// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /************************************************************************ * Copyright (C) 1996-2012, International Business Machines Corporation * and others. All Rights Reserved. ************************************************************************ * 2003-nov-07 srl Port from Java */ #include "astro.h" #if !UCONFIG_NO_FORMATTING #include "unicode/calendar.h" #include #include #include "unicode/putil.h" #include "uhash.h" #include "umutex.h" #include "ucln_in.h" #include "putilimp.h" #include // for toString() #if defined (PI) #undef PI #endif #ifdef U_DEBUG_ASTRO # include "uresimp.h" // for debugging static void debug_astro_loc(const char *f, int32_t l) { fprintf(stderr, "%s:%d: ", f, l); } static void debug_astro_msg(const char *pat, ...) { va_list ap; va_start(ap, pat); vfprintf(stderr, pat, ap); fflush(stderr); } #include "unicode/datefmt.h" #include "unicode/ustring.h" static const char * debug_astro_date(UDate d) { static char gStrBuf[1024]; static DateFormat *df = nullptr; if(df == nullptr) { df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS()); df->adoptTimeZone(TimeZone::getGMT()->clone()); } UnicodeString str; df->format(d,str); u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1); return gStrBuf; } // must use double parens, i.e.: U_DEBUG_ASTRO_MSG(("four is: %d",4)); #define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;} #else #define U_DEBUG_ASTRO_MSG(x) #endif static inline UBool isINVALID(double d) { return(uprv_isNaN(d)); } static icu::UMutex ccLock; U_CDECL_BEGIN static UBool calendar_astro_cleanup() { return true; } U_CDECL_END U_NAMESPACE_BEGIN /** * The number of standard hours in one sidereal day. * Approximately 24.93. * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ #define SIDEREAL_DAY (23.93446960027) /** * The number of sidereal hours in one mean solar day. * Approximately 24.07. * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ #define SOLAR_DAY (24.065709816) /** * The average number of solar days from one new moon to the next. This is the time * it takes for the moon to return the same ecliptic longitude as the sun. * It is longer than the sidereal month because the sun's longitude increases * during the year due to the revolution of the earth around the sun. * Approximately 29.53. * * @see #SIDEREAL_MONTH * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ const double CalendarAstronomer::SYNODIC_MONTH = 29.530588853; /** * The average number of days it takes * for the moon to return to the same ecliptic longitude relative to the * stellar background. This is referred to as the sidereal month. * It is shorter than the synodic month due to * the revolution of the earth around the sun. * Approximately 27.32. * * @see #SYNODIC_MONTH * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ #define SIDEREAL_MONTH 27.32166 /** * The average number number of days between successive vernal equinoxes. * Due to the precession of the earth's * axis, this is not precisely the same as the sidereal year. * Approximately 365.24 * * @see #SIDEREAL_YEAR * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ #define TROPICAL_YEAR 365.242191 /** * The average number of days it takes * for the sun to return to the same position against the fixed stellar * background. This is the duration of one orbit of the earth about the sun * as it would appear to an outside observer. * Due to the precession of the earth's * axis, this is not precisely the same as the tropical year. * Approximately 365.25. * * @see #TROPICAL_YEAR * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ #define SIDEREAL_YEAR 365.25636 //------------------------------------------------------------------------- // Time-related constants //------------------------------------------------------------------------- /** * The number of milliseconds in one second. * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ #define SECOND_MS U_MILLIS_PER_SECOND /** * The number of milliseconds in one minute. * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ #define MINUTE_MS U_MILLIS_PER_MINUTE /** * The number of milliseconds in one hour. * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ #define HOUR_MS U_MILLIS_PER_HOUR /** * The number of milliseconds in one day. * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ #define DAY_MS U_MILLIS_PER_DAY /** * The start of the julian day numbering scheme used by astronomers, which * is 1/1/4713 BC (Julian), 12:00 GMT. This is given as the number of milliseconds * since 1/1/1970 AD (Gregorian), a negative number. * Note that julian day numbers and * the Julian calendar are not the same thing. Also note that * julian days start at noon, not midnight. * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ #define JULIAN_EPOCH_MS -210866760000000.0 /** * Milliseconds value for 0.0 January 2000 AD. */ #define EPOCH_2000_MS 946598400000.0 //------------------------------------------------------------------------- // Assorted private data used for conversions //------------------------------------------------------------------------- // My