// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /******************************************************************** * COPYRIGHT: * Copyright (c) 2005-2016, International Business Machines Corporation and * others. All Rights Reserved. ********************************************************************/ /************************************************************************ * Tests for the UText and UTextIterator text abstraction classes * ************************************************************************/ #include #include #include #include "unicode/utypes.h" #include "unicode/utext.h" #include "unicode/utf8.h" #include "unicode/utf16.h" #include "unicode/ustring.h" #include "unicode/uchriter.h" #include "cmemory.h" #include "cstr.h" #include "utxttest.h" static UBool gFailed = false; static int gTestNum = 0; // Forward decl UText *openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status); #define TEST_ASSERT(x) UPRV_BLOCK_MACRO_BEGIN { \ if ((x)==false) { \ errln("Test #%d failure in file %s at line %d\n", gTestNum, __FILE__, __LINE__); \ gFailed = true; \ } \ } UPRV_BLOCK_MACRO_END #define TEST_SUCCESS(status) UPRV_BLOCK_MACRO_BEGIN { \ if (U_FAILURE(status)) { \ errln("Test #%d failure in file %s at line %d. Error = \"%s\"\n", \ gTestNum, __FILE__, __LINE__, u_errorName(status)); \ gFailed = true; \ } \ } UPRV_BLOCK_MACRO_END UTextTest::UTextTest() { } UTextTest::~UTextTest() { } void UTextTest::runIndexedTest(int32_t index, UBool exec, const char* &name, char* /*par*/) { TESTCASE_AUTO_BEGIN; TESTCASE_AUTO(TextTest); TESTCASE_AUTO(ErrorTest); TESTCASE_AUTO(FreezeTest); TESTCASE_AUTO(Ticket5560); TESTCASE_AUTO(Ticket6847); TESTCASE_AUTO(Ticket10562); TESTCASE_AUTO(Ticket10983); TESTCASE_AUTO(Ticket12130); TESTCASE_AUTO(Ticket13344); TESTCASE_AUTO(AccessChangesChunkSize); TESTCASE_AUTO_END; } // // Quick and dirty random number generator. // (don't use library so that results are portable. static uint32_t m_seed = 1; static uint32_t m_rand() { m_seed = m_seed * 1103515245 + 12345; return (m_seed / 65536) % 32768; } // // TextTest() // // Top Level function for UText testing. // Specifies the strings to be tested, with the actual testing itself // being carried out in another function, TestString(). // void UTextTest::TextTest() { int32_t i, j; TestString("abcd\\U00010001xyz"); TestString(""); // Supplementary chars at start or end TestString("\\U00010001"); TestString("abc\\U00010001"); TestString("\\U00010001abc"); // Test simple strings of lengths 1 to 60, looking for glitches at buffer boundaries UnicodeString s; for (i=1; i<60; i++) { s.truncate(0); for (j=0; j(0x5c)); } s.append(static_cast(j + 0x30)); } TestString(s); } // Test strings with odd-aligned supplementary chars, // looking for glitches at buffer boundaries for (i=1; i<60; i++) { s.truncate(0); s.append(static_cast(0x41)); for (j=0; j(j + 0x11000)); } TestString(s); } // String of chars of randomly varying size in utf-8 representation. // Exercise the mapping, and the varying sized buffer. // s.truncate(0); UChar32 c1 = 0; UChar32 c2 = 0x100; UChar32 c3 = 0xa000; UChar32 c4 = 0x11000; for (i=0; i<1000; i++) { int len8 = m_rand()%4 + 1; switch (len8) { case 1: c1 = (c1+1)%0x80; // don't put 0 into string (0 terminated strings for some tests) // don't put '\', will cause unescape() to fail. if (c1==0x5c || c1==0) { c1++; } s.append(c1); break; case 2: s.append(c2++); break; case 3: s.append(c3++); break; case 4: s.append(c4++); break; } } TestString(s); } // // TestString() Run a suite of UText tests on a string. // The test string is unescaped before use. // void UTextTest::TestString(const UnicodeString &s) { int32_t i; int32_t j; UChar32 c; int32_t cpCount = 0; UErrorCode status = U_ZERO_ERROR; UText *ut = nullptr; int32_t saLen; UnicodeString sa = s.unescape(); saLen = sa.length(); // // Build up a mapping between code points and UTF-16 code unit indexes. // m *cpMap = new m[sa.length() + 1]; j = 0; for (i=0; i cpCount) { // filter out bogus test cases - // those with a source range that falls of an edge of the string. continue; } // // Copy and move tests. // iterate over a variety of destination positions. // for (destPosType=1; destPosType<=4; destPosType++) { switch (destPosType) { case 1: destIndex = 0; break; case 2: destIndex = 1; break; case 3: destIndex = srcIndex - 1; break; case 4: destIndex = srcIndex + srcLength + 1; break; case 5: destIndex = cpCount-1; break; case 6: destIndex = cpCount; break; } if (destIndex<0 || destIndex>cpCount) { // filter out bogus test cases. continue; } nativeStart = nativeMap[srcIndex].nativeIdx; nativeLimit = nativeMap[srcIndex+srcLength].nativeIdx; nativeDest = nativeMap[destIndex].nativeIdx; u16Start = u16Map[srcIndex].nativeIdx; u16Limit = u16Map[srcIndex+srcLength].nativeIdx; u16Dest = u16Map[destIndex].nativeIdx; gFailed = false; TestCopyMove(us, ut, false, nativeStart, nativeLimit, nativeDest, u16Start, u16Limit, u16Dest); TestCopyMove(us, ut, true, nativeStart, nativeLimit, nativeDest, u16Start, u16Limit, u16Dest); if (gFailed) { return; } } // // Replace tests. // UnicodeString fullRepString("This is an arbitrary string that will be used as replacement text"); for (int32_t replStrLen=0; replStrLen<20; replStrLen++) { UnicodeString repStr(fullRepString, 0, replStrLen); TestReplace(us, ut, nativeStart, nativeLimit, u16Start, u16Limit, repStr); if (gFailed) { return; } } } } } // // TestCopyMove run a single test case for utext_copy. // Test cases are created in TestCMR and dispatched here for execution. // void UTextTest::TestCopyMove(const UnicodeString &us, UText *ut, UBool move, int32_t nativeStart, int32_t nativeLimit, int32_t nativeDest, int32_t u16Start, int32_t u16Limit, int32_t u16Dest) { UErrorCode status = U_ZERO_ERROR; UText *targetUT = nullptr; gTestNum++; gFailed = false; // // clone the UText. The test will be run in the cloned copy // so