mirror of
https://github.com/unicode-org/icu.git
synced 2025-04-05 13:35:32 +00:00
1223 lines
41 KiB
C++
1223 lines
41 KiB
C++
// © 2016 and later: Unicode, Inc. and others.
|
|
// License & terms of use: http://www.unicode.org/copyright.html
|
|
/*
|
|
******************************************************************************
|
|
* Copyright (C) 2007-2014, International Business Machines Corporation
|
|
* and others. All Rights Reserved.
|
|
******************************************************************************
|
|
*
|
|
* File CHNSECAL.CPP
|
|
*
|
|
* Modification History:
|
|
*
|
|
* Date Name Description
|
|
* 9/18/2007 ajmacher ported from java ChineseCalendar
|
|
*****************************************************************************
|
|
*/
|
|
|
|
#include "chnsecal.h"
|
|
|
|
#include <cstdint>
|
|
|
|
#if !UCONFIG_NO_FORMATTING
|
|
|
|
#include "umutex.h"
|
|
#include <float.h>
|
|
#include "gregoimp.h" // Math
|
|
#include "astro.h" // CalendarAstronomer and CalendarCache
|
|
#include "unicode/simpletz.h"
|
|
#include "uhash.h"
|
|
#include "ucln_in.h"
|
|
#include "cstring.h"
|
|
|
|
// Debugging
|
|
#ifdef U_DEBUG_CHNSECAL
|
|
# include <stdio.h>
|
|
# include <stdarg.h>
|
|
static void debug_chnsecal_loc(const char *f, int32_t l)
|
|
{
|
|
fprintf(stderr, "%s:%d: ", f, l);
|
|
}
|
|
|
|
static void debug_chnsecal_msg(const char *pat, ...)
|
|
{
|
|
va_list ap;
|
|
va_start(ap, pat);
|
|
vfprintf(stderr, pat, ap);
|
|
fflush(stderr);
|
|
}
|
|
// must use double parens, i.e.: U_DEBUG_CHNSECAL_MSG(("four is: %d",4));
|
|
#define U_DEBUG_CHNSECAL_MSG(x) {debug_chnsecal_loc(__FILE__,__LINE__);debug_chnsecal_msg x;}
|
|
#else
|
|
#define U_DEBUG_CHNSECAL_MSG(x)
|
|
#endif
|
|
|
|
|
|
// Lazy Creation & Access synchronized by class CalendarCache with a mutex.
|
|
static icu::CalendarCache *gWinterSolsticeCache = nullptr;
|
|
static icu::CalendarCache *gNewYearCache = nullptr;
|
|
|
|
static icu::TimeZone *gAstronomerTimeZone = nullptr;
|
|
static icu::UInitOnce gAstronomerTimeZoneInitOnce {};
|
|
|
|
/**
|
|
* The start year of the Chinese calendar, the 61st year of the reign
|
|
* of Huang Di. Some sources use the first year of his reign,
|
|
* resulting in EXTENDED_YEAR values 60 years greater and ERA (cycle)
|
|
* values one greater.
|
|
*/
|
|
static const int32_t CHINESE_EPOCH_YEAR = -2636; // Gregorian year
|
|
|
|
/**
|
|
* The offset from GMT in milliseconds at which we perform astronomical
|
|
* computations. Some sources use a different historically accurate
|
|
* offset of GMT+7:45:40 for years before 1929; we do not do this.
|
|
*/
|
|
static const int32_t CHINA_OFFSET = 8 * kOneHour;
|
|
|
|
/**
|
|
* Value to be added or subtracted from the local days of a new moon to
|
|
* get close to the next or prior new moon, but not cross it. Must be
|
|
* >= 1 and < CalendarAstronomer.SYNODIC_MONTH.
|
|
*/
|
|
static const int32_t SYNODIC_GAP = 25;
|
|
|
|
|
|
U_CDECL_BEGIN
|
|
static UBool calendar_chinese_cleanup() {
|
|
if (gWinterSolsticeCache) {
|
|
delete gWinterSolsticeCache;
|
|
gWinterSolsticeCache = nullptr;
|
|
}
|
|
if (gNewYearCache) {
|
|
delete gNewYearCache;
|
|
gNewYearCache = nullptr;
|
|
}
|
|
if (gAstronomerTimeZone) {
|
|
delete gAstronomerTimeZone;
|
|
gAstronomerTimeZone = nullptr;
|
|
}
|
|
gAstronomerTimeZoneInitOnce.reset();
|
|
return true;
|
|
}
|
|
U_CDECL_END
|
|
|
|
U_NAMESPACE_BEGIN
|
|
|
|
|
|
// Implementation of the ChineseCalendar class
|
|
|
|
|
|
//-------------------------------------------------------------------------
|
|
// Constructors...