own copies of these so compilers are more likely to optimize them away const double CalendarAstronomer::PI = 3.14159265358979323846; #define CalendarAstronomer_PI2 (CalendarAstronomer::PI*2.0) #define RAD_HOUR ( 12 / CalendarAstronomer::PI ) // radians -> hours #define DEG_RAD ( CalendarAstronomer::PI / 180 ) // degrees -> radians #define RAD_DEG ( 180 / CalendarAstronomer::PI ) // radians -> degrees /*** * Given 'value', add or subtract 'range' until 0 <= 'value' < range. * The modulus operator. */ inline static double normalize(double value, double range) { return value - range * ClockMath::floorDivide(value, range); } /** * Normalize an angle so that it's in the range 0 - 2pi. * For positive angles this is just (angle % 2pi), but the Java * mod operator doesn't work that way for negative numbers.... */ inline static double norm2PI(double angle) { return normalize(angle, CalendarAstronomer::PI * 2.0); } /** * Normalize an angle into the range -PI - PI */ inline static double normPI(double angle) { return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI; } //------------------------------------------------------------------------- // Constructors //------------------------------------------------------------------------- /** * Construct a new CalendarAstronomer object that is initialized to * the current date and time. * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ CalendarAstronomer::CalendarAstronomer(): fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(false) { clearCache(); } /** * Construct a new CalendarAstronomer object that is initialized to * the specified date and time. * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), moonPosition(0,0), moonPositionSet(false) { clearCache(); } CalendarAstronomer::~CalendarAstronomer() { } //------------------------------------------------------------------------- // Time and date getters and setters //------------------------------------------------------------------------- /** * Set the current date and time of this CalendarAstronomer object. All * astronomical calculations are performed based on this time setting. * * @param aTime the date and time, expressed as the number of milliseconds since * 1/1/1970 0:00 GMT (Gregorian). * * @see #setDate * @see #getTime * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ void CalendarAstronomer::setTime(UDate aTime) { fTime = aTime; clearCache(); } /** * Get the current time of this CalendarAstronomer object, * represented as the number of milliseconds since * 1/1/1970 AD 0:00 GMT (Gregorian). * * @see #setTime * @see #getDate * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ UDate CalendarAstronomer::getTime() { return fTime; } /** * Get the current time of this CalendarAstronomer object, * expressed as a "julian day number", which is the number of elapsed * days since 1/1/4713 BC (Julian), 12:00 GMT. * * @see #setJulianDay * @see #JULIAN_EPOCH_MS * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ double CalendarAstronomer::getJulianDay() { if (isINVALID(julianDay)) { julianDay = (fTime - JULIAN_EPOCH_MS) / static_cast(DAY_MS); } return julianDay; } //------------------------------------------------------------------------- // Coordinate transformations, all based on the current time of this object //------------------------------------------------------------------------- /** * Convert from ecliptic to equatorial coordinates. * * @param eclipLong The ecliptic longitude * @param eclipLat The ecliptic latitude * * @return The corresponding point in equatorial coordinates. * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat) { // See page 42 of "Practical Astronomy with your Calculator", // by Peter Duffet-Smith, for details on the algorithm. double obliq = eclipticObliquity(); double sinE = ::sin(obliq); double cosE = cos(obliq); double sinL = ::sin(eclipLong); double cosL = cos(eclipLong); double sinB = ::sin(eclipLat); double cosB = cos(eclipLat); double tanB = tan(eclipLat); result.set(atan2(sinL*cosE - tanB*sinE, cosL), asin(sinB*cosE + cosB*sinE*sinL) ); return result; } //------------------------------------------------------------------------- // The Sun //------------------------------------------------------------------------- // // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990 // Angles are in radians (after multiplying by CalendarAstronomer::PI/180) // #define JD_EPOCH 2447891.5 // Julian day of epoch #define SUN_ETA_G (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch #define SUN_OMEGA_G (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee #define SUN_E 0.016713 // Eccentricity of orbit //double sunR0 1.495585e8 // Semi-major axis in KM //double sunTheta0 (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0 // The following three methods, which compute the sun parameters // given above for an arbitrary epoch (whatever time the object is // set to), make only a small difference as compared to using the // above constants. E.g., Sunset times might differ by ~12 // seconds. Furthermore, the eta-g computation is befuddled