that we don't alter the original. // targetUT = utext_clone(nullptr, ut, true, false, &status); TEST_SUCCESS(status); UnicodeString targetUS(us); // And copy the reference string. // do the test operation first in the reference targetUS.copy(u16Start, u16Limit, u16Dest); if (move) { // delete out the source range. if (u16Limit < u16Dest) { targetUS.removeBetween(u16Start, u16Limit); } else { int32_t amtCopied = u16Limit - u16Start; targetUS.removeBetween(u16Start+amtCopied, u16Limit+amtCopied); } } // Do the same operation in the UText under test utext_copy(targetUT, nativeStart, nativeLimit, nativeDest, move, &status); if (nativeDest > nativeStart && nativeDest < nativeLimit) { TEST_ASSERT(status == U_INDEX_OUTOFBOUNDS_ERROR); } else { TEST_SUCCESS(status); // Compare the results of the two parallel tests int32_t usi = 0; // UnicodeString position, utf-16 index. int64_t uti = 0; // UText position, native index. UChar32 usc; // code point from Unicode String UChar32 utc; // code point from UText utext_setNativeIndex(targetUT, 0); for (;;) { usc = targetUS.char32At(usi); utc = utext_next32(targetUT); if (utc < 0) { break; } TEST_ASSERT(uti == usi); TEST_ASSERT(utc == usc); usi = targetUS.moveIndex32(usi, 1); uti = utext_getNativeIndex(targetUT); if (gFailed) { goto cleanupAndReturn; } } int64_t expectedNativeLength = utext_nativeLength(ut); if (move == false) { expectedNativeLength += nativeLimit - nativeStart; } uti = utext_getNativeIndex(targetUT); TEST_ASSERT(uti == expectedNativeLength); } cleanupAndReturn: utext_close(targetUT); } // // TestReplace Test a single Replace operation. // void UTextTest::TestReplace( const UnicodeString &us, // reference UnicodeString in which to do the replace UText *ut, // UnicodeText object under test. int32_t nativeStart, // Range to be replaced, in UText native units. int32_t nativeLimit, int32_t u16Start, // Range to be replaced, in UTF-16 units int32_t u16Limit, // for use in the reference UnicodeString. const UnicodeString &repStr) // The replacement string { UErrorCode status = U_ZERO_ERROR; UText *targetUT = nullptr; gTestNum++; gFailed = false; // // clone the target UText. The test will be run in the cloned copy // so that we don't alter the original. // targetUT = utext_clone(nullptr, ut, true, false, &status); TEST_SUCCESS(status); UnicodeString targetUS(us); // And copy the reference string. // // Do the replace operation in the Unicode String, to // produce a reference result. // targetUS.replace(u16Start, u16Limit-u16Start, repStr); // // Do the replace on the UText under test // const char16_t *rs = repStr.getBuffer(); int32_t rsLen = repStr.length(); int32_t actualDelta = utext_replace(targetUT, nativeStart, nativeLimit, rs, rsLen, &status); int32_t expectedDelta = repStr.length() - (nativeLimit - nativeStart); TEST_ASSERT(actualDelta == expectedDelta); // // Compare the results // int32_t usi = 0; // UnicodeString position, utf-16 index. int64_t uti = 0; // UText position, native index. UChar32 usc; // code point from Unicode String UChar32 utc; // code point from UText int64_t expectedNativeLength = 0; utext_setNativeIndex(targetUT, 0); for (;;) { usc = targetUS.char32At(usi); utc = utext_next32(targetUT); if (utc < 0) { break; } TEST_ASSERT(uti == usi); TEST_ASSERT(utc == usc); usi = targetUS.moveIndex32(usi, 1); uti = utext_getNativeIndex(targetUT); if (gFailed) { goto cleanupAndReturn; } } expectedNativeLength = utext_nativeLength(ut) + expectedDelta; uti = utext_getNativeIndex(targetUT); TEST_ASSERT(uti == expectedNativeLength); cleanupAndReturn: utext_close(targetUT); } // // TestAccess Test the read only access functions on a UText, including cloning. // The text is accessed in a variety of ways, and compared with // the reference UnicodeString. // void UTextTest::TestAccess(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) { // Run the standard tests on the caller-supplied UText. TestAccessNoClone(us, ut, cpCount, cpMap); // Re-run tests on a shallow clone. utext_setNativeIndex(ut, 0); UErrorCode status = U_ZERO_ERROR; UText *shallowClone = utext_clone(nullptr, ut, false /*deep*/, false /*readOnly*/, &status); TEST_SUCCESS(status); TestAccessNoClone(us, shallowClone, cpCount, cpMap); // // Rerun again on a deep clone. // Note that text providers are not required to provide deep cloning, // so unsupported errors are ignored. // status = U_ZERO_ERROR; utext_setNativeIndex(shallowClone, 0); UText *deepClone = utext_clone(nullptr, shallowClone, true, false, &status); utext_close(shallowClone); if (status != U_UNSUPPORTED_ERROR) { TEST_SUCCESS(status); TestAccessNoClone(us, deepClone, cpCount, cpMap); } utext_close(deepClone); } // // TestAccessNoClone() Test the read only access functions on a UText. // The text is accessed in a variety of ways, and compared with // the reference UnicodeString. // void UTextTest::TestAccessNoClone(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) { UErrorCode status = U_ZERO_ERROR; gTestNum++; // // Check the length from the UText // int64_t expectedLen = cpMap[cpCount].nativeIdx; int64_t utlen = utext_nativeLength(ut); TEST_ASSERT(expectedLen == utlen); // // Iterate forwards, verify that we get the correct code points // at the correct native offsets. // int i = 0; int64_t index; int64_t expectedIndex = 0; int64_t foundIndex = 0; UChar32 expectedC; UChar32 foundC; int64_t len; for (i=0; i=0; i--) { expectedC = cpMap[i].cp; expectedIndex = cpMap[i].nativeIdx; int64_t prevIndex = utext_getPreviousNativeIndex(ut); foundC = utext_previous32(ut); foundIndex = utext_getNativeIndex(ut); TEST_ASSERT(expectedIndex == foundIndex); TEST_ASSERT(expectedC == foundC); TEST_ASSERT(prevIndex == foundIndex); if (gFailed) { return; } } // // Backwards iteration, above, should have left our iterator // position at zero, and continued backwards iterationshould fail. // foundIndex = utext_getNativeIndex(ut); TEST_ASSERT(foundIndex == 0); foundIndex = utext_getPreviousNativeIndex(ut); TEST_ASSERT(foundIndex == 0); foundC = utext_previous32(ut); TEST_ASSERT(foundC == U_SENTINEL); foundIndex = utext_getNativeIndex(ut); TEST_ASSERT(foundIndex == 0); foundIndex = utext_getPreviousNativeIndex(ut); TEST_ASSERT(foundIndex == 0); // And again, with the macros utext_setNativeIndex(ut, len); for (i=cpCount-1; i>=0; i--) { expectedC = cpMap[i].cp; expectedIndex = cpMap[i].nativeIdx; foundC = UTEXT_PREVIOUS32(ut); foundIndex = UTEXT_GETNATIVEINDEX(ut); TEST_ASSERT(expectedIndex == foundIndex); TEST_ASSERT(expectedC == foundC); if (gFailed) { return; } } // // Backwards iteration, above, should have left our iterator // position at zero, and continued backwards iterationshould fail. // foundIndex = UTEXT_GETNATIVEINDEX(ut); TEST_ASSERT(foundIndex == 0); foundC = UTEXT_PREVIOUS32(ut); TEST_ASSERT(foundC == U_SENTINEL); foundIndex = UTEXT_GETNATIVEINDEX(ut); TEST_ASSERT(foundIndex == 0); if (gFailed) { return; } // // next32From(), previous32From(), Iterate in a somewhat random order. // int cpIndex = 0; for (i=0; i=0; i--) { expectedIndex = cpMap[i].nativeIdx; index = utext_getNativeIndex(ut); TEST_ASSERT(expectedIndex == index); index = UTEXT_GETNATIVEINDEX(ut); TEST_ASSERT(expectedIndex == index); utext_moveIndex32(ut, -1); } // walk through backwards, decrementing by three i = cpMap[cpCount].nativeIdx; utext_setNativeIndex(ut, i); for (i=cpCount; i>=0; i-=3) { expectedIndex = cpMap[i].nativeIdx; index = utext_getNativeIndex(ut); TEST_ASSERT(expectedIndex == index); index = UTEXT_GETNATIVEINDEX(ut); TEST_ASSERT(expectedIndex == index); utext_moveIndex32(ut, -3); } // // Extract // int bufSize = us.length() + 10; char16_t *buf = new char16_t[bufSize]; status = U_ZERO_ERROR; expectedLen = us.length(); len = utext_extract(ut, 0, utlen, buf, bufSize, &status); TEST_SUCCESS(status); TEST_ASSERT(len == expectedLen); int compareResult = us.compare(buf, -1); TEST_ASSERT(compareResult == 0); status = U_ZERO_ERROR; len = utext_extract(ut, 0, utlen, nullptr, 0, &status); if (utlen == 0) { TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); } else { TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR); } TEST_ASSERT(len == expectedLen); status = U_ZERO_ERROR; u_memset(buf, 0x5555, bufSize); len = utext_extract(ut, 0, utlen, buf, 1, &status); if (us.length() == 0) { TEST_SUCCESS(status); TEST_ASSERT(buf[0] == 0); } else { // Buf len == 1, extracting a single 16 bit value. // If the data char is supplementary, it doesn't matter whether the buffer remains unchanged, // or whether the lead surrogate of the pair is extracted. // It's a buffer overflow error in either case. TEST_ASSERT(buf[0] == us.charAt(0) || (buf[0] == 0x5555 && U_IS_SUPPLEMENTARY(us.char32At(0)))); TEST_ASSERT(buf[1] == 0x5555); if (us.length() == 1) { TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); } else { TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR); } } delete []buf; } // // ErrorTest() Check various error and edge cases. // void UTextTest::ErrorTest() { // Close of an uninitialized UText. Shouldn't blow up. { UText ut; memset(&ut, 0, sizeof(UText)); utext_close(&ut); utext_close(nullptr); } // Double-close of a UText. Shouldn't blow up. UText should still be usable. { UErrorCode status = U_ZERO_ERROR; UText ut = UTEXT_INITIALIZER; UnicodeString s("Hello, World"); UText *ut2 = utext_openUnicodeString(&ut, &s, &status); TEST_SUCCESS(status); TEST_ASSERT(ut2 == &ut); UText *ut3 = utext_close(&ut); TEST_ASSERT(ut3 == &ut); UText *ut4 = utext_close(&ut); TEST_ASSERT(ut4 == &ut); utext_openUnicodeString(&ut, &s, &status); TEST_SUCCESS(status); utext_close(&ut); } // Re-use of a UText, chaining through each of the types of UText // (If it doesn't blow up, and doesn't leak, it's probably working fine) { UErrorCode status = U_ZERO_ERROR; UText ut = UTEXT_INITIALIZER; UText *utp; UnicodeString s1("Hello, World"); char16_t s2[] = {static_cast(0x41), static_cast(0x42), static_cast(0)}; const char *s3 = "\x66\x67\x68"; utp = utext_openUnicodeString(&ut, &s1, &status); TEST_SUCCESS(status); TEST_ASSERT(utp == &ut); utp = utext_openConstUnicodeString(&ut, &s1, &status); TEST_SUCCESS(status); TEST_ASSERT(utp == &ut); utp = utext_openUTF8(&ut, s3, -1, &status); TEST_SUCCESS(status); TEST_ASSERT(utp == &ut); utp = utext_openUChars(&ut, s2, -1, &status); TEST_SUCCESS(status); TEST_ASSERT(utp == &ut); utp = utext_close(&ut); TEST_ASSERT(utp == &ut); utp = utext_openUnicodeString(&ut, &s1, &status); TEST_SUCCESS(status); TEST_ASSERT(utp == &ut); } // Invalid parameters on open // { UErrorCode status = U_ZERO_ERROR; UText ut = UTEXT_INITIALIZER; utext_openUChars(&ut, nullptr, 5, &status); TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); status = U_ZERO_ERROR; utext_openUChars(&ut, nullptr, -1, &status); TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); status = U_ZERO_ERROR; utext_openUTF8(&ut, nullptr, 4, &status); TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); status = U_ZERO_ERROR; utext_openUTF8(&ut, nullptr, -1, &status); TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); } // // UTF-8 with malformed sequences. // These should come through as the Unicode replacement char, \ufffd // { UErrorCode status = U_ZERO_ERROR; UText *ut = nullptr; const char *badUTF8 = "\x41\x81\x42\xf0\x81\x81\x43"; UChar32 c; ut = utext_openUTF8(nullptr, badUTF8, -1, &status); TEST_SUCCESS(status); c = utext_char32At(ut, 1); TEST_ASSERT(c == 0xfffd); c = utext_char32At(ut, 3); TEST_ASSERT(c == 0xfffd); c = utext_char32At(ut, 5); TEST_ASSERT(c == 0xfffd); c = utext_char32At(ut, 6); TEST_ASSERT(c == 0x43); char16_t buf[10]; int n = utext_extract(ut, 0, 9, buf, 10, &status); TEST_SUCCESS(status); TEST_ASSERT(n==7); TEST_ASSERT(buf[0] == 0x41); TEST_ASSERT(buf[1] == 0xfffd); TEST_ASSERT(buf[2] == 0x42); TEST_ASSERT(buf[3] == 0xfffd); TEST_ASSERT(buf[4] == 