|
|
//-------------------------------------------------------------------------
|
|
|
|
|
|
namespace {
|
|
|
|
const TimeZone* getAstronomerTimeZone();
|
|
int32_t newMoonNear(const TimeZone*, double, UBool, UErrorCode&);
|
|
int32_t newYear(const icu::ChineseCalendar::Setting&, int32_t, UErrorCode&);
|
|
UBool isLeapMonthBetween(const TimeZone*, int32_t, int32_t, UErrorCode&);
|
|
|
|
} // namespace
|
|
|
|
ChineseCalendar* ChineseCalendar::clone() const {
|
|
return new ChineseCalendar(*this);
|
|
}
|
|
|
|
ChineseCalendar::ChineseCalendar(const Locale& aLocale, UErrorCode& success)
|
|
: Calendar(TimeZone::forLocaleOrDefault(aLocale), aLocale, success),
|
|
hasLeapMonthBetweenWinterSolstices(false)
|
|
{
|
|
}
|
|
|
|
ChineseCalendar::ChineseCalendar(const ChineseCalendar& other) : Calendar(other) {
|
|
hasLeapMonthBetweenWinterSolstices = other.hasLeapMonthBetweenWinterSolstices;
|
|
}
|
|
|
|
ChineseCalendar::~ChineseCalendar()
|
|
{
|
|
}
|
|
|
|
const char *ChineseCalendar::getType() const {
|
|
return "chinese";
|
|
}
|
|
|
|
namespace { // anonymous
|
|
|
|
static void U_CALLCONV initAstronomerTimeZone() {
|
|
gAstronomerTimeZone = new SimpleTimeZone(CHINA_OFFSET, UNICODE_STRING_SIMPLE("CHINA_ZONE") );
|
|
ucln_i18n_registerCleanup(UCLN_I18N_CHINESE_CALENDAR, calendar_chinese_cleanup);
|
|
}
|
|
|
|
const TimeZone* getAstronomerTimeZone() {
|
|
umtx_initOnce(gAstronomerTimeZoneInitOnce, &initAstronomerTimeZone);
|
|
return gAstronomerTimeZone;
|
|
}
|
|
|
|
} // namespace anonymous
|
|
|
|
//-------------------------------------------------------------------------
|
|
// Minimum / Maximum access functions
|
|
//-------------------------------------------------------------------------
|
|
|
|
|
|
static const int32_t LIMITS[UCAL_FIELD_COUNT][4] = {
|
|
// Minimum Greatest Least Maximum
|
|
// Minimum Maximum
|
|
{ 1, 1, 83333, 83333}, // ERA
|
|
{ 1, 1, 60, 60}, // YEAR
|
|
{ 0, 0, 11, 11}, // MONTH
|
|
{ 1, 1, 50, 55}, // WEEK_OF_YEAR
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH
|
|
{ 1, 1, 29, 30}, // DAY_OF_MONTH
|
|
{ 1, 1, 353, 385}, // DAY_OF_YEAR
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK
|
|
{ -1, -1, 5, 5}, // DAY_OF_WEEK_IN_MONTH
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET
|
|
{ -5000000, -5000000, 5000000, 5000000}, // YEAR_WOY
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL
|
|
{ -5000000, -5000000, 5000000, 5000000}, // EXTENDED_YEAR
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY
|
|
{ 0, 0, 1, 1}, // IS_LEAP_MONTH
|
|
{ 0, 0, 11, 12}, // ORDINAL_MONTH
|
|
};
|
|
|
|
|
|
/**
|
|
* @draft ICU 2.4
|
|
*/
|
|
int32_t ChineseCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const {
|
|
return LIMITS[field][limitType];
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------
|
|
// Calendar framework
|
|
//----------------------------------------------------------------------
|
|
|
|
/**
|
|
* Implement abstract Calendar method to return the extended year
|
|
* defined by the current fields. This will use either the ERA and
|
|
* YEAR field as the cycle and year-of-cycle, or the EXTENDED_YEAR
|
|
* field as the continuous year count, depending on which is newer.
