAlias() {
return this->fPool.getAlias();
}
/**
* Array item access (read-only).
* No index bounds check.
* @param i array index
* @return reference to the array item
*/
const T* operator[](ptrdiff_t i) const {
return this->fPool[i];
}
/**
* Array item access (writable).
* No index bounds check.
* @param i array index
* @return reference to the array item
*/
T* operator[](ptrdiff_t i) {
return this->fPool[i];
}
/**
* Append all the items from another MaybeStackVector to this one.
*/
void appendAll(const MaybeStackVector& other, UErrorCode& status) {
for (int32_t i = 0; i < other.fCount; i++) {
T* item = emplaceBack(*other[i]);
if (!item) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
}
};
U_NAMESPACE_END
#endif /* __cplusplus */

View file

@ -97,7 +97,7 @@ uspoof.o uspoof_impl.o uspoof_build.o uspoof_conf.o smpdtfst.o \
ztrans.o zrule.o vzone.o fphdlimp.o fpositer.o ufieldpositer.o \
decNumber.o decContext.o alphaindex.o tznames.o tznames_impl.o tzgnames.o \
tzfmt.o compactdecimalformat.o gender.o region.o scriptset.o \
uregion.o reldatefmt.o quantityformatter.o measunit.o \
uregion.o reldatefmt.o quantityformatter.o measunit.o measunit_extra.o \
sharedbreakiterator.o scientificnumberformatter.o dayperiodrules.o nounit.o \
number_affixutils.o number_compact.o number_decimalquantity.o \
number_decimfmtprops.o number_fluent.o number_formatimpl.o number_grouping.o \

View file

@ -19,9 +19,7 @@
#include "cstring.h"
#include "uinvchar.h"
#include "charstr.h"
static constexpr char16_t kDefaultCurrency[] = u"XXX";
static constexpr char kDefaultCurrency8[] = "XXX";
#include "measunit_impl.h"
U_NAMESPACE_BEGIN

View file

@ -187,6 +187,7 @@
<ClCompile Include="ulistformatter.cpp" />
<ClCompile Include="measfmt.cpp" />
<ClCompile Include="measunit.cpp" />
<ClCompile Include="measunit_extra.cpp" />
<ClCompile Include="measure.cpp" />
<ClCompile Include="msgfmt.cpp" />
<ClCompile Include="nfrs.cpp" />
@ -392,6 +393,7 @@
<ClInclude Include="indiancal.h" />
<ClInclude Include="islamcal.h" />
<ClInclude Include="japancal.h" />
<ClInclude Include="measunit_impl.h" />
<ClInclude Include="msgfmt_impl.h" />
<ClInclude Include="nfrlist.h" />
<ClInclude Include="nfrs.h" />

View file

@ -204,6 +204,9 @@
<ClCompile Include="measunit.cpp">
<Filter>formatting</Filter>
</ClCompile>
<ClCompile Include="measunit_extra.cpp">
<Filter>formatting</Filter>
</ClCompile>
<ClCompile Include="measure.cpp">
<Filter>formatting</Filter>
</ClCompile>
@ -830,6 +833,9 @@
<ClInclude Include="japancal.h">
<Filter>formatting</Filter>
</ClInclude>
<ClInclude Include="measunit_impl.h">
<Filter>formatting</Filter>
</ClInclude>
<ClInclude Include="msgfmt_impl.h">
<Filter>formatting</Filter>
</ClInclude>

View file

@ -408,6 +408,7 @@
<ClCompile Include="ulistformatter.cpp" />
<ClCompile Include="measfmt.cpp" />
<ClCompile Include="measunit.cpp" />
<ClCompile Include="measunit_extra.cpp" />
<ClCompile Include="measure.cpp" />
<ClCompile Include="msgfmt.cpp" />
<ClCompile Include="nfrs.cpp" />
@ -611,6 +612,7 @@
<ClInclude Include="indiancal.h" />
<ClInclude Include="islamcal.h" />
<ClInclude Include="japancal.h" />
<ClInclude Include="measunit_impl.h" />
<ClInclude Include="msgfmt_impl.h" />
<ClInclude Include="nfrlist.h" />
<ClInclude Include="nfrs.h" />

View file

@ -17,9 +17,11 @@
#if !UCONFIG_NO_FORMATTING
#include "unicode/uenum.h"
#include "unicode/errorcode.h"
#include "ustrenum.h"
#include "cstring.h"
#include "uassert.h"
#include "measunit_impl.h"
U_NAMESPACE_BEGIN
@ -535,7 +537,7 @@ static const char * const gSubTypes[] = {
"solar-mass",
"stone",
"ton",
"base",
"one",
"percent",
"permille",
"gigawatt",
@ -2006,24 +2008,62 @@ static int32_t binarySearch(
return -1;
}
MeasureUnit::MeasureUnit() {
fCurrency[0] = 0;
fTypeId = kBaseTypeIdx;
fSubTypeId = kBaseSubTypeIdx;
MeasureUnit::MeasureUnit() : MeasureUnit(kBaseTypeIdx, kBaseSubTypeIdx) {
}
MeasureUnit::MeasureUnit(int32_t typeId, int32_t subTypeId)
: fImpl(nullptr), fSubTypeId(subTypeId), fTypeId(typeId) {
}
MeasureUnit::MeasureUnit(const MeasureUnit &other)
: fTypeId(other.fTypeId), fSubTypeId(other.fSubTypeId) {
uprv_strcpy(fCurrency, other.fCurrency);
: fImpl(nullptr) {
*this = other;
}
MeasureUnit::MeasureUnit(MeasureUnit &&other) noexcept
: fImpl(other.fImpl),
fSubTypeId(other.fSubTypeId),
fTypeId(other.fTypeId) {
other.fImpl = nullptr;
}
MeasureUnit::MeasureUnit(MeasureUnitImpl&& impl)
: fImpl(nullptr), fSubTypeId(-1), fTypeId(-1) {
if (!findBySubType(impl.identifier.toStringPiece(), this)) {
fImpl = new MeasureUnitImpl(std::move(impl));
}
}
MeasureUnit &MeasureUnit::operator=(const MeasureUnit &other) {
if (this == &other) {
return *this;
}
delete fImpl;
if (other.fImpl) {
ErrorCode localStatus;
fImpl = new MeasureUnitImpl(other.fImpl->copy(localStatus));
if (!fImpl || localStatus.isFailure()) {
// Unrecoverable allocation error; set to the default unit
*this = MeasureUnit();
return *this;
}
} else {
fImpl = nullptr;
}
fTypeId = other.fTypeId;
fSubTypeId = other.fSubTypeId;
return *this;
}
MeasureUnit &MeasureUnit::operator=(MeasureUnit &&other) noexcept {
if (this == &other) {
return *this;
}
delete fImpl;
fImpl = other.fImpl;
other.fImpl = nullptr;
fTypeId = other.fTypeId;
fSubTypeId = other.fSubTypeId;
uprv_strcpy(fCurrency, other.fCurrency);
return *this;
}
@ -2032,14 +2072,28 @@ MeasureUnit *MeasureUnit::clone() const {
}
MeasureUnit::~MeasureUnit() {
delete fImpl;
fImpl = nullptr;
}
const char *MeasureUnit::getType() const {
// We have a type & subtype only if fTypeId is present.
if (fTypeId == -1) {
return "";
}
return gTypes[fTypeId];
}
const char *MeasureUnit::getSubtype() const {
return fCurrency[0] == 0 ? gSubTypes[getOffset()] : fCurrency;
// We have a type & subtype only if fTypeId is present.
if (fTypeId == -1) {
return "";
}
return getIdentifier();
}
const char *MeasureUnit::getIdentifier() const {
return fImpl ? fImpl->identifier.data() : gSubTypes[getOffset()];
}
UBool MeasureUnit::operator==(const UObject& other) const {
@ -2050,10 +2104,7 @@ UBool MeasureUnit::operator==(const UObject& other) const {
return FALSE;
}
const MeasureUnit &rhs = static_cast<const MeasureUnit&>(other);
return (
fTypeId == rhs.fTypeId
&& fSubTypeId == rhs.fSubTypeId
&& uprv_strcmp(fCurrency, rhs.fCurrency) == 0);
return uprv_strcmp(getIdentifier(), rhs.getIdentifier()) == 0;
}
int32_t MeasureUnit::getIndex() const {
@ -2153,42 +2204,14 @@ bool MeasureUnit::findBySubType(StringPiece subType, MeasureUnit* output) {
return false;
}
bool MeasureUnit::parseCoreUnitIdentifier(
StringPiece coreUnitIdentifier,
MeasureUnit* numerator,
MeasureUnit* denominator,
UErrorCode& status) {
if (U_FAILURE(status)) {
return false;
}
// First search for the whole code unit identifier as a subType
if (findBySubType(coreUnitIdentifier, numerator)) {
return false; // found a numerator but not denominator
}
// If not found, try breaking apart numerator and denominator
int32_t perIdx = coreUnitIdentifier.find("-per-", 0);
if (perIdx == -1) {
// String does not contain "-per-"
status = U_ILLEGAL_ARGUMENT_ERROR;
return false;
}
StringPiece numeratorStr(coreUnitIdentifier, 0, perIdx);
StringPiece denominatorStr(coreUnitIdentifier, perIdx + 5);
if (findBySubType(numeratorStr, numerator) && findBySubType(denominatorStr, denominator)) {
return true; // found both a numerator and denominator
}
// The numerator or denominator were invalid
status = U_ILLEGAL_ARGUMENT_ERROR;
return false;
}
MeasureUnit MeasureUnit::resolveUnitPerUnit(
const MeasureUnit &unit, const MeasureUnit &perUnit, bool* isResolved) {
int32_t unitOffset = unit.getOffset();
int32_t perUnitOffset = perUnit.getOffset();
if (unitOffset == -1 || perUnitOffset == -1) {
*isResolved = false;
return MeasureUnit();
}
// binary search for (unitOffset, perUnitOffset)
int32_t start = 0;
@ -2236,18 +2259,24 @@ void MeasureUnit::initTime(const char *timeId) {
fSubTypeId = result - gOffsets[fTypeId];
}
void MeasureUnit::initCurrency(const char *isoCurrency) {
void MeasureUnit::initCurrency(StringPiece isoCurrency) {
int32_t result = binarySearch(gTypes, 0, UPRV_LENGTHOF(gTypes), "currency");
U_ASSERT(result != -1);
fTypeId = result;
result = binarySearch(
gSubTypes, gOffsets[fTypeId], gOffsets[fTypeId + 1], isoCurrency);
if (result != -1) {
fSubTypeId = result - gOffsets[fTypeId];
} else {
uprv_strncpy(fCurrency, isoCurrency, UPRV_LENGTHOF(fCurrency));
fCurrency[3] = 0;
if (result == -1) {
fImpl = new MeasureUnitImpl(MeasureUnitImpl::forCurrencyCode(isoCurrency));
if (fImpl) {
fSubTypeId = -1;
return;
}
// malloc error: fall back to the undefined currency
result = binarySearch(
gSubTypes, gOffsets[fTypeId], gOffsets[fTypeId + 1], kDefaultCurrency8);
U_ASSERT(result != -1);
}
fSubTypeId = result - gOffsets[fTypeId];
}
void MeasureUnit::initNoUnit(const char *subtype) {
@ -2262,10 +2291,14 @@ void MeasureUnit::initNoUnit(const char *subtype) {
void MeasureUnit::setTo(int32_t typeId, int32_t subTypeId) {
fTypeId = typeId;
fSubTypeId = subTypeId;
fCurrency[0] = 0;
delete fImpl;
fImpl = nullptr;
}
int32_t MeasureUnit::getOffset() const {
if (fTypeId < 0 || fSubTypeId < 0) {
return -1;
}
return gOffsets[fTypeId] + fSubTypeId;
}