0xfffd); TEST_ASSERT(buf[5] == 0xfffd); TEST_ASSERT(buf[6] == 0x43); utext_close(ut); } // // isLengthExpensive - does it make the expected transitions after // getting the length of a nul terminated string? // { UErrorCode status = U_ZERO_ERROR; UnicodeString sa("Hello, this is a string"); UBool isExpensive; char16_t sb[100]; memset(sb, 0x20, sizeof(sb)); sb[99] = 0; UText *uta = utext_openUnicodeString(nullptr, &sa, &status); TEST_SUCCESS(status); isExpensive = utext_isLengthExpensive(uta); TEST_ASSERT(isExpensive == false); utext_close(uta); UText *utb = utext_openUChars(nullptr, sb, -1, &status); TEST_SUCCESS(status); isExpensive = utext_isLengthExpensive(utb); TEST_ASSERT(isExpensive == true); int64_t len = utext_nativeLength(utb); TEST_ASSERT(len == 99); isExpensive = utext_isLengthExpensive(utb); TEST_ASSERT(isExpensive == false); utext_close(utb); } // // Index to positions not on code point boundaries. // { const char *u8str = "\xc8\x81\xe1\x82\x83\xf1\x84\x85\x86"; int32_t startMap[] = { 0, 0, 2, 2, 2, 5, 5, 5, 5, 9, 9}; int32_t nextMap[] = { 2, 2, 5, 5, 5, 9, 9, 9, 9, 9, 9}; int32_t prevMap[] = { 0, 0, 0, 0, 0, 2, 2, 2, 2, 5, 5}; UChar32 c32Map[] = {0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146, 0x044146, 0x044146, -1, -1}; UChar32 pr32Map[] = { -1, -1, 0x201, 0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146}; // extractLen is the size, in UChars, of what will be extracted between index and index+1. // is zero when both index positions lie within the same code point. int32_t exLen[] = { 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0}; UErrorCode status = U_ZERO_ERROR; UText *ut = utext_openUTF8(nullptr, u8str, -1, &status); TEST_SUCCESS(status); // Check setIndex int32_t i; int32_t startMapLimit = UPRV_LENGTHOF(startMap); for (i=0; i 0) { UChar32 c32; /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); TEST_ASSERT(c32 == c32Map[i]); } } utext_close(ut); } { // Similar test, with utf16 instead of utf8 // TODO: merge the common parts of these tests. UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV); int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6}; int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6}; int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4}; UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1}; UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000}; int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,}; u16str = u16str.unescape(); UErrorCode status = U_ZERO_ERROR; UText *ut = utext_openUnicodeString(nullptr, &u16str, &status); TEST_SUCCESS(status); int32_t startMapLimit = UPRV_LENGTHOF(startMap); int i; for (i=0; i 0) { UChar32 c32; /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); TEST_ASSERT(c32 == c32Map[i]); } } utext_close(ut); } { // Similar test, with UText over Replaceable // TODO: merge the common parts of these tests. UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV); int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6}; int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6}; int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4}; UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1}; UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000}; int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,}; u16str = u16str.unescape(); UErrorCode status = U_ZERO_ERROR; UText *ut = utext_openReplaceable(nullptr, &u16str, &status); TEST_SUCCESS(status); int32_t startMapLimit = UPRV_LENGTHOF(startMap); int i; for (i=0; i 0) { UChar32 c32; /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); TEST_ASSERT(c32 == c32Map[i]); } } utext_close(ut); } } void UTextTest::FreezeTest() { // Check isWritable() and freeze() behavior. // UnicodeString ustr("Hello, World."); const char u8str[] = {static_cast(0x31), static_cast(0x32), static_cast(0x33), 0}; const char16_t u16str[] = {static_cast(0x31), static_cast(0x32), static_cast(0x44), 0}; UErrorCode status = U_ZERO_ERROR; UText *ut = nullptr; UText *ut2 = nullptr; ut = utext_openUTF8(ut, u8str, -1, &status); TEST_SUCCESS(status); UBool writable = utext_isWritable(ut); TEST_ASSERT(writable == false); utext_copy(ut, 1, 2, 0, true, &status); TEST_ASSERT(status == U_NO_WRITE_PERMISSION); status = U_ZERO_ERROR; ut = utext_openUChars(ut, u16str, -1, &status); TEST_SUCCESS(status); writable = utext_isWritable(ut); TEST_ASSERT(writable == false); utext_copy(ut, 1, 2, 0, true, &status); TEST_ASSERT(status == U_NO_WRITE_PERMISSION); status = U_ZERO_ERROR; ut = utext_openUnicodeString(ut, &ustr, &status); TEST_SUCCESS(status); writable = utext_isWritable(ut); TEST_ASSERT(writable == true); utext_freeze(ut); writable = utext_isWritable(ut); TEST_ASSERT(writable == false); utext_copy(ut, 1, 2, 0, true, &status); TEST_ASSERT(status == U_NO_WRITE_PERMISSION); status = U_ZERO_ERROR; ut = utext_openUnicodeString(ut, &ustr, &status); TEST_SUCCESS(status); ut2 = utext_clone(ut2, ut, false, false, &status); // clone with readonly = false TEST_SUCCESS(status); writable = utext_isWritable(ut2); TEST_ASSERT(writable == true); ut2 = utext_clone(ut2, ut, false, true, &status); // clone with readonly = true TEST_SUCCESS(status); writable = utext_isWritable(ut2); TEST_ASSERT(writable == false); utext_copy(ut2, 1, 2, 0, true, &status); TEST_ASSERT(status == U_NO_WRITE_PERMISSION); status = U_ZERO_ERROR; ut = utext_openConstUnicodeString(ut, &ustr, &status); TEST_SUCCESS(status); writable = utext_isWritable(ut); TEST_ASSERT(writable == false); utext_copy(ut, 1, 2, 0, true, &status); TEST_ASSERT(status == U_NO_WRITE_PERMISSION); // Deep Clone of a frozen UText should re-enable writing in the copy. status = U_ZERO_ERROR; ut = utext_openUnicodeString(ut, &ustr, &status); TEST_SUCCESS(status); utext_freeze(ut); ut2 = utext_clone(ut2, ut, true, false, &status); // deep clone TEST_SUCCESS(status); writable = utext_isWritable(ut2); TEST_ASSERT(writable == true); // Deep clone of a frozen UText, where the base type is intrinsically non-writable, // should NOT enable writing in the copy. status = U_ZERO_ERROR; ut = utext_openUChars(ut, u16str, -1, &status); TEST_SUCCESS(status); utext_freeze(ut); ut2 = utext_clone(ut2, ut, true, false, &status); // deep clone TEST_SUCCESS(status); writable = utext_isWritable(ut2); TEST_ASSERT(writable == false); // cleanup utext_close(ut); utext_close(ut2); } // // Fragmented UText // A UText type that works with a chunk size of 1. // Intended to test for edge cases. // Input comes from a UnicodeString. // // ut.b the character. Put into both halves. // U_CDECL_BEGIN static UBool U_CALLCONV fragTextAccess(UText *ut, int64_t index, UBool forward) { const UnicodeString *us = static_cast(ut->context); char16_t c; int32_t length = us->length(); if (forward && index>=0 && indexcharAt((int32_t)index); ut->b = c | c<<16; ut->chunkOffset = 0; ut->chunkLength = 1; ut->chunkNativeStart = index; ut->chunkNativeLimit = index+1; return true; } if (!forward && index>0 && index <=length) { c = us->charAt((int32_t)index-1); ut->b = c | c<<16; ut->chunkOffset = 1; ut->chunkLength = 1; ut->chunkNativeStart = index-1; ut->chunkNativeLimit = index; return true; } ut->b = 0; ut->chunkOffset = 0; ut->chunkLength = 0; if (index <= 0) { ut->chunkNativeStart = 0; ut->chunkNativeLimit = 0; } else { ut->chunkNativeStart = length; ut->chunkNativeLimit = length; } return false; } // Function table to be used with this fragmented text provider. // Initialized in the open function. static UTextFuncs fragmentFuncs; // Clone function for fragmented text provider. // Didn't really want to provide this, but it's easier to provide it than to keep it // out of the tests. // UText * cloneFragmentedUnicodeString(UText *dest, const UText *src, UBool deep, UErrorCode *status) { if (U_FAILURE(*status)) { return nullptr; } if (deep) { *status = U_UNSUPPORTED_ERROR; return nullptr; } dest = utext_openUnicodeString(dest, static_cast(const_cast(src->context)), status); utext_setNativeIndex(dest, utext_getNativeIndex(src)); return dest; } U_CDECL_END // Open function for the fragmented text provider. UText * openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) { ut = utext_openUnicodeString(ut, s, status); if (U_FAILURE(*status)) { return ut; } // Copy of the function table from the stock UnicodeString UText, // and replace the entry for the access function. memcpy(&fragmentFuncs, ut->pFuncs, sizeof(fragmentFuncs)); fragmentFuncs.access = fragTextAccess; fragmentFuncs.clone = cloneFragmentedUnicodeString; ut->pFuncs = &fragmentFuncs; ut->chunkContents = reinterpret_cast(&ut->b); ut->pFuncs->access(ut, 0, true); return ut; } // Regression test for Ticket 5560 // Clone fails to update chunkContentPointer in the cloned copy. // This is only an issue for UText types that work in a local buffer, // (UTF-8 wrapper, for example) // // The test: // 1. Create an initial UText // 2. Deep clone it. Contents should match original. // 3. Reset original to something different. // 4. Check that clone contents did not change. // void UTextTest::Ticket5560() { /* The following two strings are in UTF-8 even on EBCDIC platforms. */ static const char s1[] = {0x41,0x42,0x43,0x44,0x45,0x46,0}; /* "ABCDEF" */ static const char s2[] = {0x31,0x32,0x33,0x34,0x35,0x36,0}; /* "123456" */ UErrorCode status = U_ZERO_ERROR; UText ut1 = UTEXT_INITIALIZER; UText ut2 = UTEXT_INITIALIZER; utext_openUTF8(&ut1, s1, -1, &status); char16_t c = utext_next32(&ut1); TEST_ASSERT(c == 0x41); // c == 'A' utext_clone(&ut2, &ut1, true, false, &status); TEST_SUCCESS(status); c = utext_next32(&ut2); TEST_ASSERT(c == 0x42); // c == 'B' c = utext_next32(&ut1); TEST_ASSERT(c == 0x42); // c == 'B' utext_openUTF8(&ut1, s2, -1, &status); c = utext_next32(&ut1); TEST_ASSERT(c == 0x31); // c == '1' c = utext_next32(&ut2); TEST_ASSERT(c == 0x43); // c == 'C' utext_close(&ut1); utext_close(&ut2); } // Test for Ticket 6847 // void UTextTest::Ticket6847() { const int STRLEN = 90; char16_t s[STRLEN+1]; u_memset(s, 0x41, STRLEN); s[STRLEN] = 0; UErrorCode status = U_ZERO_ERROR; UText *ut = utext_openUChars(nullptr, s, -1, &status); utext_setNativeIndex(ut, 0); int32_t count = 0; UChar32 c = 0; int64_t nativeIndex = UTEXT_GETNATIVEINDEX(ut); TEST_ASSERT(nativeIndex == 0); while ((c = utext_next32(ut)) != U_SENTINEL) { TEST_ASSERT(c == 0x41); TEST_ASSERT(count < STRLEN); if (count >= STRLEN) { break; } count++; nativeIndex = UTEXT_GETNATIVEINDEX(ut); TEST_ASSERT(nativeIndex == count); } TEST_ASSERT(count == STRLEN); nativeIndex = UTEXT_GETNATIVEINDEX(ut); TEST_ASSERT(nativeIndex == STRLEN); utext_close(ut); } void UTextTest::Ticket10562() { // Note: failures show as a heap error when the test is run under valgrind. UErrorCode status = U_ZERO_ERROR; const char *utf8_string = "\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41"; UText *utf8Text = utext_openUTF8(nullptr, utf8_string, -1, &status); TEST_SUCCESS(status); UText *deepClone = utext_clone(nullptr, utf8Text, true, false, &status); TEST_SUCCESS(status); UText *shallowClone = utext_clone(nullptr, deepClone, false, false, &status); TEST_SUCCESS(status); utext_close(shallowClone); utext_close(deepClone); utext_close(utf8Text); status = U_ZERO_ERROR; UnicodeString usString("Hello, World."); UText *usText = utext_openUnicodeString(nullptr, &usString, &status); TEST_SUCCESS(status); UText *usDeepClone = utext_clone(nullptr, usText, true, false, &status); TEST_SUCCESS(status); UText *usShallowClone = utext_clone(nullptr, usDeepClone, false, false, &status); TEST_SUCCESS(status); utext_close(usShallowClone); utext_close(usDeepClone); utext_close(usText); } void UTextTest::Ticket10983() { // Note: failure shows as a seg fault when the defect is present. UErrorCode status = U_ZERO_ERROR; UnicodeString s("Hello, World"); UText *ut = utext_openConstUnicodeString(nullptr, &s, &status); TEST_SUCCESS(status); status = U_INVALID_STATE_ERROR; UText *cloned = utext_clone(nullptr, ut, true, true, &status); TEST_ASSERT(cloned == nullptr); TEST_ASSERT(status == U_INVALID_STATE_ERROR); utext_close(ut); } // Ticket 12130 - extract on a UText wrapping a null terminated char16_t * string // leaves the iteration position set incorrectly when the // actual string length is not yet known. // // The test text needs to be long enough that UText defers getting the length. void UTextTest::Ticket12130() { UErrorCode status = U_ZERO_ERROR; const char *text8 = "Fundamentally, computers just deal with numbers. They store letters and other characters " "by assigning a number for each one. Before Unicode was invented, there were hundreds " "of different encoding systems for assigning these numbers. No single encoding could " "contain enough characters: for example, the European Union alone requires several " "different encodings to cover all its languages. Even for a single language like " "English no single encoding was adequate for all the letters, punctuation, and technical " "symbols in common use."; UnicodeString str(text8); const char16_t *ustr = str.getTerminatedBuffer(); UText ut = UTEXT_INITIALIZER; utext_openUChars(&ut, ustr, -1, &status); char16_t extractBuffer[50]; for (int32_t startIdx = 0; startIdx str.length()) { expectedni = str.length(); } if (expectedni != ni) { errln("%s:%d utext_getNativeIndex() expected %d, got %d", __FILE__, __LINE__, expectedni, ni); } if (0 != str.tempSubString(startIdx, 20).compare(extractBuffer)) { errln("%s:%d utext_extract() failed. expected \"%s\", got \"%s\"", __FILE__, __LINE__, CStr(str.tempSubString(startIdx, 20))(), CStr(UnicodeString(extractBuffer))()); } } utext_close(&ut); // Similar utext extract, this time with the string length provided to the UText in advance, // and a buffer of larger than required capacity. utext_openUChars(&ut, ustr, str.length(), &status); for (int32_t startIdx = 0; startIdx str.length()) { expectedni = str.length(); } if (expectedni != ni) { errln("%s:%d utext_getNativeIndex() expected %d, got %d", __FILE__, __LINE__, expectedni, ni); } if (0 != str.tempSubString(startIdx, 20).compare(extractBuffer)) { errln("%s:%d utext_extract() failed. expected \"%s\", got \"%s\"", __FILE__, __LINE__, CStr(str.tempSubString(startIdx, 20))(), CStr(UnicodeString(extractBuffer))()); } } utext_close(&ut); } // Ticket 13344 The macro form of UTEXT_SETNATIVEINDEX failed when target was a trail surrogate // of a supplementary character. void UTextTest::Ticket13344() { UErrorCode status = U_ZERO_ERROR; const char16_t *str = u"abc\U0010abcd xyz"; LocalUTextPointer ut(utext_openUChars(nullptr, str, -1, &status)); assertSuccess("UTextTest::Ticket13344-status", status); UTEXT_SETNATIVEINDEX(ut.getAlias(), 3); assertEquals("UTextTest::Ticket13344-lead", static_cast(3), utext_getNativeIndex(ut.getAlias())); UTEXT_SETNATIVEINDEX(ut.getAlias(), 4); assertEquals("UTextTest::Ticket13344-trail", static_cast(3), utext_getNativeIndex(ut.getAlias())); UTEXT_SETNATIVEINDEX(ut.getAlias(), 5); assertEquals("UTextTest::Ticket13344-bmp", static_cast(5), utext_getNativeIndex(ut.getAlias())); utext_setNativeIndex(ut.getAlias(), 3); assertEquals("UTextTest::Ticket13344-lead-2", static_cast(3), utext_getNativeIndex(ut.getAlias())); utext_setNativeIndex(ut.getAlias(), 4); assertEquals("UTextTest::Ticket13344-trail-2", static_cast(3), utext_getNativeIndex(ut.getAlias())); utext_setNativeIndex(ut.getAlias(), 5); assertEquals("UTextTest::Ticket13344-bmp-2", static_cast(5), utext_getNativeIndex(ut.getAlias())); } // ICU-21653 UText does not handle access callback that changes chunk size static const char16_t testAccessText[] = { // text with surrogates at chunk boundaries 0xDC00,0xe001,0xe002,0xD83D,0xDE00,0xe005,0xe006,0xe007, 0xe008,0xe009,0xe00a,0xD83D,0xDE00,0xe00d,0xe00e,0xe00f, // 000-015, unpaired trail at 0 0xE010,0xe011,0xe012,0xD83D,0xDE00,0xe015,0xe016,0xe017, 0xe018,0xe019,0xe01a,0xD83D,0xDE00,0xe01d,0xe01e,0xD800, // 016-031, paired lead at 31 with 0xDC01,0xe021,0xe022,0xD83D,0xDE00,0xe025,0xe026,0xe027, 0xe028,0xe029,0xe02a,0xD83D,0xDE00,0xe02d,0xe02e,0xe02f, // 032-047, paired trail at 32 0xe030,0xe031,0xe032,0xD83D,0xDE00,0xe035,0xe036,0xe037, 0xe038,0xe039,0xe03a,0xD83D,0xDE00,0xe03d,0xe03e,0xe03f, // 048-063 0xDC02,0xe041,0xe042,0xD83D,0xDE00,0xe045,0xe046,0xe047, 0xe048,0xe049,0xe04a,0xD83D,0xDE00,0xe04d,0xe04e,0xe04f, // 064-079, unpaired trail at 64 0xe050,0xe051,0xe052,0xD83D,0xDE00,0xe055,0xe056,0xe057, 0xe058,0xe059,0xe05a,0xD83D,0xDE00,0xe05d,0xe05e,0xD801, // 080-095, unpaired lead at 95 0xe060,0xe061,0xe062,0xD83D,0xDE00,0xe065,0xe066,0xe067, 0xe068,0xe069,0xe06a,0xD83D,0xDE00,0xe06d,0xe06e,0xe06f, // 096-111 0xE070,0xe071,0xe072,0xD83D,0xDE00,0xe075,0xe076,0xe077, 0xe078,0xe079,0xe07a,0xD83D,0xDE00,0xe07d,0xe07e,0xD802, // 112-127, unpaired lead at 127 }; static const UChar32 testAccess32Text[] = { // same as above in UTF32, surrogate pairs coalesce... 0xDC00,0xe001,0xe002,0x1F600,0xe005,0xe006,0xe007, 0xe008,0xe009,0xe00a,0x1F600,0xe00d,0xe00e,0xe00f, // 000-013, unpaired trail at 0 0xE010,0xe011,0xe012,0x1F600,0xe015,0xe016,0xe017, 0xe018,0xe019,0xe01a,0x1F600,0xe01d,0xe01e,0x10001, // 014-027, nonBMP at 27, will split in chunks /*---*/0xe021,0xe022,0x1F600,0xe025,0xe026,0xe027, 0xe028,0xe029,0xe02a,0x1F600,0xe02d,0xe02e,0xe02f, // 028-040 0xe030,0xe031,0xe032,0x1F600,0xe035,0xe036,0xe037, 0xe038,0xe039,0xe03a,0x1F600,0xe03d,0xe03e,0xe03f, // 041-054 0xDC02,0xe041,0xe042,0x1F600,0xe045,0xe046,0xe047, 0xe048,0xe049,0xe04a,0x1F600,0xe04d,0xe04e,0xe04f, // 055-068, unpaired trail at 55 0xe050,0xe051,0xe052,0x1F600,0xe055,0xe056,0xe057, 0xe058,0xe059,0xe05a,0x1F600,0xe05d,0xe05e,0xD801, // 069-082, unpaired lead at 82 0xe060,0xe061,0xe062,0x1F600,0xe065,0xe066,0xe067, 0xe068,0xe069,0xe06a,0x1F600,0xe06d,0xe06e,0xe06f, // 083-096 