|
|
* @stable ICU 2.8
|
|
*/
|
|
int32_t ChineseCalendar::handleGetExtendedYear(UErrorCode& status) {
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
|
|
int32_t year;
|
|
// if UCAL_EXTENDED_YEAR is not older than UCAL_ERA nor UCAL_YEAR
|
|
if (newerField(UCAL_EXTENDED_YEAR, newerField(UCAL_ERA, UCAL_YEAR)) ==
|
|
UCAL_EXTENDED_YEAR) {
|
|
year = internalGet(UCAL_EXTENDED_YEAR, 1); // Default to year 1
|
|
} else {
|
|
// adjust to the instance specific epoch
|
|
int32_t cycle = internalGet(UCAL_ERA, 1);
|
|
year = internalGet(UCAL_YEAR, 1);
|
|
const Setting setting = getSetting(status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
// Handle int32 overflow calculation for
|
|
// year = year + (cycle-1) * 60 -(fEpochYear - CHINESE_EPOCH_YEAR)
|
|
if (uprv_add32_overflow(cycle, -1, &cycle) || // 0-based cycle
|
|
uprv_mul32_overflow(cycle, 60, &cycle) ||
|
|
uprv_add32_overflow(year, cycle, &year) ||
|
|
uprv_add32_overflow(year, -(setting.epochYear-CHINESE_EPOCH_YEAR),
|
|
&year)) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
}
|
|
return year;
|
|
}
|
|
|
|
/**
|
|
* Override Calendar method to return the number of days in the given
|
|
* extended year and month.
|
|
*
|
|
* <p>Note: This method also reads the IS_LEAP_MONTH field to determine
|
|
* whether or not the given month is a leap month.
|
|
* @stable ICU 2.8
|
|
*/
|
|
int32_t ChineseCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month, UErrorCode& status) const {
|
|
bool isLeapMonth = internalGet(UCAL_IS_LEAP_MONTH) == 1;
|
|
return handleGetMonthLengthWithLeap(extendedYear, month, isLeapMonth, status);
|
|
}
|
|
|
|
int32_t ChineseCalendar::handleGetMonthLengthWithLeap(int32_t extendedYear, int32_t month, bool leap, UErrorCode& status) const {
|
|
const Setting setting = getSetting(status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
int32_t thisStart = handleComputeMonthStartWithLeap(extendedYear, month, leap, status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
thisStart = thisStart -
|
|
kEpochStartAsJulianDay + 1; // Julian day -> local days
|
|
int32_t nextStart = newMoonNear(setting.zoneAstroCalc, thisStart + SYNODIC_GAP, true, status);
|
|
return nextStart - thisStart;
|
|
}
|
|
|
|
/**
|
|
* Field resolution table that incorporates IS_LEAP_MONTH.
|
|
*/
|
|
const UFieldResolutionTable ChineseCalendar::CHINESE_DATE_PRECEDENCE[] =
|
|
{
|
|
{
|
|
{ UCAL_DAY_OF_MONTH, kResolveSTOP },
|
|
{ UCAL_WEEK_OF_YEAR, UCAL_DAY_OF_WEEK, kResolveSTOP },
|
|
{ UCAL_WEEK_OF_MONTH, UCAL_DAY_OF_WEEK, kResolveSTOP },
|
|
{ UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DAY_OF_WEEK, kResolveSTOP },
|
|
{ UCAL_WEEK_OF_YEAR, UCAL_DOW_LOCAL, kResolveSTOP },
|
|
{ UCAL_WEEK_OF_MONTH, UCAL_DOW_LOCAL, kResolveSTOP },
|
|
{ UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DOW_LOCAL, kResolveSTOP },
|
|
{ UCAL_DAY_OF_YEAR, kResolveSTOP },
|
|
{ kResolveRemap | UCAL_DAY_OF_MONTH, UCAL_IS_LEAP_MONTH, kResolveSTOP },
|
|
{ kResolveSTOP }
|
|
},
|
|
{
|
|
{ UCAL_WEEK_OF_YEAR, kResolveSTOP },
|
|
{ UCAL_WEEK_OF_MONTH, kResolveSTOP },
|
|
{ UCAL_DAY_OF_WEEK_IN_MONTH, kResolveSTOP },
|
|
{ kResolveRemap | UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DAY_OF_WEEK, kResolveSTOP },
|
|
{ kResolveRemap | UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DOW_LOCAL, kResolveSTOP },
|
|
{ kResolveSTOP }
|
|
},
|
|
{{kResolveSTOP}}
|
|
};
|
|
|
|
/**
|
|
* Override Calendar to add IS_LEAP_MONTH to the field resolution
|
|
* table.