View file

@ -0,0 +1,783 @@
// © 2020 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
// Extra functions for MeasureUnit not needed for all clients.
// Separate .o file so that it can be removed for modularity.
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
// Allow implicit conversion from char16_t* to UnicodeString for this file:
// Helpful in toString methods and elsewhere.
#define UNISTR_FROM_STRING_EXPLICIT
#include "cstring.h"
#include "measunit_impl.h"
#include "uarrsort.h"
#include "uassert.h"
#include "ucln_in.h"
#include "umutex.h"
#include "unicode/errorcode.h"
#include "unicode/localpointer.h"
#include "unicode/measunit.h"
#include "unicode/ucharstrie.h"
#include "unicode/ucharstriebuilder.h"
#include "cstr.h"
U_NAMESPACE_BEGIN
namespace {
// TODO: Propose a new error code for this?
constexpr UErrorCode kUnitIdentifierSyntaxError = U_ILLEGAL_ARGUMENT_ERROR;
// This is to ensure we only insert positive integers into the trie
constexpr int32_t kSIPrefixOffset = 64;
constexpr int32_t kCompoundPartOffset = 128;
enum CompoundPart {
COMPOUND_PART_PER = kCompoundPartOffset,
COMPOUND_PART_TIMES,
COMPOUND_PART_PLUS,
};
constexpr int32_t kPowerPartOffset = 256;
enum PowerPart {
POWER_PART_P2 = kPowerPartOffset + 2,
POWER_PART_P3,
POWER_PART_P4,
POWER_PART_P5,
POWER_PART_P6,
POWER_PART_P7,
POWER_PART_P8,
POWER_PART_P9,
POWER_PART_P10,
POWER_PART_P11,
POWER_PART_P12,
POWER_PART_P13,
POWER_PART_P14,
POWER_PART_P15,
};
constexpr int32_t kSimpleUnitOffset = 512;
const struct SIPrefixStrings {
const char* const string;
UMeasureSIPrefix value;
} gSIPrefixStrings[] = {
{ "yotta", UMEASURE_SI_PREFIX_YOTTA },
{ "zetta", UMEASURE_SI_PREFIX_ZETTA },
{ "exa", UMEASURE_SI_PREFIX_EXA },
{ "peta", UMEASURE_SI_PREFIX_PETA },
{ "tera", UMEASURE_SI_PREFIX_TERA },
{ "giga", UMEASURE_SI_PREFIX_GIGA },
{ "mega", UMEASURE_SI_PREFIX_MEGA },
{ "kilo", UMEASURE_SI_PREFIX_KILO },
{ "hecto", UMEASURE_SI_PREFIX_HECTO },
{ "deka", UMEASURE_SI_PREFIX_DEKA },
{ "deci", UMEASURE_SI_PREFIX_DECI },
{ "centi", UMEASURE_SI_PREFIX_CENTI },
{ "milli", UMEASURE_SI_PREFIX_MILLI },
{ "micro", UMEASURE_SI_PREFIX_MICRO },
{ "nano", UMEASURE_SI_PREFIX_NANO },
{ "pico", UMEASURE_SI_PREFIX_PICO },
{ "femto", UMEASURE_SI_PREFIX_FEMTO },
{ "atto", UMEASURE_SI_PREFIX_ATTO },
{ "zepto", UMEASURE_SI_PREFIX_ZEPTO },
{ "yocto", UMEASURE_SI_PREFIX_YOCTO },
};
// TODO(ICU-20920): Get this list from data
const char16_t* const gSimpleUnits[] = {
u"one", // note: expected to be index 0
u"candela",
u"carat",
u"gram",
u"ounce",
u"ounce-troy",
u"pound",
u"kilogram",
u"stone",
u"ton",
u"metric-ton",
u"earth-mass",
u"solar-mass",
u"point",
u"inch",
u"foot",
u"yard",
u"meter",
u"fathom",
u"furlong",
u"mile",
u"nautical-mile",
u"mile-scandinavian",
u"100-kilometer",
u"earth-radius",
u"solar-radius",
u"astronomical-unit",
u"light-year",
u"parsec",
u"second",
u"minute",
u"hour",
u"day",
u"day-person",
u"week",
u"week-person",
u"month",
u"month-person",
u"year",
u"year-person",
u"decade",
u"century",
u"ampere",
u"fahrenheit",
u"kelvin",
u"celsius",
u"arc-second",
u"arc-minute",
u"degree",
u"radian",
u"revolution",
u"item",
u"mole",
u"permillion",
u"permyriad",
u"permille",
u"percent",
u"karat",
u"portion",
u"bit",
u"byte",
u"dot",
u"pixel",
u"em",
u"hertz",
u"newton",
u"pound-force",
u"pascal",
u"bar",
u"atmosphere",
u"ofhg",
u"electronvolt",
u"dalton",
u"joule",
u"calorie",
u"british-thermal-unit",
u"foodcalorie",
u"therm-us",
u"watt",
u"horsepower",
u"solar-luminosity",
u"volt",
u"ohm",
u"dunam",
u"acre",
u"hectare",
u"teaspoon",
u"tablespoon",
u"fluid-ounce-imperial",
u"fluid-ounce",
u"cup",
u"cup-metric",
u"pint",
u"pint-metric",
u"quart",
u"liter",
u"gallon",
u"gallon-imperial",
u"bushel",
u"barrel",
u"knot",
u"g-force",
u"lux",
};
icu::UInitOnce gUnitExtrasInitOnce = U_INITONCE_INITIALIZER;
char16_t* kSerializedUnitExtrasStemTrie = nullptr;
UBool U_CALLCONV cleanupUnitExtras() {
uprv_free(kSerializedUnitExtrasStemTrie);
kSerializedUnitExtrasStemTrie = nullptr;
gUnitExtrasInitOnce.reset();
return TRUE;
}
void U_CALLCONV initUnitExtras(UErrorCode& status) {
ucln_i18n_registerCleanup(UCLN_I18N_UNIT_EXTRAS, cleanupUnitExtras);
UCharsTrieBuilder b(status);
if (U_FAILURE(status)) { return; }
// Add SI prefixes
for (const auto& siPrefixInfo : gSIPrefixStrings) {
UnicodeString uSIPrefix(siPrefixInfo.string, -1, US_INV);
b.add(uSIPrefix, siPrefixInfo.value + kSIPrefixOffset, status);
}
if (U_FAILURE(status)) { return; }
// Add syntax parts (compound, power prefixes)
b.add(u"-per-", COMPOUND_PART_PER, status);
b.add(u"-", COMPOUND_PART_TIMES, status);
b.add(u"-and-", COMPOUND_PART_PLUS, status);
b.add(u"square-", POWER_PART_P2, status);
b.add(u"cubic-", POWER_PART_P3, status);
b.add(u"p2-", POWER_PART_P2, status);
b.add(u"p3-", POWER_PART_P3, status);
b.add(u"p4-", POWER_PART_P4, status);
b.add(u"p5-", POWER_PART_P5, status);
b.add(u"p6-", POWER_PART_P6, status);
b.add(u"p7-", POWER_PART_P7, status);
b.add(u"p8-", POWER_PART_P8, status);
b.add(u"p9-", POWER_PART_P9, status);
b.add(u"p10-", POWER_PART_P10, status);
b.add(u"p11-", POWER_PART_P11, status);
b.add(u"p12-", POWER_PART_P12, status);
b.add(u"p13-", POWER_PART_P13, status);
b.add(u"p14-", POWER_PART_P14, status);
b.add(u"p15-", POWER_PART_P15, status);
if (U_FAILURE(status)) { return; }
// Add sanctioned simple units by offset
int32_t simpleUnitOffset = kSimpleUnitOffset;
for (auto simpleUnit : gSimpleUnits) {
b.add(simpleUnit, simpleUnitOffset++, status);
}
// Build the CharsTrie
// TODO: Use SLOW or FAST here?
UnicodeString result;
b.buildUnicodeString(USTRINGTRIE_BUILD_FAST, result, status);
if (U_FAILURE(status)) { return; }
// Copy the result into the global constant pointer
size_t numBytes = result.length() * sizeof(char16_t);
kSerializedUnitExtrasStemTrie = static_cast<char16_t*>(uprv_malloc(numBytes));
uprv_memcpy(kSerializedUnitExtrasStemTrie, result.getBuffer(), numBytes);
}
class Token {
public:
Token(int32_t match) : fMatch(match) {}
enum Type {
TYPE_UNDEFINED,
TYPE_SI_PREFIX,
TYPE_COMPOUND_PART,
TYPE_POWER_PART,
TYPE_ONE,
TYPE_SIMPLE_UNIT,
};
Type getType() const {
if (fMatch <= 0) {
UPRV_UNREACHABLE;
}
if (fMatch < kCompoundPartOffset) {
return TYPE_SI_PREFIX;
}
if (fMatch < kPowerPartOffset) {
return TYPE_COMPOUND_PART;
}
if (fMatch < kSimpleUnitOffset) {
return TYPE_POWER_PART;
}
if (fMatch == kSimpleUnitOffset) {
return TYPE_ONE;
}
return TYPE_SIMPLE_UNIT;
}
UMeasureSIPrefix getSIPrefix() const {
U_ASSERT(getType() == TYPE_SI_PREFIX);
return static_cast<UMeasureSIPrefix>(fMatch - kSIPrefixOffset);
}
int32_t getMatch() const {
U_ASSERT(getType() == TYPE_COMPOUND_PART);
return fMatch;
}
int8_t getPower() const {
U_ASSERT(getType() == TYPE_POWER_PART);
return static_cast<int8_t>(fMatch - kPowerPartOffset);
}
int32_t getSimpleUnitIndex() const {
U_ASSERT(getType() == TYPE_SIMPLE_UNIT);
return fMatch - kSimpleUnitOffset;
}
private:
int32_t fMatch;
};
class Parser {
public:
static Parser from(StringPiece source, UErrorCode& status) {
if (U_FAILURE(status)) {
return Parser();
}
umtx_initOnce(gUnitExtrasInitOnce, &initUnitExtras, status);
if (U_FAILURE(status)) {
return Parser();
}
return Parser(source);
}
MeasureUnitImpl parse(UErrorCode& status) {
MeasureUnitImpl result;
parseImpl(result, status);
return result;
}
private:
int32_t fIndex = 0;
StringPiece fSource;
UCharsTrie fTrie;
bool fAfterPer = false;
Parser() : fSource(""), fTrie(u"") {}
Parser(StringPiece source)
: fSource(source), fTrie(kSerializedUnitExtrasStemTrie) {}
inline bool hasNext() const {
return fIndex < fSource.length();
}
Token nextToken(UErrorCode& status) {
fTrie.reset();
int32_t match = -1;
int32_t previ = -1;
do {
auto result = fTrie.next(fSource.data()[fIndex++]);
if (result == USTRINGTRIE_NO_MATCH) {
break;
} else if (result == USTRINGTRIE_NO_VALUE) {
continue;
}
U_ASSERT(USTRINGTRIE_HAS_VALUE(result));
match = fTrie.getValue();
previ = fIndex;
if (result == USTRINGTRIE_FINAL_VALUE) {
break;
}
U_ASSERT(result == USTRINGTRIE_INTERMEDIATE_VALUE);
// continue;
} while (fIndex < fSource.length());
if (match < 0) {
status = kUnitIdentifierSyntaxError;
} else {
fIndex = previ;
}
return Token(match);
}
void nextSingleUnit(SingleUnitImpl& result, bool& sawPlus, UErrorCode& status) {
sawPlus = false;
if (U_FAILURE(status)) {
return;
}
if (!hasNext()) {
// probably "one"
return;
}
// state:
// 0 = no tokens seen yet (will accept power, SI prefix, or simple unit)
// 1 = power token seen (will not accept another power token)
// 2 = SI prefix token seen (will not accept a power or SI prefix token)
int32_t state = 0;
int32_t previ = fIndex;
// Maybe read a compound part
if (fIndex != 0) {
Token token = nextToken(status);
if (U_FAILURE(status)) {
return;
}
if (token.getType() != Token::TYPE_COMPOUND_PART) {
status = kUnitIdentifierSyntaxError;
return;
}
switch (token.getMatch()) {
case COMPOUND_PART_PER:
if (fAfterPer) {
status = kUnitIdentifierSyntaxError;
return;
}
fAfterPer = true;
result.dimensionality = -1;
break;
case COMPOUND_PART_TIMES:
break;
case COMPOUND_PART_PLUS:
sawPlus = true;
fAfterPer = false;
break;
}
previ = fIndex;
}
// Read a unit
while (hasNext()) {
Token token = nextToken(status);