by // Duffet-Smith's incorrect coefficients (p.86). I've corrected // the first-order coefficient but the others may be off too - no // way of knowing without consulting another source. // /** // * Return the sun's ecliptic longitude at perigee for the current time. // * See Duffett-Smith, p. 86. // * @return radians // */ // private double getSunOmegaG() { // double T = getJulianCentury(); // return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD; // } // /** // * Return the sun's ecliptic longitude for the current time. // * See Duffett-Smith, p. 86. // * @return radians // */ // private double getSunEtaG() { // double T = getJulianCentury(); // //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD; // // // // The above line is from Duffett-Smith, and yields manifestly wrong // // results. The below constant is derived empirically to match the // // constant he gives for the 1990 EPOCH. // // // return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD; // } // /** // * Return the sun's eccentricity of orbit for the current time. // * See Duffett-Smith, p. 86. // * @return double // */ // private double getSunE() { // double T = getJulianCentury(); // return 0.01675104 - (0.0000418 + 0.000000126*T)*T; // } /** * Find the "true anomaly" (longitude) of an object from * its mean anomaly and the eccentricity of its orbit. This uses * an iterative solution to Kepler's equation. * * @param meanAnomaly The object's longitude calculated as if it were in * a regular, circular orbit, measured in radians * from the point of perigee. * * @param eccentricity The eccentricity of the orbit * * @return The true anomaly (longitude) measured in radians */ static double trueAnomaly(double meanAnomaly, double eccentricity) { // First, solve Kepler's equation iteratively // Duffett-Smith, p.90 double delta; double E = meanAnomaly; do { delta = E - eccentricity * ::sin(E) - meanAnomaly; E = E - delta / (1 - eccentricity * ::cos(E)); } while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity) /(1-eccentricity) ) ); } /** * The longitude of the sun at the time specified by this object. * The longitude is measured in radians along the ecliptic * from the "first point of Aries," the point at which the ecliptic * crosses the earth's equatorial plane at the vernal equinox. *

* Currently, this method uses an approximation of the two-body Kepler's * equation for the earth and the sun. It does not take into account the * perturbations caused by the other planets, the moon, etc. * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ double CalendarAstronomer::getSunLongitude() { // See page 86 of "Practical Astronomy with your Calculator", // by Peter Duffet-Smith, for details on the algorithm. if (isINVALID(sunLongitude)) { getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun); } return sunLongitude; } /** * TODO Make this public when the entire class is package-private. */ /*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly) { // See page 86 of "Practical Astronomy with your Calculator", // by Peter Duffet-Smith, for details on the algorithm. double day = jDay - JD_EPOCH; // Days since epoch // Find the angular distance the sun in a fictitious // circular orbit has travelled since the epoch. double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day); // The epoch wasn't at the sun's perigee; find the angular distance // since perigee, which is called the "mean anomaly" meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G); // Now find the "true anomaly", e.g. the real solar longitude // by solving Kepler's equation for an elliptical orbit // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different // equations; omega_g is to be correct. longitude = norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G); } /** * Constant representing the winter solstice. * For use with {@link #getSunTime getSunTime}. * Note: In this case, "winter" refers to the northern hemisphere's seasons. * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ double CalendarAstronomer::WINTER_SOLSTICE() { return ((CalendarAstronomer::PI*3)/2); } CalendarAstronomer::AngleFunc::~AngleFunc() {} /** * Find the next time at which the sun's ecliptic longitude will have * the desired value. * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc { public: virtual ~SunTimeAngleFunc(); virtual double eval(CalendarAstronomer& a) override { return a.getSunLongitude(); } }; SunTimeAngleFunc::~SunTimeAngleFunc() {} UDate CalendarAstronomer::getSunTime(double desired, UBool next) { SunTimeAngleFunc func; return timeOfAngle( func, desired, TROPICAL_YEAR, MINUTE_MS, next); } //------------------------------------------------------------------------- // The Moon //------------------------------------------------------------------------- #define moonL0 (318.351648 * CalendarAstronomer::PI/180 ) // Mean long. at epoch #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 ) // Mean long. of perigee #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 ) // Mean long. of node #define moonI ( 5.145366 * CalendarAstronomer::PI/180 ) // Inclination