|
|
* @stable ICU 2.8
|
|
*/
|
|
const UFieldResolutionTable* ChineseCalendar::getFieldResolutionTable() const {
|
|
return CHINESE_DATE_PRECEDENCE;
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct MonthInfo {
|
|
int32_t month;
|
|
int32_t ordinalMonth;
|
|
int32_t thisMoon;
|
|
bool isLeapMonth;
|
|
bool hasLeapMonthBetweenWinterSolstices;
|
|
};
|
|
struct MonthInfo computeMonthInfo(
|
|
const icu::ChineseCalendar::Setting& setting,
|
|
int32_t gyear, int32_t days, UErrorCode& status);
|
|
|
|
} // namespace
|
|
|
|
/**
|
|
* Return the Julian day number of day before the first day of the
|
|
* given month in the given extended year.
|
|
*
|
|
* <p>Note: This method reads the IS_LEAP_MONTH field to determine
|
|
* whether the given month is a leap month.
|
|
* @param eyear the extended year
|
|
* @param month the zero-based month. The month is also determined
|
|
* by reading the IS_LEAP_MONTH field.
|
|
* @return the Julian day number of the day before the first
|
|
* day of the given month and year
|
|
* @stable ICU 2.8
|
|
*/
|
|
int64_t ChineseCalendar::handleComputeMonthStart(int32_t eyear, int32_t month, UBool useMonth, UErrorCode& status) const {
|
|
bool isLeapMonth = false;
|
|
if (useMonth) {
|
|
isLeapMonth = internalGet(UCAL_IS_LEAP_MONTH) != 0;
|
|
}
|
|
return handleComputeMonthStartWithLeap(eyear, month, isLeapMonth, status);
|
|
}
|
|
|
|
int64_t ChineseCalendar::handleComputeMonthStartWithLeap(int32_t eyear, int32_t month, bool isLeapMonth, UErrorCode& status) const {
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
// If the month is out of range, adjust it into range, and
|
|
// modify the extended year value accordingly.
|
|
if (month < 0 || month > 11) {
|
|
if (uprv_add32_overflow(eyear, ClockMath::floorDivide(month, 12, &month), &eyear)) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
const Setting setting = getSetting(status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
int32_t gyear;
|
|
if (uprv_add32_overflow(eyear, setting.epochYear - 1, &gyear)) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
int32_t theNewYear = newYear(setting, gyear, status);
|
|
int32_t newMoon = newMoonNear(setting.zoneAstroCalc, theNewYear + month * 29, true, status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
|
|
int32_t newMonthYear = Grego::dayToYear(newMoon, status);
|
|
|
|
struct MonthInfo monthInfo = computeMonthInfo(setting, newMonthYear, newMoon, status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
if (month != monthInfo.month-1 || isLeapMonth != monthInfo.isLeapMonth) {
|
|
newMoon = newMoonNear(setting.zoneAstroCalc, newMoon + SYNODIC_GAP, true, status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
}
|
|
int32_t julianDay;
|
|
if (uprv_add32_overflow(newMoon-1, kEpochStartAsJulianDay, &julianDay)) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
return julianDay;
|
|
}
|
|
|
|
|
|
/**
|
|
* Override Calendar to handle leap months properly.
|
|
* @stable ICU 2.8
|
|
*/
|
|
void ChineseCalendar::add(UCalendarDateFields field, int32_t amount, UErrorCode& status) {
|
|
switch (field) {
|
|
case UCAL_MONTH:
|
|
case UCAL_ORDINAL_MONTH:
|
|
if (amount != 0) {
|
|
int32_t dom = get(UCAL_DAY_OF_MONTH, status);
|
|
if (U_FAILURE(status)) break;
|
|
int32_t day = get(UCAL_JULIAN_DAY, status) - kEpochStartAsJulianDay; // Get local day
|
|
if (U_FAILURE(status)) break;
|
|
int32_t moon = day - dom + 1; // New moon
|
|
offsetMonth(moon, dom, amount, status);
|
|
}
|
|
break;
|
|
default:
|
|
Calendar::add(field, amount, status);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Override Calendar to handle leap months properly.