if (U_FAILURE(status)) {
return;
}
switch (token.getType()) {
case Token::TYPE_POWER_PART:
if (state > 0) {
status = kUnitIdentifierSyntaxError;
return;
}
result.dimensionality *= token.getPower();
previ = fIndex;
state = 1;
break;
case Token::TYPE_SI_PREFIX:
if (state > 1) {
status = kUnitIdentifierSyntaxError;
return;
}
result.siPrefix = token.getSIPrefix();
previ = fIndex;
state = 2;
break;
case Token::TYPE_ONE:
// Skip "one" and go to the next unit
return nextSingleUnit(result, sawPlus, status);
case Token::TYPE_SIMPLE_UNIT:
result.index = token.getSimpleUnitIndex();
result.identifier = fSource.substr(previ, fIndex - previ);
return;
default:
status = kUnitIdentifierSyntaxError;
return;
}
}
// We ran out of tokens before finding a complete single unit.
status = kUnitIdentifierSyntaxError;
}
void parseImpl(MeasureUnitImpl& result, UErrorCode& status) {
if (U_FAILURE(status)) {
return;
}
int32_t unitNum = 0;
while (hasNext()) {
bool sawPlus;
SingleUnitImpl singleUnit;
nextSingleUnit(singleUnit, sawPlus, status);
if (U_FAILURE(status)) {
return;
}
if (singleUnit.index == 0) {
continue;
}
bool added = result.append(singleUnit, status);
if (sawPlus && !added) {
// Two similar units are not allowed in a sequence unit
status = kUnitIdentifierSyntaxError;
return;
}
if ((++unitNum) >= 2) {
UMeasureUnitComplexity complexity = sawPlus
? UMEASURE_UNIT_SEQUENCE
: UMEASURE_UNIT_COMPOUND;
if (unitNum == 2) {
U_ASSERT(result.complexity == UMEASURE_UNIT_SINGLE);
result.complexity = complexity;
} else if (result.complexity != complexity) {
// Mixed sequence and compound units
status = kUnitIdentifierSyntaxError;
return;
}
}
}
}
};
int32_t U_CALLCONV
compareSingleUnits(const void* /*context*/, const void* left, const void* right) {
auto realLeft = static_cast<const SingleUnitImpl* const*>(left);
auto realRight = static_cast<const SingleUnitImpl* const*>(right);
return (*realLeft)->compareTo(**realRight);
}
/**
* Generate the identifier string for a single unit in place.
*/
void serializeSingle(const SingleUnitImpl& singleUnit, bool first, CharString& output, UErrorCode& status) {
if (first && singleUnit.dimensionality < 0) {
output.append("one-per-", status);
}
if (singleUnit.index == 0) {
// Don't propagate SI prefixes and powers on one
output.append("one", status);
return;
}
int8_t posPower = std::abs(singleUnit.dimensionality);
if (posPower == 0) {
status = U_INTERNAL_PROGRAM_ERROR;
} else if (posPower == 1) {
// no-op
} else if (posPower == 2) {
output.append("square-", status);
} else if (posPower == 3) {
output.append("cubic-", status);
} else if (posPower < 10) {
output.append('p', status);
output.append(posPower + '0', status);
output.append('-', status);
} else if (posPower <= 15) {
output.append("p1", status);
output.append('0' + (posPower % 10), status);
output.append('-', status);
} else {
status = kUnitIdentifierSyntaxError;
}
if (U_FAILURE(status)) {
return;
}
if (singleUnit.siPrefix != UMEASURE_SI_PREFIX_ONE) {
for (const auto& siPrefixInfo : gSIPrefixStrings) {
if (siPrefixInfo.value == singleUnit.siPrefix) {
output.append(siPrefixInfo.string, status);
break;
}
}
}
if (U_FAILURE(status)) {
return;
}
output.append(singleUnit.identifier, status);
}
/**
* Normalize a MeasureUnitImpl and generate the identifier string in place.
*/
void serialize(MeasureUnitImpl& impl, UErrorCode& status) {
if (U_FAILURE(status)) {
return;
}
U_ASSERT(impl.identifier.isEmpty());
if (impl.units.length() == 0) {
impl.identifier.append("one", status);
return;
}
if (impl.complexity == UMEASURE_UNIT_COMPOUND) {
// Note: don't sort a SEQUENCE unit
uprv_sortArray(
impl.units.getAlias(),
impl.units.length(),
sizeof(impl.units[0]),
compareSingleUnits,
nullptr,
false,
&status);
if (U_FAILURE(status)) {
return;
}
}
serializeSingle(*impl.units[0], true, impl.identifier, status);
if (impl.units.length() == 1) {
return;
}
for (int32_t i = 1; i < impl.units.length(); i++) {
const SingleUnitImpl& prev = *impl.units[i-1];
const SingleUnitImpl& curr = *impl.units[i];
if (impl.complexity == UMEASURE_UNIT_SEQUENCE) {
impl.identifier.append("-and-", status);
serializeSingle(curr, true, impl.identifier, status);
} else {
if (prev.dimensionality > 0 && curr.dimensionality < 0) {
impl.identifier.append("-per-", status);
} else {
impl.identifier.append('-', status);
}
serializeSingle(curr, false, impl.identifier, status);
}
}
}
/** @return true if a new item was added */
bool appendImpl(MeasureUnitImpl& impl, const SingleUnitImpl& unit, UErrorCode& status) {
// Find a similar unit that already exists, to attempt to coalesce
SingleUnitImpl* oldUnit = nullptr;
for (int32_t i = 0; i < impl.units.length(); i++) {
auto* candidate = impl.units[i];
if (candidate->isCompatibleWith(unit)) {
oldUnit = candidate;
}
}
if (oldUnit) {
oldUnit->dimensionality += unit.dimensionality;
} else {
SingleUnitImpl* destination = impl.units.emplaceBack();
if (!destination) {
status = U_MEMORY_ALLOCATION_ERROR;
return false;
}
*destination = unit;
}
return (oldUnit == nullptr);
}
} // namespace
SingleUnitImpl SingleUnitImpl::forMeasureUnit(const MeasureUnit& measureUnit, UErrorCode& status) {
MeasureUnitImpl temp;
const MeasureUnitImpl& impl = MeasureUnitImpl::forMeasureUnit(measureUnit, temp, status);
if (U_FAILURE(status)) {
return {};
}
if (impl.units.length() == 0) {
return {};
}
if (impl.units.length() == 1) {
return *impl.units[0];
}
status = U_ILLEGAL_ARGUMENT_ERROR;
return {};
}
MeasureUnit SingleUnitImpl::build(UErrorCode& status) const {
MeasureUnitImpl temp;
temp.append(*this, status);
return std::move(temp).build(status);
}
MeasureUnitImpl MeasureUnitImpl::forIdentifier(StringPiece identifier, UErrorCode& status) {
return Parser::from(identifier, status).parse(status);
}
const MeasureUnitImpl& MeasureUnitImpl::forMeasureUnit(
const MeasureUnit& measureUnit, MeasureUnitImpl& memory, UErrorCode& status) {
if (measureUnit.fImpl) {
return *measureUnit.fImpl;
} else {
memory = Parser::from(measureUnit.getIdentifier(), status).parse(status);
return memory;
}
}
MeasureUnitImpl MeasureUnitImpl::forMeasureUnitMaybeCopy(
const MeasureUnit& measureUnit, UErrorCode& status) {
if (measureUnit.fImpl) {
return measureUnit.fImpl->copy(status);
} else {
return Parser::from(measureUnit.getIdentifier(), status).parse(status);
}
}
void MeasureUnitImpl::takeReciprocal(UErrorCode& /*status*/) {
identifier.clear();
for (int32_t i = 0; i < units.length(); i++) {
units[i]->dimensionality *= -1;
}
}
bool MeasureUnitImpl::append(const SingleUnitImpl& singleUnit, UErrorCode& status) {
identifier.clear();
return appendImpl(*this, singleUnit, status);
}
MeasureUnit MeasureUnitImpl::build(UErrorCode& status) && {
serialize(*this, status);
return MeasureUnit(std::move(*this));
}
MeasureUnit MeasureUnit::forIdentifier(StringPiece identifier, UErrorCode& status) {
return Parser::from(identifier, status).parse(status).build(status);
}
UMeasureUnitComplexity MeasureUnit::getComplexity(UErrorCode& status) const {
MeasureUnitImpl temp;
return MeasureUnitImpl::forMeasureUnit(*this, temp, status).complexity;
}
UMeasureSIPrefix MeasureUnit::getSIPrefix(UErrorCode& status) const {
return SingleUnitImpl::forMeasureUnit(*this, status).siPrefix;
}
MeasureUnit MeasureUnit::withSIPrefix(UMeasureSIPrefix prefix, UErrorCode& status) const {
SingleUnitImpl singleUnit = SingleUnitImpl::forMeasureUnit(*this, status);
singleUnit.siPrefix = prefix;
return singleUnit.build(status);
}
int32_t MeasureUnit::getDimensionality(UErrorCode& status) const {
return SingleUnitImpl::forMeasureUnit(*this, status).dimensionality;
}
MeasureUnit MeasureUnit::withDimensionality(int32_t dimensionality, UErrorCode& status) const {
SingleUnitImpl singleUnit = SingleUnitImpl::forMeasureUnit(*this, status);
singleUnit.dimensionality = dimensionality;
return singleUnit.build(status);
}
MeasureUnit MeasureUnit::reciprocal(UErrorCode& status) const {
MeasureUnitImpl impl = MeasureUnitImpl::forMeasureUnitMaybeCopy(*this, status);
impl.takeReciprocal(status);
return std::move(impl).build(status);
}
MeasureUnit MeasureUnit::product(const MeasureUnit& other, UErrorCode& status) const {
MeasureUnitImpl impl = MeasureUnitImpl::forMeasureUnitMaybeCopy(*this, status);
MeasureUnitImpl temp;
const MeasureUnitImpl& otherImpl = MeasureUnitImpl::forMeasureUnit(other, temp, status);
if (impl.complexity == UMEASURE_UNIT_SEQUENCE || otherImpl.complexity == UMEASURE_UNIT_SEQUENCE) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return {};
}
for (int32_t i = 0; i < otherImpl.units.length(); i++) {
impl.append(*otherImpl.units[i], status);
}
if (impl.units.length() > 1) {
impl.complexity = UMEASURE_UNIT_COMPOUND;
}
return std::move(impl).build(status);
}
LocalArray<MeasureUnit> MeasureUnit::splitToSingleUnits(int32_t& outCount, UErrorCode& status) const {
MeasureUnitImpl temp;
const MeasureUnitImpl& impl = MeasureUnitImpl::forMeasureUnit(*this, temp, status);
outCount = impl.units.length();
MeasureUnit* arr = new MeasureUnit[outCount];
for (int32_t i = 0; i < outCount; i++) {
arr[i] = impl.units[i]->build(status);
}
return LocalArray<MeasureUnit>(arr, status);
}
U_NAMESPACE_END
#endif /* !UNCONFIG_NO_FORMATTING */