0xE070,0xe071,0xe072,0x1F600,0xe075,0xe076,0xe077, 0xe078,0xe079,0xe07a,0x1F600,0xe07d,0xe07e,0xD802, // 097-110, unpaired lead at 110 }; enum { kTestAccessSmallChunkSize = 8, kTestAccessLargeChunkSize = 32, kTextAccessGapSize = 2 }; typedef struct { int64_t nativeOffset; UChar32 expectChar; } OffsetAndChar; static const OffsetAndChar testAccessEntries[] = { // sequence of offsets to test with expected UChar32 // random access { 127, 0xD802 }, { 16, 0xE010 }, { 95, 0xD801 }, { 31, 0x10001 }, { 112, 0xE070 }, { 0, 0xDC00 }, { 64, 0xDC02 }, { 32, 0x10001 }, // sequential access { 0, 0xDC00 }, { 16, 0xE010 }, { 31, 0x10001 }, { 32, 0x10001 }, { 64, 0xDC02 }, { 95, 0xD801 }, { 112, 0xE070 }, { 127, 0xD802 }, }; static const OffsetAndChar testAccess32Entries[] = { // sequence of offsets to test with expected UChar32 // random access { 110, 0xD802 }, // 0 * { 14, 0xE010 }, // 1 { 82, 0xD801 }, // 2 * { 27, 0x10001 }, // 3 * { 97, 0xE070 }, // 4 { 0, 0xDC00 }, // 5 { 55, 0xDC02 }, // 6 // sequential access { 0, 0xDC00 }, // 7 { 14, 0xE010 }, // 8 { 27, 0x10001 }, // 9 * { 55, 0xDC02 }, // 10 { 97, 0xE070 }, // 11 { 82, 0xD801 }, // 12 * { 110, 0xD802 }, // 13 * }; // modified UTextAccess function for char16_t string; a cross between // UText ucstrTextAccess and a function that modifies chunk size // 1. assumes native length is known and in ut->a // 2. assumes that most fields may be 0 or nullptr, will fill out if index not in range // 3. Will designate buffer of size kTestAccessSmallChunkSize or kTestAccessLargeChunkSize // depending on kTextAccessGapSize static UBool ustrTextAccessModChunks(UText *ut, int64_t index, UBool forward) { const char16_t* str = static_cast(ut->context); int64_t length = ut->a; // pin the requested index to the bounds of the string if (index < 0) { index = 0; } else if (index > length) { index = length; } if (forward) { if (index < ut->chunkNativeLimit && index >= ut->chunkNativeStart) { /* Already inside the buffer. Set the new offset. */ ut->chunkOffset = static_cast(index - ut->chunkNativeStart); return true; } if (index >= length && ut->chunkNativeLimit == length) { /* Off the end of the buffer, but we can't get it. */ ut->chunkOffset = ut->chunkLength; return false; } } else { if (index <= ut->chunkNativeLimit && index > ut->chunkNativeStart) { /* Already inside the buffer. Set the new offset. */ ut->chunkOffset = static_cast(index - ut->chunkNativeStart); return true; } if (index == 0 && ut->chunkNativeStart == 0) { /* Already at the beginning; can't go any farther */ ut->chunkOffset = 0; return false; } } /* It's not inside the buffer. Start over from scratch. */ // Assume large chunk size for first access int32_t chunkSize = kTestAccessLargeChunkSize; if (ut->chunkContents != nullptr && ut->chunkLength != 0) { // Subsequent access, set chunk size depending on gap (smaller chunk for large gap => random access) int64_t gap = forward ? (index-ut->chunkNativeLimit) : (ut->chunkNativeStart-index); if (gap < 0) { gap = -gap; } chunkSize = (gap > kTextAccessGapSize)? kTestAccessSmallChunkSize: kTestAccessLargeChunkSize; } ut->chunkLength = chunkSize; ut->chunkOffset = index % chunkSize; if (!forward && ut->chunkOffset == 0 && index >= chunkSize) { ut->chunkOffset = chunkSize; } ut->chunkNativeStart = index - ut->chunkOffset; ut->chunkNativeLimit = ut->chunkNativeStart + ut->chunkLength; ut->chunkContents = str + ut->chunkNativeStart; ut->nativeIndexingLimit = ut->chunkLength; return true; } // For testing UTF32 access (no native index does not match chunk offset/index /** * @return the length, in the native units of the original text string. */ // 1. assumes native length is known and in ut->a static int64_t u32NativeLength(UText *ut) { return ut->a; } /** * Map from the current char16_t offset within the current text chunk to * the corresponding native index in the original source text. * @return Absolute (native) index corresponding to chunkOffset in the current chunk. * The returned native index should always be to a code point boundary. */ // 1. assumes native length is known and in ut->a // 2. assumes that pointer to offset map is in static int64_t u32MapOffsetToNative(const UText *ut) { const int64_t* offsetMap = static_cast(ut->p); int64_t u16Offset = offsetMap[ut->chunkNativeStart] + ut->chunkOffset; int64_t index = ut->a; while (u16Offset < offsetMap[index]) { index--; } return index; } /** * Map from a native index to a char16_t offset within a text chunk. * Behavior is undefined if the native index does not fall within the * current chunk. * @param nativeIndex Absolute (native) text index, chunk->start<=index<=chunk->limit. * @return Chunk-relative UTF-16 offset corresponding to the specified native * index. */ static int32_t u32MapNativeIndexToUTF16(const UText *ut, int64_t index) { const int64_t* offsetMap = static_cast(ut->p); if (index <= ut->chunkNativeStart) { return 0; } else if (index >= ut->chunkNativeLimit) { return ut->chunkLength; } return (offsetMap[index] - offsetMap[ut->chunkNativeStart]); } static void u32Close(UText *ut) { uprv_free(const_cast(ut->p)); } static UBool u32Access(UText *ut, int64_t index, UBool forward) { int64_t length = ut->a; const int64_t* offsetMap = static_cast(ut->p); const char16_t* u16 = static_cast(ut->q); // pin the requested index to the bounds of the string if (index < 0) { index = 0; } else if (index > length) { index = length; } if (forward) { if (index < ut->chunkNativeLimit && index >= ut->chunkNativeStart) { /* Already inside the buffer. Set the new offset. */ ut->chunkOffset = static_cast(index - ut->chunkNativeStart); return true; } if (index >= length && ut->chunkNativeLimit == length) { /* Off the end of the buffer, but we can't get it. */ ut->chunkOffset = ut->chunkLength; return false; } } else { if (index <= ut->chunkNativeLimit && index > ut->chunkNativeStart) { /* Already inside the buffer. Set the new offset. */ ut->chunkOffset = static_cast(index - ut->chunkNativeStart); return true; } if (index == 0 && ut->chunkNativeStart == 0) { /* Already at the beginning; can't go any farther */ ut->chunkOffset = 0; return false; } } /* It's not inside the buffer. Start over from scratch. */ // Assume large chunk size for first access int32_t chunkSize = kTestAccessLargeChunkSize; if (ut->chunkContents != nullptr && ut->chunkLength != 0) { // Subsequent access, set chunk size depending on gap (smaller chunk for large gap => random access) int64_t gap = forward ? (index-ut->chunkNativeLimit) : (ut->chunkNativeStart-index); if (gap < 0) { gap = -gap; } chunkSize = (gap > kTextAccessGapSize)? kTestAccessSmallChunkSize: kTestAccessLargeChunkSize; } int64_t u16Offset = offsetMap[index]; // guaranteed to be on code point boundary int64_t u16ChunkTryStart = (u16Offset/chunkSize) * chunkSize; int64_t u16ChunkTryEnd = u16ChunkTryStart + chunkSize; if (!forward && u16ChunkTryStart==u16Offset && u16ChunkTryStart>0) { u16ChunkTryEnd = u16ChunkTryStart; u16ChunkTryStart -= chunkSize; } int64_t nativeIndexEnd = length; while (u16ChunkTryEnd < offsetMap[nativeIndexEnd]) { nativeIndexEnd--; } int64_t nativeIndexStart = nativeIndexEnd; while (u16ChunkTryStart < offsetMap[nativeIndexStart]) { nativeIndexStart--; } if (forward && nativeIndexEnd < length && u16Offset >= offsetMap[nativeIndexEnd]) { // oops we need to be in the following chunk nativeIndexStart = nativeIndexEnd; u16ChunkTryEnd = ((offsetMap[nativeIndexStart + 1] + chunkSize)/chunkSize) * chunkSize; nativeIndexEnd = length; while (u16ChunkTryEnd < offsetMap[nativeIndexEnd]) { nativeIndexEnd--; } } ut->chunkNativeStart = nativeIndexStart; ut->chunkNativeLimit = nativeIndexEnd; ut->chunkLength = offsetMap[nativeIndexEnd] - offsetMap[nativeIndexStart]; ut->chunkOffset = u16Offset - offsetMap[nativeIndexStart]; ut->chunkContents = u16 + offsetMap[nativeIndexStart]; ut->nativeIndexingLimit = 0 ; return true; } static const struct UTextFuncs u32Funcs = { sizeof(UTextFuncs), 0, 0, 0, // Reserved alignment padding nullptr, // Clone u32NativeLength, u32Access, nullptr, // Extract nullptr, // Replace nullptr, // Copy u32MapOffsetToNative, u32MapNativeIndexToUTF16, u32Close, nullptr, // spare 1 nullptr, // spare 2 nullptr, // spare 3 }; // A hack, this takes a pointer to both the UTF32 and UTF16 versions of the text static UText * utext_openUChar32s(UText *ut, const UChar32 *s, int64_t length, const char16_t *q, UErrorCode *status) { if (U_FAILURE(*status)) { return nullptr; } if (s==nullptr || length < 0) { *status = U_ILLEGAL_ARGUMENT_ERROR; return nullptr; } ut = utext_setup(ut, 0, status); if (U_SUCCESS(*status)) { int64_t* offsetMap = static_cast(uprv_malloc((length + 1) * sizeof(int64_t))); if (offsetMap == nullptr) { *status = U_MEMORY_ALLOCATION_ERROR; return nullptr; } ut->pFuncs = &u32Funcs; ut->context = s; ut->providerProperties = 0; ut->a = length; ut->chunkContents = nullptr; ut->chunkNativeStart = 0; ut->chunkNativeLimit = 0; ut->chunkLength = 0; ut->chunkOffset = 0; ut->nativeIndexingLimit = 0; ut->p = offsetMap; ut->q = q; int64_t u16Offset = 0; *offsetMap++ = 0; while (length-- > 0) { u16Offset += (*s++ < 0x10000)? 1: 2; *offsetMap++ = u16Offset; } } return ut; } void UTextTest::AccessChangesChunkSize() { UErrorCode status = U_ZERO_ERROR; UText ut = UTEXT_INITIALIZER; utext_openUChars(&ut, testAccessText, UPRV_LENGTHOF(testAccessText), &status); if (U_FAILURE(status)) { errln("utext_openUChars failed: %s", u_errorName(status)); return; } // now reset many ut fields for this test ut.providerProperties = 0; // especially need to clear UTEXT_PROVIDER_STABLE_CHUNKS ut.chunkNativeLimit = 0; ut.nativeIndexingLimit = 0; ut.chunkNativeStart = 0; ut.chunkOffset = 0; ut.chunkLength = 0; ut.chunkContents = nullptr; UTextFuncs textFuncs = *ut.pFuncs; textFuncs.access = ustrTextAccessModChunks; // custom access that changes chunk size ut.pFuncs = &textFuncs; // do test const OffsetAndChar *testEntryPtr = testAccessEntries; int32_t testCount = UPRV_LENGTHOF(testAccessEntries); for (; testCount-- > 0; testEntryPtr++) { utext_setNativeIndex(&ut, testEntryPtr->nativeOffset); int64_t beforeOffset = utext_getNativeIndex(&ut); UChar32 uchar = utext_current32(&ut); int64_t afterOffset = utext_getNativeIndex(&ut); if (uchar != testEntryPtr->expectChar || afterOffset != beforeOffset) { errln("utext_current32 unexpected behavior for u16, test case %lld: expected char %04X at offset %lld, got %04X at %lld;\n" "chunkNativeStart %lld chunkNativeLimit %lld nativeIndexingLimit %d chunkLength %d chunkOffset %d", static_cast(testEntryPtr - testAccessEntries), testEntryPtr->expectChar, beforeOffset, uchar, afterOffset, ut.chunkNativeStart, ut.chunkNativeLimit, ut.nativeIndexingLimit, ut.chunkLength, ut.chunkOffset); } } utext_close(&ut); ut = UTEXT_INITIALIZER; utext_openUChar32s(&ut, testAccess32Text, UPRV_LENGTHOF(testAccess32Text), testAccessText, &status); if (U_FAILURE(status)) { errln("utext_openUChar32s failed: %s", u_errorName(status)); return; } // do test testEntryPtr = testAccess32Entries; testCount = UPRV_LENGTHOF(testAccess32Entries); for (; testCount-- > 0; testEntryPtr++) { utext_setNativeIndex(&ut, testEntryPtr->nativeOffset); int64_t beforeOffset = utext_getNativeIndex(&ut); UChar32 uchar = utext_current32(&ut); int64_t afterOffset = utext_getNativeIndex(&ut); if (uchar != testEntryPtr->expectChar || afterOffset != beforeOffset) { errln("utext_current32 unexpected behavior for u32, test case %lld: expected char %04X at offset %lld, got %04X at %lld;\n" "chunkNativeStart %lld chunkNativeLimit %lld nativeIndexingLimit %d chunkLength %d chunkOffset %d", static_cast(testEntryPtr - testAccess32Entries), testEntryPtr->expectChar, beforeOffset, uchar, afterOffset, ut.chunkNativeStart, ut.chunkNativeLimit, ut.nativeIndexingLimit, ut.chunkLength, ut.chunkOffset); } } utext_close(&ut); }