of orbit #define moonE ( 0.054900 ) // Eccentricity of orbit // These aren't used right now #define moonA ( 3.84401e5 ) // semi-major axis (km) #define moonT0 ( 0.5181 * CalendarAstronomer::PI/180 ) // Angular size at distance A #define moonPi ( 0.9507 * CalendarAstronomer::PI/180 ) // Parallax at distance A /** * The position of the moon at the time set on this * object, in equatorial coordinates. * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition() { // // See page 142 of "Practical Astronomy with your Calculator", // by Peter Duffet-Smith, for details on the algorithm. // if (moonPositionSet == false) { // Calculate the solar longitude. Has the side effect of // filling in "meanAnomalySun" as well. getSunLongitude(); // // Find the # of days since the epoch of our orbital parameters. // TODO: Convert the time of day portion into ephemeris time // double day = getJulianDay() - JD_EPOCH; // Days since epoch // Calculate the mean longitude and anomaly of the moon, based on // a circular orbit. Similar to the corresponding solar calculation. double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0); double meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0); // // Calculate the following corrections: // Evection: the sun's gravity affects the moon's eccentricity // Annual Eqn: variation in the effect due to earth-sun distance // A3: correction factor (for ???) // double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude) - meanAnomalyMoon); double annual = 0.1858*PI/180 * ::sin(meanAnomalySun); double a3 = 0.3700*PI/180 * ::sin(meanAnomalySun); meanAnomalyMoon += evection - annual - a3; // // More correction factors: // center equation of the center correction // a4 yet another error correction (???) // // TODO: Skip the equation of the center correction and solve Kepler's eqn? // double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon); double a4 = 0.2140*PI/180 * ::sin(2 * meanAnomalyMoon); // Now find the moon's corrected longitude double moonLongitude = meanLongitude + evection + center - annual + a4; // // And finally, find the variation, caused by the fact that the sun's // gravitational pull on the moon varies depending on which side of // the earth the moon is on // double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude)); moonLongitude += variation; // // What we've calculated so far is the moon's longitude in the plane // of its own orbit. Now map to the ecliptic to get the latitude // and longitude. First we need to find the longitude of the ascending // node, the position on the ecliptic where it is crossed by the moon's // orbit as it crosses from the southern to the northern hemisphere. // double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day); nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun); double y = ::sin(moonLongitude - nodeLongitude); double x = cos(moonLongitude - nodeLongitude); moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude; double moonEclipLat = ::asin(y * ::sin(moonI)); eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat); moonPositionSet = true; } return moonPosition; } /** * The "age" of the moon at the time specified in this object. * This is really the angle between the * current ecliptic longitudes of the sun and the moon, * measured in radians. * * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ double CalendarAstronomer::getMoonAge() { // See page 147 of "Practical Astronomy with your Calculator", // by Peter Duffet-Smith, for details on the algorithm. // // Force the moon's position to be calculated. We're going to use // some the intermediate results cached during that calculation. // getMoonPosition(); return norm2PI(moonEclipLong - sunLongitude); } /** * Constant representing a new moon. * For use with {@link #getMoonTime getMoonTime} * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() { return CalendarAstronomer::MoonAge(0); } /** * Constant representing the moon's last quarter. * For use with {@link #getMoonTime getMoonTime} * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc { public: virtual ~MoonTimeAngleFunc(); virtual double eval(CalendarAstronomer& a) override { return a.getMoonAge(); } }; MoonTimeAngleFunc::~MoonTimeAngleFunc() {} /*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() { return CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2); }*/ /** * Find the next or previous time at which the moon will be in the * desired phase. *