View file

@ -0,0 +1,173 @@
// © 2020 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
#ifndef __MEASUNIT_IMPL_H__
#define __MEASUNIT_IMPL_H__
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
#include "unicode/measunit.h"
#include "cmemory.h"
#include "charstr.h"
U_NAMESPACE_BEGIN
static const char16_t kDefaultCurrency[] = u"XXX";
static const char kDefaultCurrency8[] = "XXX";
/**
* A struct representing a single unit (optional SI prefix and dimensionality).
*/
struct SingleUnitImpl : public UMemory {
/**
* Gets a single unit from the MeasureUnit. If there are multiple single units, sets an error
* code and return the base dimensionless unit. Parses if necessary.
*/
static SingleUnitImpl forMeasureUnit(const MeasureUnit& measureUnit, UErrorCode& status);
/** Transform this SingleUnitImpl into a MeasureUnit, simplifying if possible. */
MeasureUnit build(UErrorCode& status) const;
/** Compare this SingleUnitImpl to another SingleUnitImpl. */
int32_t compareTo(const SingleUnitImpl& other) const {
if (dimensionality < 0 && other.dimensionality > 0) {
// Positive dimensions first
return 1;
}
if (dimensionality > 0 && other.dimensionality < 0) {
return -1;
}
if (index < other.index) {
return -1;
}
if (index > other.index) {
return 1;
}
if (siPrefix < other.siPrefix) {
return -1;
}
if (siPrefix > other.siPrefix) {
return 1;
}
return 0;
}
/**
* Return whether this SingleUnitImpl is compatible with another for the purpose of coalescing.
*
* Units with the same base unit and SI prefix should match, except that they must also have
* the same dimensionality sign, such that we don't merge numerator and denominator.
*/
bool isCompatibleWith(const SingleUnitImpl& other) const {
return (compareTo(other) == 0);
}
/** Simple unit index, unique for every simple unit. */
int32_t index = 0;
/** Simple unit identifier; memory not owned by the SimpleUnit. */
StringPiece identifier;
/** SI prefix. **/
UMeasureSIPrefix siPrefix = UMEASURE_SI_PREFIX_ONE;
/** Dimensionality. **/
int32_t dimensionality = 1;
};
/**
* Internal representation of measurement units. Capable of representing all complexities of units,
* including sequence and compound units.
*/
struct MeasureUnitImpl : public UMemory {
/** Extract the MeasureUnitImpl from a MeasureUnit. */
static inline const MeasureUnitImpl* get(const MeasureUnit& measureUnit) {
return measureUnit.fImpl;
}
/**
* Parse a unit identifier into a MeasureUnitImpl.
*
* @param identifier The unit identifier string.
* @param status Set if the identifier string is not valid.
* @return A newly parsed value object.
*/
static MeasureUnitImpl forIdentifier(StringPiece identifier, UErrorCode& status);
/**
* Extract the MeasureUnitImpl from a MeasureUnit, or parse if it is not present.
*
* @param measureUnit The source MeasureUnit.
* @param memory A place to write the new MeasureUnitImpl if parsing is required.
* @param status Set if an error occurs.
* @return A reference to either measureUnit.fImpl or memory.
*/
static const MeasureUnitImpl& forMeasureUnit(
const MeasureUnit& measureUnit, MeasureUnitImpl& memory, UErrorCode& status);
/**
* Extract the MeasureUnitImpl from a MeasureUnit, or parse if it is not present.
*
* @param measureUnit The source MeasureUnit.
* @param status Set if an error occurs.
* @return A value object, either newly parsed or copied from measureUnit.
*/
static MeasureUnitImpl forMeasureUnitMaybeCopy(
const MeasureUnit& measureUnit, UErrorCode& status);
/**
* Used for currency units.
*/
static inline MeasureUnitImpl forCurrencyCode(StringPiece currencyCode) {
MeasureUnitImpl result;
UErrorCode localStatus = U_ZERO_ERROR;
result.identifier.append(currencyCode, localStatus);
// localStatus is not expected to fail since currencyCode should be 3 chars long
return result;
}
/** Transform this MeasureUnitImpl into a MeasureUnit, simplifying if possible. */
MeasureUnit build(UErrorCode& status) &&;
/**
* Create a copy of this MeasureUnitImpl. Don't use copy constructor to make this explicit.
*/
inline MeasureUnitImpl copy(UErrorCode& status) const {
MeasureUnitImpl result;
result.complexity = complexity;
result.units.appendAll(units, status);
result.identifier.append(identifier, status);
return result;
}
/** Mutates this MeasureUnitImpl to take the reciprocal. */
void takeReciprocal(UErrorCode& status);
/** Mutates this MeasureUnitImpl to append a single unit. */
bool append(const SingleUnitImpl& singleUnit, UErrorCode& status);
/** The complexity, either SINGLE, COMPOUND, or SEQUENCE. */
UMeasureUnitComplexity complexity = UMEASURE_UNIT_SINGLE;
/**
* The list of simple units. These may be summed or multiplied, based on the value of the
* complexity field.
*/
MaybeStackVector<SingleUnitImpl> units;
/**
* The full unit identifier. Owned by the MeasureUnitImpl. Empty if not computed.
*/
CharString identifier;
};
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_FORMATTING */
#endif //__MEASUNIT_IMPL_H__

View file

@ -11,7 +11,7 @@ U_NAMESPACE_BEGIN
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(NoUnit)
NoUnit U_EXPORT2 NoUnit::base() {
return NoUnit("base");
return NoUnit("one");
}
NoUnit U_EXPORT2 NoUnit::percent() {

View file

@ -102,4 +102,16 @@ const LocalizedNumberFormatter& LocalizedNumberFormatterAsFormat::getNumberForma
return fFormatter;
}
// Definitions of public API methods (put here for dependency disentanglement)
Format* LocalizedNumberFormatter::toFormat(UErrorCode& status) const {
if (U_FAILURE(status)) {
return nullptr;
}
LocalPointer<LocalizedNumberFormatterAsFormat> retval(
new LocalizedNumberFormatterAsFormat(*this, fMacros.locale), status);
return retval.orphan();
}
#endif /* #if !UCONFIG_NO_FORMATTING */

View file

@ -11,7 +11,6 @@
#include "number_formatimpl.h"
#include "umutex.h"
#include "number_asformat.h"
#include "number_skeletons.h"
#include "number_utils.h"
#include "number_utypes.h"
#include "util.h"
@ -21,6 +20,16 @@ using namespace icu;
using namespace icu::number;
using namespace icu::number::impl;
#if (U_PF_WINDOWS <= U_PLATFORM && U_PLATFORM <= U_PF_CYGWIN) && defined(_MSC_VER)
// Ignore MSVC warning 4661. This is generated for NumberFormatterSettings<>::toSkeleton() as this method
// is defined elsewhere (in number_skeletons.cpp). The compiler is warning that the explicit template instantiation
// inside this single translation unit (CPP file) is incomplete, and thus it isn't sure if the template class is
// fully defined. However, since each translation unit explicitly instantiates all the necessary template classes,
// they will all be passed to the linker, and the linker will still find and export all the class members.
#pragma warning(push)
#pragma warning(disable: 4661)
#endif
template<typename Derived>
Derived NumberFormatterSettings<Derived>::notation(const Notation& notation) const& {
Derived copy(*this);
@ -320,16 +329,7 @@ Derived NumberFormatterSettings<Derived>::macros(impl::MacroProps&& macros)&& {
return move;
}
template<typename Derived>
UnicodeString NumberFormatterSettings<Derived>::toSkeleton(UErrorCode& status) const {
if (U_FAILURE(status)) {
return ICU_Utility::makeBogusString();
}
if (fMacros.copyErrorTo(status)) {
return ICU_Utility::makeBogusString();
}
return skeleton::generate(fMacros, status);
}
// Note: toSkeleton defined in number_skeletons.cpp
template<typename Derived>
LocalPointer<Derived> NumberFormatterSettings<Derived>::clone() const & {
@ -358,15 +358,7 @@ LocalizedNumberFormatter NumberFormatter::withLocale(const Locale& locale) {
return with().locale(locale);
}
UnlocalizedNumberFormatter
NumberFormatter::forSkeleton(const UnicodeString& skeleton, UErrorCode& status) {
return skeleton::create(skeleton, nullptr, status);
}
UnlocalizedNumberFormatter
NumberFormatter::forSkeleton(const UnicodeString& skeleton, UParseError& perror, UErrorCode& status) {
return skeleton::create(skeleton, &perror, status);
}
// Note: forSkeleton defined in number_skeletons.cpp
template<typename T> using NFS = NumberFormatterSettings<T>;
@ -766,14 +758,11 @@ int32_t LocalizedNumberFormatter::getCallCount() const {
return umtx_loadAcquire(*callCount);
}
Format* LocalizedNumberFormatter::toFormat(UErrorCode& status) const {
if (U_FAILURE(status)) {
return nullptr;
}
LocalPointer<LocalizedNumberFormatterAsFormat> retval(
new LocalizedNumberFormatterAsFormat(*this, fMacros.locale), status);
return retval.orphan();
}
// Note: toFormat defined in number_asformat.cpp
#if (U_PF_WINDOWS <= U_PLATFORM && U_PLATFORM <= U_PF_CYGWIN) && defined(_MSC_VER)
// Warning 4661.
#pragma warning(pop)
#endif
#endif /* #if !UCONFIG_NO_FORMATTING */

View file

@ -188,6 +188,12 @@ LongNameHandler*
LongNameHandler::forMeasureUnit(const Locale &loc, const MeasureUnit &unitRef, const MeasureUnit &perUnit,
const UNumberUnitWidth &width, const PluralRules *rules,
const MicroPropsGenerator *parent, UErrorCode &status) {
if (uprv_strlen(unitRef.getType()) == 0 || uprv_strlen(perUnit.getType()) == 0) {
// TODO(ICU-20941): Unsanctioned unit. Not yet fully supported. Set an error code.
status = U_UNSUPPORTED_ERROR;
return nullptr;
}
MeasureUnit unit = unitRef;
if (uprv_strcmp(perUnit.getType(), "none") != 0) {
// Compound unit: first try to simplify (e.g., meters per second is its own unit).

View file

@ -22,6 +22,8 @@
#include "charstr.h"
#include "string_segment.h"
#include "unicode/errorcode.h"
#include "util.h"
#include "measunit_impl.h"
using namespace icu;
using namespace icu::number;
@ -1036,12 +1038,23 @@ void blueprint_helpers::parseIdentifierUnitOption(const StringSegment& segment,
SKELETON_UCHAR_TO_CHAR(buffer, segment.toTempUnicodeString(), 0, segment.length(), status);
ErrorCode internalStatus;
MeasureUnit::parseCoreUnitIdentifier(buffer.toStringPiece(), &macros.unit, &macros.perUnit, internalStatus);
auto fullUnit = MeasureUnitImpl::forIdentifier(buffer.toStringPiece(), internalStatus);
if (internalStatus.isFailure()) {
// throw new SkeletonSyntaxException("Invalid core unit identifier", segment, e);
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
return;
}
// TODO(ICU-20941): Clean this up.
for (int32_t i = 0; i < fullUnit.units.length(); i++) {
SingleUnitImpl* subUnit = fullUnit.units[i];
if (subUnit->dimensionality > 0) {
macros.unit = macros.unit.product(subUnit->build(status), status);
} else {
subUnit->dimensionality *= -1;
macros.perUnit = macros.perUnit.product(subUnit->build(status), status);
}
}
}
void blueprint_helpers::parseFractionStem(const StringSegment& segment, MacroProps& macros,
@ -1670,4 +1683,49 @@ bool GeneratorHelpers::scale(const MacroProps& macros, UnicodeString& sb, UError
}
// Definitions of public API methods (put here for dependency disentanglement)
#if (U_PF_WINDOWS <= U_PLATFORM && U_PLATFORM <= U_PF_CYGWIN) && defined(_MSC_VER)
// Ignore MSVC warning 4661. This is generated for NumberFormatterSettings<>::toSkeleton() as this method
// is defined elsewhere (in number_skeletons.cpp). The compiler is warning that the explicit template instantiation
// inside this single translation unit (CPP file) is incomplete, and thus it isn't sure if the template class is
// fully defined. However, since each translation unit explicitly instantiates all the necessary template classes,
// they will all be passed to the linker, and the linker will still find and export all the class members.
#pragma warning(push)
#pragma warning(disable: 4661)
#endif
template<typename Derived>
UnicodeString NumberFormatterSettings<Derived>::toSkeleton(UErrorCode& status) const {
if (U_FAILURE(status)) {
return ICU_Utility::makeBogusString();
}
if (fMacros.copyErrorTo(status)) {
return ICU_Utility::makeBogusString();
}
return skeleton::generate(fMacros, status);
}
// Declare all classes that implement NumberFormatterSettings
// See https://stackoverflow.com/a/495056/1407170
template
class icu::number::NumberFormatterSettings<icu::number::UnlocalizedNumberFormatter>;
template
class icu::number::NumberFormatterSettings<icu::number::LocalizedNumberFormatter>;
UnlocalizedNumberFormatter
NumberFormatter::forSkeleton(const UnicodeString& skeleton, UErrorCode& status) {
return skeleton::create(skeleton, nullptr, status);
}
UnlocalizedNumberFormatter
NumberFormatter::forSkeleton(const UnicodeString& skeleton, UParseError& perror, UErrorCode& status) {
return skeleton::create(skeleton, &perror, status);
}
#if (U_PF_WINDOWS <= U_PLATFORM && U_PLATFORM <= U_PF_CYGWIN) && defined(_MSC_VER)
// Warning 4661.
#pragma warning(pop)
#endif
#endif /* #if !UCONFIG_NO_FORMATTING */

View file

@ -26,6 +26,7 @@ as the functions are suppose to be called.
It's usually best to have child dependencies called first. */
typedef enum ECleanupI18NType {
UCLN_I18N_START = -1,
UCLN_I18N_UNIT_EXTRAS,
UCLN_I18N_NUMBER_SKELETONS,
UCLN_I18N_CURRENCY_SPACING,
UCLN_I18N_SPOOF,