* @param desired The desired phase of the moon. * @param next true if the next occurrence of the phase * is desired, false for the previous occurrence. * @internal * @deprecated ICU 2.4. This class may be removed or modified. */ UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) { MoonTimeAngleFunc func; return timeOfAngle( func, desired.value, SYNODIC_MONTH, MINUTE_MS, next); } //------------------------------------------------------------------------- // Interpolation methods for finding the time at which a given event occurs //------------------------------------------------------------------------- UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired, double periodDays, double epsilon, UBool next) { // Find the value of the function at the current time double lastAngle = func.eval(*this); // Find out how far we are from the desired angle double deltaAngle = norm2PI(desired - lastAngle) ; // Using the average period, estimate the next (or previous) time at // which the desired angle occurs. double deltaT = (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2; double lastDeltaT = deltaT; // Liu UDate startTime = fTime; // Liu setTime(fTime + uprv_ceil(deltaT)); // Now iterate until we get the error below epsilon. Throughout // this loop we use normPI to get values in the range -Pi to Pi, // since we're using them as correction factors rather than absolute angles. do { // Evaluate the function at the time we've estimated double angle = func.eval(*this); // Find the # of milliseconds per radian at this point on the curve double factor = uprv_fabs(deltaT / normPI(angle-lastAngle)); // Correct the time estimate based on how far off the angle is deltaT = normPI(desired - angle) * factor; // HACK: // // If abs(deltaT) begins to diverge we need to quit this loop. // This only appears to happen when attempting to locate, for // example, a new moon on the day of the new moon. E.g.: // // This result is correct: // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))= // Sun Jul 22 10:57:41 CST 1990 // // But attempting to make the same call a day earlier causes deltaT // to diverge: // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 -> // 1.3649828540224032E9 // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))= // Sun Jul 08 13:56:15 CST 1990 // // As a temporary solution, we catch this specific condition and // adjust our start time by one eighth period days (either forward // or backward) and try again. // Liu 11/9/00 if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) { double delta = uprv_ceil (periodDays * DAY_MS / 8.0); setTime(startTime + (next ? delta : -delta)); return timeOfAngle(func, desired, periodDays, epsilon, next); } lastDeltaT = deltaT; lastAngle = angle; setTime(fTime + uprv_ceil(deltaT)); } while (uprv_fabs(deltaT) > epsilon); return fTime; } /** * Return the obliquity of the ecliptic (the angle between the ecliptic * and the earth's equator) at the current time. This varies due to * the precession of the earth's axis. * * @return the obliquity of the ecliptic relative to the equator, * measured in radians. */ double CalendarAstronomer::eclipticObliquity() { const double epoch = 2451545.0; // 2000 AD, January 1.5 double T = (getJulianDay() - epoch) / 36525; double eclipObliquity = 23.439292 - 46.815/3600 * T - 0.0006/3600 * T*T + 0.00181/3600 * T*T*T; return eclipObliquity * DEG_RAD; } //------------------------------------------------------------------------- // Private data //------------------------------------------------------------------------- void CalendarAstronomer::clearCache() { const double INVALID = uprv_getNaN(); julianDay = INVALID; sunLongitude = INVALID; meanAnomalySun = INVALID; moonEclipLong = INVALID; moonPositionSet = false; } // Debugging functions UnicodeString CalendarAstronomer::Ecliptic::toString() const { #ifdef U_DEBUG_ASTRO char tmp[800]; snprintf(tmp, sizeof(tmp), "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG); return UnicodeString(tmp, ""); #else return {}; #endif } UnicodeString CalendarAstronomer::Equatorial::toString() const { #ifdef U_DEBUG_ASTRO char tmp[400]; snprintf(tmp, sizeof(tmp), "%f,%f", (ascension*RAD_DEG), (declination*RAD_DEG)); return UnicodeString(tmp, ""); #else return {}; #endif } // =============== Calendar Cache ================ void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) { ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup); if(cache == nullptr) { status = U_MEMORY_ALLOCATION_ERROR; } else { *cache = new CalendarCache(32, status); if(U_FAILURE(status)) { delete *cache; *cache = nullptr; } } } int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) { int32_t res; if(U_FAILURE(status)) { return 0; } umtx_lock(&ccLock); if(*cache == nullptr) { createCache(cache, status); if(U_FAILURE(status)) { umtx_unlock(&ccLock); return 0; } } res = uhash_igeti((*cache)->fTable, key); U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res)); umtx_unlock(&ccLock); return res; } void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) { if(U_FAILURE(status)) { return; } umtx_lock(&ccLock); if(*cache == nullptr) { createCache(cache, status); if(U_FAILURE(status)) { umtx_unlock(&ccLock); return; } } uhash_iputi((*cache)->fTable, key, value, &status); U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value)); umtx_unlock(&ccLock); } CalendarCache::CalendarCache(int32_t size, UErrorCode &status) { fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, nullptr, size, &status); U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable)); } CalendarCache::~CalendarCache() { if(fTable != nullptr) { U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable)); uhash_close(fTable); } } U_NAMESPACE_END #endif // !UCONFIG_NO_FORMATTING