View file

@ -20,6 +20,7 @@
#if !UCONFIG_NO_FORMATTING
#include "unicode/unistr.h"
#include "unicode/localpointer.h"
/**
* \file
@ -29,6 +30,202 @@
U_NAMESPACE_BEGIN
class StringEnumeration;
struct MeasureUnitImpl;
#ifndef U_HIDE_DRAFT_API
/**
* Enumeration for unit complexity. There are three levels:
*
* - SINGLE: A single unit, optionally with a power and/or SI prefix. Examples: hectare,
* square-kilometer, kilojoule, one-per-second.
* - COMPOUND: A unit composed of the product of multiple single units. Examples:
* meter-per-second, kilowatt-hour, kilogram-meter-per-square-second.
* - SEQUENCE: A unit composed of the sum of multiple single units. Examples: foot+inch,
* hour+minute+second, degree+arcminute+arcsecond.
*
* The complexity determines which operations are available. For example, you cannot set the power
* or SI prefix of a compound unit.
*
* @draft ICU 67
*/
enum UMeasureUnitComplexity {
/**
* A single unit, like kilojoule.
*
* @draft ICU 67
*/
UMEASURE_UNIT_SINGLE,
/**
* A compound unit, like meter-per-second.
*
* @draft ICU 67
*/
UMEASURE_UNIT_COMPOUND,
/**
* A sequence unit, like hour+minute.
*
* @draft ICU 67
*/
UMEASURE_UNIT_SEQUENCE
};
/**
* Enumeration for SI prefixes, such as "kilo".
*
* @draft ICU 67
*/
typedef enum UMeasureSIPrefix {
/**
* SI prefix: yotta, 10^24.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_YOTTA = 24,
/**
* SI prefix: zetta, 10^21.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_ZETTA = 21,
/**
* SI prefix: exa, 10^18.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_EXA = 18,
/**
* SI prefix: peta, 10^15.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_PETA = 15,
/**
* SI prefix: tera, 10^12.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_TERA = 12,
/**
* SI prefix: giga, 10^9.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_GIGA = 9,
/**
* SI prefix: mega, 10^6.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_MEGA = 6,
/**
* SI prefix: kilo, 10^3.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_KILO = 3,
/**
* SI prefix: hecto, 10^2.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_HECTO = 2,
/**
* SI prefix: deka, 10^1.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_DEKA = 1,
/**
* The absence of an SI prefix.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_ONE = 0,
/**
* SI prefix: deci, 10^-1.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_DECI = -1,
/**
* SI prefix: centi, 10^-2.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_CENTI = -2,
/**
* SI prefix: milli, 10^-3.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_MILLI = -3,
/**
* SI prefix: micro, 10^-6.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_MICRO = -6,
/**
* SI prefix: nano, 10^-9.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_NANO = -9,
/**
* SI prefix: pico, 10^-12.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_PICO = -12,
/**
* SI prefix: femto, 10^-15.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_FEMTO = -15,
/**
* SI prefix: atto, 10^-18.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_ATTO = -18,
/**
* SI prefix: zepto, 10^-21.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_ZEPTO = -21,
/**
* SI prefix: yocto, 10^-24.
*
* @draft ICU 67
*/
UMEASURE_SI_PREFIX_YOCTO = -24
} UMeasureSIPrefix;
#endif // U_HIDE_DRAFT_API
/**
* A unit such as length, mass, volume, currency, etc. A unit is
@ -52,13 +249,43 @@ class U_I18N_API MeasureUnit: public UObject {
* @stable ICU 3.0
*/
MeasureUnit(const MeasureUnit &other);
#ifndef U_HIDE_DRAFT_API
/**
* Assignment operator.
* Move constructor.
* @draft ICU 67
*/
MeasureUnit(MeasureUnit &&other) noexcept;
/**
* Construct a MeasureUnit from a CLDR Sequence Unit Identifier, defined in UTS 35.
* Validates and canonicalizes the identifier.
*
* <pre>
* MeasureUnit example = MeasureUnit::forIdentifier("furlong-per-nanosecond")
* </pre>
*
* @param identifier The CLDR Sequence Unit Identifier
* @param status Set if the identifier is invalid.
* @draft ICU 67
*/
static MeasureUnit forIdentifier(StringPiece identifier, UErrorCode& status);
#endif // U_HIDE_DRAFT_API
/**
* Copy assignment operator.
* @stable ICU 3.0
*/
MeasureUnit &operator=(const MeasureUnit &other);
#ifndef U_HIDE_DRAFT_API
/**
* Move assignment operator.
* @draft ICU 67
*/
MeasureUnit &operator=(MeasureUnit &&other) noexcept;
#endif // U_HIDE_DRAFT_API
/**
* Returns a polymorphic clone of this object. The result will
* have the same class as returned by getDynamicClassID().
@ -90,16 +317,152 @@ class U_I18N_API MeasureUnit: public UObject {
/**
* Get the type.
*
* If the unit does not have a type, the empty string is returned.
*
* @stable ICU 53
*/
const char *getType() const;
/**
* Get the sub type.
*
* If the unit does not have a subtype, the empty string is returned.
*
* @stable ICU 53
*/
const char *getSubtype() const;
#ifndef U_HIDE_DRAFT_API
/**
* Get the CLDR Sequence Unit Identifier for this MeasureUnit, as defined in UTS 35.
*
* @return The string form of this unit, owned by this MeasureUnit.
* @draft ICU 67
*/
const char* getIdentifier() const;
/**
* Compute the complexity of the unit. See UMeasureUnitComplexity for more information.
*
* @param status Set if an error occurs.
* @return The unit complexity.
* @draft ICU 67
*/
UMeasureUnitComplexity getComplexity(UErrorCode& status) const;
/**
* Creates a MeasureUnit which is this SINGLE unit augmented with the specified SI prefix.
* For example, UMEASURE_SI_PREFIX_KILO for "kilo".
*
* There is sufficient locale data to format all standard SI prefixes.
*
* NOTE: Only works on SINGLE units. If this is a COMPOUND or SEQUENCE unit, an error will
* occur. For more information, see UMeasureUnitComplexity.
*
* @param prefix The SI prefix, from UMeasureSIPrefix.
* @param status Set if this is not a SINGLE unit or if another error occurs.
* @return A new SINGLE unit.
* @draft ICU 67
*/
MeasureUnit withSIPrefix(UMeasureSIPrefix prefix, UErrorCode& status) const;
/**
* Gets the current SI prefix of this SINGLE unit. For example, if the unit has the SI prefix
* "kilo", then UMEASURE_SI_PREFIX_KILO is returned.
*
* NOTE: Only works on SINGLE units. If this is a COMPOUND or SEQUENCE unit, an error will
* occur. For more information, see UMeasureUnitComplexity.
*
* @param status Set if this is not a SINGLE unit or if another error occurs.
* @return The SI prefix of this SINGLE unit, from UMeasureSIPrefix.
* @draft ICU 67
*/
UMeasureSIPrefix getSIPrefix(UErrorCode& status) const;
/**
* Creates a MeasureUnit which is this SINGLE unit augmented with the specified dimensionality
* (power). For example, if dimensionality is 2, the unit will be squared.
*
* NOTE: Only works on SINGLE units. If this is a COMPOUND or SEQUENCE unit, an error will
* occur. For more information, see UMeasureUnitComplexity.
*
* @param dimensionality The dimensionality (power).
* @param status Set if this is not a SINGLE unit or if another error occurs.
* @return A new SINGLE unit.
* @draft ICU 67
*/
MeasureUnit withDimensionality(int32_t dimensionality, UErrorCode& status) const;
/**
* Gets the dimensionality (power) of this MeasureUnit. For example, if the unit is square,
* then 2 is returned.
*
* NOTE: Only works on SINGLE units. If this is a COMPOUND or SEQUENCE unit, an error will
* occur. For more information, see UMeasureUnitComplexity.
*
* @param status Set if this is not a SINGLE unit or if another error occurs.
* @return The dimensionality (power) of this simple unit.
* @draft ICU 67
*/
int32_t getDimensionality(UErrorCode& status) const;
/**
* Gets the reciprocal of this MeasureUnit, with the numerator and denominator flipped.
*
* For example, if the receiver is "meter-per-second", the unit "second-per-meter" is returned.
*
* NOTE: Only works on SINGLE and COMPOUND units. If this is a SEQUENCE unit, an error will
* occur. For more information, see UMeasureUnitComplexity.
*
* @param status Set if this is a SEQUENCE unit or if another error occurs.
* @return The reciprocal of the target unit.
* @draft ICU 67
*/
MeasureUnit reciprocal(UErrorCode& status) const;
/**
* Gets the product of this unit with another unit. This is a way to build units from
* constituent parts.
*
* The numerator and denominator are preserved through this operation.
*
* For example, if the receiver is "kilowatt" and the argument is "hour-per-day", then the
* unit "kilowatt-hour-per-day" is returned.
*
* NOTE: Only works on SINGLE and COMPOUND units. If either unit (receivee and argument) is a
* SEQUENCE unit, an error will occur. For more information, see UMeasureUnitComplexity.
*
* @param other The MeasureUnit to multiply with the target.
* @param status Set if this or other is a SEQUENCE unit or if another error occurs.
* @return The product of the target unit with the provided unit.
* @draft ICU 67
*/
MeasureUnit product(const MeasureUnit& other, UErrorCode& status) const;
#endif // U_HIDE_DRAFT_API
#ifndef U_HIDE_INTERNAL_API
/**
* Gets the list of SINGLE units contained within a SEQUENCE of COMPOUND unit.
*
* Examples:
* - Given "meter-kilogram-per-second", three units will be returned: "meter",
* "kilogram", and "one-per-second".
* - Given "hour+minute+second", three units will be returned: "hour", "minute",
* and "second".
*
* If this is a SINGLE unit, an array of length 1 will be returned.
*
* TODO(ICU-21021): Finalize this API and propose it as draft.
*
* @param outCount The number of elements in the return array.
* @param status Set if an error occurs.
* @return An array of single units, owned by the caller.
* @internal ICU 67 Technical Preview
*/
LocalArray<MeasureUnit> splitToSingleUnits(int32_t& outCount, UErrorCode& status) const;
#endif // U_HIDE_INTERNAL_API
/**
* getAvailable gets all of the available units.
* If there are too many units to fit into destCapacity then the
@ -194,26 +557,6 @@ class U_I18N_API MeasureUnit: public UObject {
*/
static int32_t internalGetIndexForTypeAndSubtype(const char *type, const char *subtype);
/**
* ICU use only.
* @return Whether subType is known to ICU.
* @internal
*/
static bool findBySubType(StringPiece subType, MeasureUnit* output);
/**
* ICU use only.
* Parse a core unit identifier into a numerator and denominator unit.
* @param coreUnitIdentifier The string to parse.
* @param numerator Output: set to the numerator unit.
* @param denominator Output: set to the denominator unit, if present.
* @param status Set to U_ILLEGAL_ARGUMENT_ERROR if the core unit identifier is not known.
* @return Whether both a numerator and denominator are returned.
* @internal
*/
static bool parseCoreUnitIdentifier(
StringPiece coreUnitIdentifier, MeasureUnit* numerator, MeasureUnit* denominator, UErrorCode& status);
/**
* ICU use only.
* @internal
@ -3342,7 +3685,7 @@ class U_I18N_API MeasureUnit: public UObject {
* For ICU use only.
* @internal
*/
void initCurrency(const char *isoCurrency);
void initCurrency(StringPiece isoCurrency);
/**
* For ICU use only.
@ -3353,16 +3696,26 @@ class U_I18N_API MeasureUnit: public UObject {
#endif /* U_HIDE_INTERNAL_API */
private:
int32_t fTypeId;
int32_t fSubTypeId;
char fCurrency[4];
MeasureUnit(int32_t typeId, int32_t subTypeId) : fTypeId(typeId), fSubTypeId(subTypeId) {
fCurrency[0] = 0;
}
// If non-null, fImpl is owned by the MeasureUnit.
MeasureUnitImpl* fImpl;
// These two ints are indices into static string lists in measunit.cpp
int16_t fSubTypeId;
int8_t fTypeId;
MeasureUnit(int32_t typeId, int32_t subTypeId);
MeasureUnit(MeasureUnitImpl&& impl);
void setTo(int32_t typeId, int32_t subTypeId);
int32_t getOffset() const;
static MeasureUnit *create(int typeId, int subTypeId, UErrorCode &status);
/**
* @return Whether subType is known to ICU.
*/
static bool findBySubType(StringPiece subType, MeasureUnit* output);
friend struct MeasureUnitImpl;
};
U_NAMESPACE_END

View file

@ -1436,6 +1436,16 @@ struct U_I18N_API MacroProps : public UMemory {
} // namespace impl
#if (U_PF_WINDOWS <= U_PLATFORM && U_PLATFORM <= U_PF_CYGWIN) && defined(_MSC_VER)
// Ignore MSVC warning 4661. This is generated for NumberFormatterSettings<>::toSkeleton() as this method
// is defined elsewhere (in number_skeletons.cpp). The compiler is warning that the explicit template instantiation
// inside this single translation unit (CPP file) is incomplete, and thus it isn't sure if the template class is
// fully defined. However, since each translation unit explicitly instantiates all the necessary template classes,
// they will all be passed to the linker, and the linker will still find and export all the class members.
#pragma warning(push)
#pragma warning(disable: 4661)
#endif
/**
* An abstract base class for specifying settings related to number formatting. This class is implemented by
* {@link UnlocalizedNumberFormatter} and {@link LocalizedNumberFormatter}. This class is not intended for
@ -2402,6 +2412,11 @@ class U_I18N_API LocalizedNumberFormatter
friend class UnlocalizedNumberFormatter;
};
#if (U_PF_WINDOWS <= U_PLATFORM && U_PLATFORM <= U_PF_CYGWIN) && defined(_MSC_VER)
// Warning 4661.
#pragma warning(pop)
#endif
/**
* The result of a number formatting operation. This class allows the result to be exported in several data types,
* including a UnicodeString and a FieldPositionIterator.

View file

@ -869,7 +869,8 @@ library: i18n
dayperiodrules
listformatter
formatting formattable_cnv regex regex_cnv translit
double_conversion number_representation number_output numberformatter numberparser
double_conversion number_representation number_output numberformatter number_skeletons numberparser
units_extra
universal_time_scale
uclean_i18n
@ -981,15 +982,15 @@ group: number_output
group: numberformatter
# ICU 60+ NumberFormatter API
number_affixutils.o number_asformat.o
number_capi.o number_compact.o number_currencysymbols.o
number_affixutils.o
number_compact.o number_currencysymbols.o
number_decimfmtprops.o
number_fluent.o number_formatimpl.o
number_grouping.o number_integerwidth.o number_longnames.o
number_mapper.o number_modifiers.o number_multiplier.o
number_notation.o number_padding.o
number_patternmodifier.o number_patternstring.o number_rounding.o
number_scientific.o number_skeletons.o
number_scientific.o
currpinf.o dcfmtsym.o numsys.o
numrange_fluent.o numrange_impl.o
deps
@ -997,6 +998,13 @@ group: numberformatter
number_representation number_output
uclean_i18n common
group: number_skeletons
# Number skeleton support; separated from numberformatter
number_skeletons.o number_capi.o number_asformat.o
deps
numberformatter
units_extra
group: numberparser
numparse_affixes.o numparse_compositions.o numparse_currency.o
numparse_decimal.o numparse_impl.o numparse_parsednumber.o
@ -1037,7 +1045,8 @@ group: formatting
# messageformat
choicfmt.o msgfmt.o plurfmt.o selfmt.o umsg.o
deps
decnumber formattable format units numberformatter numberparser formatted_value_sbimpl
decnumber formattable format units numberformatter number_skeletons numberparser
formatted_value_sbimpl
listformatter
dayperiodrules
collation collation_builder # for rbnf
@ -1053,10 +1062,15 @@ group: sharedbreakiterator
deps
breakiterator
group: units_extra
measunit_extra.o
deps
units ucharstriebuilder ucharstrie uclean_i18n
group: units
measunit.o currunit.o nounit.o
deps
stringenumeration
stringenumeration errorcode
group: decnumber
decContext.o decNumber.o

View file

@ -79,6 +79,10 @@ private:
void Test20332_PersonUnits();
void TestNumericTime();
void TestNumericTimeSomeSpecialFormats();
void TestInvalidIdentifiers();
void TestCompoundUnitOperations();
void TestIdentifiers();
void verifyFormat(
const char *description,
const MeasureFormat &fmt,
@ -138,6 +142,21 @@ private:
NumberFormat::EAlignmentFields field,
int32_t start,
int32_t end);
void verifySingleUnit(
const MeasureUnit& unit,
UMeasureSIPrefix siPrefix,
int8_t power,
const char* identifier);
void verifyCompoundUnit(
const MeasureUnit& unit,
const char* identifier,
const char** subIdentifiers,
int32_t subIdentifierCount);
void verifySequenceUnit(
const MeasureUnit& unit,
const char* identifier,
const char** subIdentifiers,
int32_t subIdentifierCount);
};
void MeasureFormatTest::runIndexedTest(
@ -182,6 +201,9 @@ void MeasureFormatTest::runIndexedTest(
TESTCASE_AUTO(Test20332_PersonUnits);
TESTCASE_AUTO(TestNumericTime);
TESTCASE_AUTO(TestNumericTimeSomeSpecialFormats);
TESTCASE_AUTO(TestInvalidIdentifiers);
TESTCASE_AUTO(TestCompoundUnitOperations);
TESTCASE_AUTO(TestIdentifiers);
TESTCASE_AUTO_END;
}
@ -3215,6 +3237,212 @@ void MeasureFormatTest::TestNumericTimeSomeSpecialFormats() {
verifyFormat("Danish fhoursFminutes", fmtDa, fhoursFminutes, 2, "2.03,877");
}
void MeasureFormatTest::TestInvalidIdentifiers() {
IcuTestErrorCode status(*this, "TestInvalidIdentifiers");
const char* const inputs[] = {
"kilo",
"kilokilo",
"onekilo",
"meterkilo",
"meter-kilo",
"k",
"meter-",
"meter+",
"-meter",
"+meter",
"-kilometer",
"+kilometer",
"-p2-meter",
"+p2-meter",
"+",
"-"
};
for (const auto& input : inputs) {
status.setScope(input);
MeasureUnit::forIdentifier(input, status);
status.expectErrorAndReset(U_ILLEGAL_ARGUMENT_ERROR);
}
}
void MeasureFormatTest::TestCompoundUnitOperations() {
IcuTestErrorCode status(*this, "TestCompoundUnitOperations");
MeasureUnit::forIdentifier("kilometer-per-second-joule", status);
MeasureUnit kilometer = MeasureUnit::getKilometer();
MeasureUnit cubicMeter = MeasureUnit::getCubicMeter();
MeasureUnit meter = kilometer.withSIPrefix(UMEASURE_SI_PREFIX_ONE, status);
MeasureUnit centimeter1 = kilometer.withSIPrefix(UMEASURE_SI_PREFIX_CENTI, status);
MeasureUnit centimeter2 = meter.withSIPrefix(UMEASURE_SI_PREFIX_CENTI, status);
MeasureUnit cubicDecimeter = cubicMeter.withSIPrefix(UMEASURE_SI_PREFIX_DECI, status);
verifySingleUnit(kilometer, UMEASURE_SI_PREFIX_KILO, 1, "kilometer");
verifySingleUnit(meter, UMEASURE_SI_PREFIX_ONE, 1, "meter");
verifySingleUnit(centimeter1, UMEASURE_SI_PREFIX_CENTI, 1, "centimeter");
verifySingleUnit(centimeter2, UMEASURE_SI_PREFIX_CENTI, 1, "centimeter");
verifySingleUnit(cubicDecimeter, UMEASURE_SI_PREFIX_DECI, 3, "cubic-decimeter");
assertTrue("centimeter equality", centimeter1 == centimeter2);
assertTrue("kilometer inequality", centimeter1 != kilometer);
MeasureUnit squareMeter = meter.withDimensionality(2, status);
MeasureUnit overCubicCentimeter = centimeter1.withDimensionality(-3, status);
MeasureUnit quarticKilometer = kilometer.withDimensionality(4, status);
MeasureUnit overQuarticKilometer1 = kilometer.withDimensionality(-4, status);
verifySingleUnit(squareMeter, UMEASURE_SI_PREFIX_ONE, 2, "square-meter");
verifySingleUnit(overCubicCentimeter, UMEASURE_SI_PREFIX_CENTI, -3, "one-per-cubic-centimeter");
verifySingleUnit(quarticKilometer, UMEASURE_SI_PREFIX_KILO, 4, "p4-kilometer");
verifySingleUnit(overQuarticKilometer1, UMEASURE_SI_PREFIX_KILO, -4, "one-per-p4-kilometer");
assertTrue("power inequality", quarticKilometer != overQuarticKilometer1);
MeasureUnit overQuarticKilometer2 = quarticKilometer.reciprocal(status);
MeasureUnit overQuarticKilometer3 = kilometer.product(kilometer, status)
.product(kilometer, status)
.product(kilometer, status)
.reciprocal(status);
MeasureUnit overQuarticKilometer4 = meter.withDimensionality(4, status)
.reciprocal(status)
.withSIPrefix(UMEASURE_SI_PREFIX_KILO, status);
verifySingleUnit(overQuarticKilometer2, UMEASURE_SI_PREFIX_KILO, -4, "one-per-p4-kilometer");
verifySingleUnit(overQuarticKilometer3, UMEASURE_SI_PREFIX_KILO, -4, "one-per-p4-kilometer");
verifySingleUnit(overQuarticKilometer4, UMEASURE_SI_PREFIX_KILO, -4, "one-per-p4-kilometer");
assertTrue("reciprocal equality", overQuarticKilometer1 == overQuarticKilometer2);
assertTrue("reciprocal equality", overQuarticKilometer1 == overQuarticKilometer3);
assertTrue("reciprocal equality", overQuarticKilometer1 == overQuarticKilometer4);
MeasureUnit kiloSquareSecond = MeasureUnit::getSecond()
.withDimensionality(2, status).withSIPrefix(UMEASURE_SI_PREFIX_KILO, status);
MeasureUnit meterSecond = meter.product(kiloSquareSecond, status);
MeasureUnit cubicMeterSecond1 = meter.withDimensionality(3, status).product(kiloSquareSecond, status);
MeasureUnit centimeterSecond1 = meter.withSIPrefix(UMEASURE_SI_PREFIX_CENTI, status).product(kiloSquareSecond, status);
MeasureUnit secondCubicMeter = kiloSquareSecond.product(meter.withDimensionality(3, status), status);
MeasureUnit secondCentimeter = kiloSquareSecond.product(meter.withSIPrefix(UMEASURE_SI_PREFIX_CENTI, status), status);
MeasureUnit secondCentimeterPerKilometer = secondCentimeter.product(kilometer.reciprocal(status), status);
verifySingleUnit(kiloSquareSecond, UMEASURE_SI_PREFIX_KILO, 2, "square-kilosecond");
const char* meterSecondSub[] = {"meter", "square-kilosecond"};
verifyCompoundUnit(meterSecond, "meter-square-kilosecond",
meterSecondSub, UPRV_LENGTHOF(meterSecondSub));
const char* cubicMeterSecond1Sub[] = {"cubic-meter", "square-kilosecond"};
verifyCompoundUnit(cubicMeterSecond1, "cubic-meter-square-kilosecond",
cubicMeterSecond1Sub, UPRV_LENGTHOF(cubicMeterSecond1Sub));
const char* centimeterSecond1Sub[] = {"centimeter", "square-kilosecond"};
verifyCompoundUnit(centimeterSecond1, "centimeter-square-kilosecond",
centimeterSecond1Sub, UPRV_LENGTHOF(centimeterSecond1Sub));
const char* secondCubicMeterSub[] = {"cubic-meter", "square-kilosecond"};
verifyCompoundUnit(secondCubicMeter, "cubic-meter-square-kilosecond",
secondCubicMeterSub, UPRV_LENGTHOF(secondCubicMeterSub));
const char* secondCentimeterSub[] = {"centimeter", "square-kilosecond"};
verifyCompoundUnit(secondCentimeter, "centimeter-square-kilosecond",
secondCentimeterSub, UPRV_LENGTHOF(secondCentimeterSub));
const char* secondCentimeterPerKilometerSub[] = {"centimeter", "square-kilosecond", "one-per-kilometer"};
verifyCompoundUnit(secondCentimeterPerKilometer, "centimeter-square-kilosecond-per-kilometer",
secondCentimeterPerKilometerSub, UPRV_LENGTHOF(secondCentimeterPerKilometerSub));
assertTrue("reordering equality", cubicMeterSecond1 == secondCubicMeter);
assertTrue("additional simple units inequality", secondCubicMeter != secondCentimeter);
// Don't allow get/set power or SI prefix on compound units
status.errIfFailureAndReset();
meterSecond.getDimensionality(status);
status.expectErrorAndReset(U_ILLEGAL_ARGUMENT_ERROR);
meterSecond.withDimensionality(3, status);
status.expectErrorAndReset(U_ILLEGAL_ARGUMENT_ERROR);
meterSecond.getSIPrefix(status);
status.expectErrorAndReset(U_ILLEGAL_ARGUMENT_ERROR);
meterSecond.withSIPrefix(UMEASURE_SI_PREFIX_CENTI, status);
status.expectErrorAndReset(U_ILLEGAL_ARGUMENT_ERROR);
// Test that StringPiece does not overflow
MeasureUnit centimeter3 = MeasureUnit::forIdentifier({secondCentimeter.getIdentifier(), 10}, status);
verifySingleUnit(centimeter3, UMEASURE_SI_PREFIX_CENTI, 1, "centimeter");
assertTrue("string piece equality", centimeter1 == centimeter3);
MeasureUnit footInch = MeasureUnit::forIdentifier("foot-and-inch", status);
MeasureUnit inchFoot = MeasureUnit::forIdentifier("inch-and-foot", status);
const char* footInchSub[] = {"foot", "inch"};
verifySequenceUnit(footInch, "foot-and-inch",
footInchSub, UPRV_LENGTHOF(footInchSub));
const char* inchFootSub[] = {"inch", "foot"};
verifySequenceUnit(inchFoot, "inch-and-foot",
inchFootSub, UPRV_LENGTHOF(inchFootSub));
assertTrue("order matters inequality", footInch != inchFoot);
MeasureUnit one1;
MeasureUnit one2 = MeasureUnit::forIdentifier("one", status);
MeasureUnit one3 = MeasureUnit::forIdentifier("", status);
MeasureUnit squareOne = one2.withDimensionality(2, status);
MeasureUnit onePerOne = one2.reciprocal(status);
MeasureUnit squareKiloOne = squareOne.withSIPrefix(UMEASURE_SI_PREFIX_KILO, status);
MeasureUnit onePerSquareKiloOne = squareKiloOne.reciprocal(status);
MeasureUnit oneOne = MeasureUnit::forIdentifier("one-one", status);
MeasureUnit onePlusOne = MeasureUnit::forIdentifier("one-and-one", status);
MeasureUnit kilometer2 = one2.product(kilometer, status);
verifySingleUnit(one1, UMEASURE_SI_PREFIX_ONE, 1, "one");
verifySingleUnit(one2, UMEASURE_SI_PREFIX_ONE, 1, "one");
verifySingleUnit(one3, UMEASURE_SI_PREFIX_ONE, 1, "one");
verifySingleUnit(squareOne, UMEASURE_SI_PREFIX_ONE, 1, "one");
verifySingleUnit(onePerOne, UMEASURE_SI_PREFIX_ONE, 1, "one");
verifySingleUnit(squareKiloOne, UMEASURE_SI_PREFIX_ONE, 1, "one");
verifySingleUnit(onePerSquareKiloOne, UMEASURE_SI_PREFIX_ONE, 1, "one");
verifySingleUnit(oneOne, UMEASURE_SI_PREFIX_ONE, 1, "one");
verifySingleUnit(onePlusOne, UMEASURE_SI_PREFIX_ONE, 1, "one");
verifySingleUnit(kilometer2, UMEASURE_SI_PREFIX_KILO, 1, "kilometer");
assertTrue("one equality", one1 == one2);
assertTrue("one equality", one2 == one3);
assertTrue("one-per-one equality", onePerOne == onePerSquareKiloOne);
assertTrue("kilometer equality", kilometer == kilometer2);
// Test out-of-range powers
MeasureUnit power15 = MeasureUnit::forIdentifier("p15-kilometer", status);
verifySingleUnit(power15, UMEASURE_SI_PREFIX_KILO, 15, "p15-kilometer");
status.errIfFailureAndReset();
MeasureUnit power16a = MeasureUnit::forIdentifier("p16-kilometer", status);
status.expectErrorAndReset(U_ILLEGAL_ARGUMENT_ERROR);
MeasureUnit power16b = power15.product(kilometer, status);
status.expectErrorAndReset(U_ILLEGAL_ARGUMENT_ERROR);
MeasureUnit powerN15 = MeasureUnit::forIdentifier("one-per-p15-kilometer", status);
verifySingleUnit(powerN15, UMEASURE_SI_PREFIX_KILO, -15, "one-per-p15-kilometer");
status.errIfFailureAndReset();
MeasureUnit powerN16a = MeasureUnit::forIdentifier("one-per-p16-kilometer", status);
status.expectErrorAndReset(U_ILLEGAL_ARGUMENT_ERROR);
MeasureUnit powerN16b = powerN15.product(overQuarticKilometer1, status);
status.expectErrorAndReset(U_ILLEGAL_ARGUMENT_ERROR);
}
void MeasureFormatTest::TestIdentifiers() {
IcuTestErrorCode status(*this, "TestIdentifiers");
struct TestCase {
bool valid;
const char* id;
const char* normalized;
} cases[] = {
{ true, "square-meter-per-square-meter", "square-meter-per-square-meter" },
// TODO(ICU-20920): Add more test cases once the proper ranking is available.
};
for (const auto& cas : cases) {
status.setScope(cas.id);
MeasureUnit unit = MeasureUnit::forIdentifier(cas.id, status);
if (!cas.valid) {
status.expectErrorAndReset(U_ILLEGAL_ARGUMENT_ERROR);
continue;
}
const char* actual = unit.getIdentifier();
assertEquals(cas.id, cas.normalized, actual);
status.errIfFailureAndReset();
}
}
void MeasureFormatTest::verifyFieldPosition(
const char *description,
@ -3286,6 +3514,97 @@ void MeasureFormatTest::verifyFormat(
}
}
void MeasureFormatTest::verifySingleUnit(
const MeasureUnit& unit,
UMeasureSIPrefix siPrefix,
int8_t power,
const char* identifier) {
IcuTestErrorCode status(*this, "verifySingleUnit");
UnicodeString uid(identifier, -1, US_INV);
assertEquals(uid + ": SI prefix",
siPrefix,
unit.getSIPrefix(status));
status.errIfFailureAndReset("%s: SI prefix", identifier);
assertEquals(uid + ": Power",
static_cast<int32_t>(power),
static_cast<int32_t>(unit.getDimensionality(status)));
status.errIfFailureAndReset("%s: Power", identifier);
assertEquals(uid + ": Identifier",
identifier,
unit.getIdentifier());
status.errIfFailureAndReset("%s: Identifier", identifier);
assertTrue(uid + ": Constructor",
unit == MeasureUnit::forIdentifier(identifier, status));
status.errIfFailureAndReset("%s: Constructor", identifier);
assertEquals(uid + ": Complexity",
UMEASURE_UNIT_SINGLE,
unit.getComplexity(status));
status.errIfFailureAndReset("%s: Complexity", identifier);
}
void MeasureFormatTest::verifyCompoundUnit(
const MeasureUnit& unit,
const char* identifier,
const char** subIdentifiers,
int32_t subIdentifierCount) {
IcuTestErrorCode status(*this, "verifyCompoundUnit");
UnicodeString uid(identifier, -1, US_INV);
assertEquals(uid + ": Identifier",
identifier,
unit.getIdentifier());
status.errIfFailureAndReset("%s: Identifier", identifier);
assertTrue(uid + ": Constructor",
unit == MeasureUnit::forIdentifier(identifier, status));
status.errIfFailureAndReset("%s: Constructor", identifier);
assertEquals(uid + ": Complexity",
UMEASURE_UNIT_COMPOUND,
unit.getComplexity(status));
status.errIfFailureAndReset("%s: Complexity", identifier);
int32_t length;
LocalArray<MeasureUnit> subUnits = unit.splitToSingleUnits(length, status);
assertEquals(uid + ": Length", subIdentifierCount, length);
for (int32_t i = 0;; i++) {
if (i >= subIdentifierCount || i >= length) break;
assertEquals(uid + ": Sub-unit #" + Int64ToUnicodeString(i),
subIdentifiers[i],
subUnits[i].getIdentifier());
assertEquals(uid + ": Sub-unit Complexity",
UMEASURE_UNIT_SINGLE,
subUnits[i].getComplexity(status));
}
}
void MeasureFormatTest::verifySequenceUnit(
const MeasureUnit& unit,
const char* identifier,
const char** subIdentifiers,
int32_t subIdentifierCount) {
IcuTestErrorCode status(*this, "verifySequenceUnit");
UnicodeString uid(identifier, -1, US_INV);
assertEquals(uid + ": Identifier",
identifier,
unit.getIdentifier());
status.errIfFailureAndReset("%s: Identifier", identifier);
assertTrue(uid + ": Constructor",
unit == MeasureUnit::forIdentifier(identifier, status));
status.errIfFailureAndReset("%s: Constructor", identifier);
assertEquals(uid + ": Complexity",
UMEASURE_UNIT_SEQUENCE,
unit.getComplexity(status));
status.errIfFailureAndReset("%s: Complexity", identifier);
int32_t length;
LocalArray<MeasureUnit> subUnits = unit.splitToSingleUnits(length, status);
assertEquals(uid + ": Length", subIdentifierCount, length);
for (int32_t i = 0;; i++) {
if (i >= subIdentifierCount || i >= length) break;
assertEquals(uid + ": Sub-unit #" + Int64ToUnicodeString(i),
subIdentifiers[i],
subUnits[i].getIdentifier());
}
}
extern IntlTest *createMeasureFormatTest() {
return new MeasureFormatTest();
}

View file

@ -675,7 +675,7 @@ void NumberFormatterApiTest::unitCompoundMeasure() {
assertFormatDescending(
u"Meters Per Second Short (unit that simplifies) and perUnit method",
u"measure-unit/length-meter per-measure-unit/duration-second",
u"~unit/meter-per-second", // does not round-trip to the full skeleton above
u"unit/meter-per-second",
NumberFormatter::with().unit(METER).perUnit(SECOND),
Locale::getEnglish(),
u"87,650 m/s",
@ -719,6 +719,23 @@ void NumberFormatterApiTest::unitCompoundMeasure() {
u"0.08765 J/fur",
u"0.008765 J/fur",
u"0 J/fur");
// TODO(ICU-20941): Support constructions such as this one.
// assertFormatDescending(
// u"Joules Per Furlong Short with unit identifier via API",
// u"measure-unit/energy-joule per-measure-unit/length-furlong",
// u"unit/joule-per-furlong",
// NumberFormatter::with().unit(MeasureUnit::forIdentifier("joule-per-furlong", status)),
// Locale::getEnglish(),
// u"87,650 J/fur",
// u"8,765 J/fur",
// u"876.5 J/fur",
// u"87.65 J/fur",
// u"8.765 J/fur",
// u"0.8765 J/fur",
// u"0.08765 J/fur",
// u"0.008765 J/fur",
// u"0 J/fur");
}
void NumberFormatterApiTest::unitCurrency() {
@ -2811,7 +2828,7 @@ void NumberFormatterApiTest::fieldPositionCoverage() {
FormattedNumber result = assertFormatSingle(
message,
u"measure-unit/length-meter per-measure-unit/duration-second unit-width-full-name",
u"~unit/meter-per-second unit-width-full-name", // does not round-trip to the full skeleton above
u"unit/meter-per-second unit-width-full-name",
NumberFormatter::with().unit(METER).perUnit(SECOND).unitWidth(UNUM_UNIT_WIDTH_FULL_NAME),
"ky", // locale with the interesting data
68,

View file

@ -2166,6 +2166,8 @@ void NumberFormatTest::TestCurrencyUnit(void){
static const UChar BAD2[] = u"??A";
static const UChar XXX[] = u"XXX";
static const char XXX8[] = "XXX";
static const UChar XYZ[] = u"XYZ";
static const char XYZ8[] = "XYZ";
static const UChar INV[] = u"{$%";
static const char INV8[] = "{$%";
static const UChar ZZZ[] = u"zz";
@ -2182,10 +2184,16 @@ void NumberFormatTest::TestCurrencyUnit(void){
CurrencyUnit cu(USD, ec);
assertSuccess("CurrencyUnit", ec);
assertEquals("getISOCurrency()", USD, cu.getISOCurrency());
assertEquals("getSubtype()", USD8, cu.getSubtype());
// Test XYZ, a valid but non-standard currency.
// Note: Country code XY is private-use, so XYZ should remain unallocated.
CurrencyUnit extended(XYZ, ec);
assertSuccess("non-standard", ec);
assertEquals("non-standard", XYZ, extended.getISOCurrency());
assertEquals("non-standard", XYZ8, extended.getSubtype());
CurrencyUnit inv(INV, ec);
assertEquals("non-invariant", U_INVARIANT_CONVERSION_ERROR, ec);
assertEquals("non-invariant", XXX, inv.getISOCurrency());
@ -2259,15 +2267,20 @@ void NumberFormatTest::TestCurrencyUnit(void){
// Test slicing
MeasureUnit sliced1 = cu;
MeasureUnit sliced2 = cu;
MeasureUnit sliced3 = extended;
assertEquals("Subtype after slicing 1", USD8, sliced1.getSubtype());
assertEquals("Subtype after slicing 2", USD8, sliced2.getSubtype());
assertEquals("Subtype after slicing 3", XYZ8, sliced3.getSubtype());
CurrencyUnit restored1(sliced1, ec);
CurrencyUnit restored2(sliced2, ec);
CurrencyUnit restored3(sliced3, ec);
assertSuccess("Restoring from MeasureUnit", ec);
assertEquals("Subtype after restoring 1", USD8, restored1.getSubtype());
assertEquals("Subtype after restoring 2", USD8, restored2.getSubtype());
assertEquals("Subtype after restoring 3", XYZ8, restored3.getSubtype());
assertEquals("ISO Code after restoring 1", USD, restored1.getISOCurrency());
assertEquals("ISO Code after restoring 2", USD, restored2.getISOCurrency());
assertEquals("ISO Code after restoring 3", XYZ, restored3.getISOCurrency());
// Test copy constructor failure
LocalPointer<MeasureUnit> meter(MeasureUnit::createMeter(ec));