|
|
* @stable ICU 2.8
|
|
*/
|
|
void ChineseCalendar::add(EDateFields field, int32_t amount, UErrorCode& status) {
|
|
add(static_cast<UCalendarDateFields>(field), amount, status);
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct RollMonthInfo {
|
|
int32_t month;
|
|
int32_t newMoon;
|
|
int32_t thisMoon;
|
|
};
|
|
|
|
struct RollMonthInfo rollMonth(const TimeZone* timeZone, int32_t amount, int32_t day, int32_t month, int32_t dayOfMonth,
|
|
bool isLeapMonth, bool hasLeapMonthBetweenWinterSolstices,
|
|
UErrorCode& status) {
|
|
struct RollMonthInfo output = {0, 0, 0};
|
|
if (U_FAILURE(status)) {
|
|
return output;
|
|
}
|
|
|
|
output.thisMoon = day - dayOfMonth + 1; // New moon (start of this month)
|
|
|
|
// Note throughout the following: Months 12 and 1 are never
|
|
// followed by a leap month (D&R p. 185).
|
|
|
|
// Compute the adjusted month number m. This is zero-based
|
|
// value from 0..11 in a non-leap year, and from 0..12 in a
|
|
// leap year.
|
|
if (hasLeapMonthBetweenWinterSolstices) { // (member variable)
|
|
if (isLeapMonth) {
|
|
++month;
|
|
} else {
|
|
// Check for a prior leap month. (In the
|
|
// following, month 0 is the first month of the
|
|
// year.) Month 0 is never followed by a leap
|
|
// month, and we know month m is not a leap month.
|
|
// moon1 will be the start of month 0 if there is
|
|
// no leap month between month 0 and month m;
|
|
// otherwise it will be the start of month 1.
|
|
int prevMoon = output.thisMoon -
|
|
static_cast<int>(CalendarAstronomer::SYNODIC_MONTH * (month - 0.5));
|
|
prevMoon = newMoonNear(timeZone, prevMoon, true, status);
|
|
if (U_FAILURE(status)) {
|
|
return output;
|
|
}
|
|
if (isLeapMonthBetween(timeZone, prevMoon, output.thisMoon, status)) {
|
|
++month;
|
|
}
|
|
if (U_FAILURE(status)) {
|
|
return output;
|
|
}
|
|
}
|
|
}
|
|
// Now do the standard roll computation on month, with the
|
|
// allowed range of 0..n-1, where n is 12 or 13.
|
|
int32_t numberOfMonths = hasLeapMonthBetweenWinterSolstices ? 13 : 12; // Months in this year
|
|
if (uprv_add32_overflow(amount, month, &amount)) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return output;
|
|
}
|
|
output.newMoon = amount % numberOfMonths;
|
|
if (output.newMoon < 0) {
|
|
output.newMoon += numberOfMonths;
|
|
}
|
|
output.month = month;
|
|
return output;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
/**
|
|
* Override Calendar to handle leap months properly.
|
|
* @stable ICU 2.8
|
|
*/
|
|
void ChineseCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status) {
|
|
switch (field) {
|
|
case UCAL_MONTH:
|
|
case UCAL_ORDINAL_MONTH:
|
|
if (amount != 0) {
|
|
const Setting setting = getSetting(status);
|
|
int32_t day = get(UCAL_JULIAN_DAY, status) - kEpochStartAsJulianDay; // Get local day
|
|
int32_t month = get(UCAL_MONTH, status); // 0-based month
|
|
int32_t dayOfMonth = get(UCAL_DAY_OF_MONTH, status);
|
|
bool isLeapMonth = get(UCAL_IS_LEAP_MONTH, status) == 1;
|
|
if (U_FAILURE(status)) break;
|
|
struct RollMonthInfo r = rollMonth(
|
|
setting.zoneAstroCalc, amount, day, month, dayOfMonth, isLeapMonth,
|
|
hasLeapMonthBetweenWinterSolstices, status);
|
|
if (U_FAILURE(status)) break;
|
|
if (r.newMoon != r.month) {
|
|
offsetMonth(r.thisMoon, dayOfMonth, r.newMoon - r.month, status);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
Calendar::roll(field, amount, status);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void ChineseCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) {
|
|
roll(static_cast<UCalendarDateFields>(field), amount, status);
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------
|
|
// Support methods and constants
|
|
//------------------------------------------------------------------
|
|
|
|
namespace {
|
|
/**
|
|
* Convert local days to UTC epoch milliseconds.
|
|
* This is not an accurate conversion in that getTimezoneOffset
|
|
* takes the milliseconds in GMT (not local time). In theory, more
|
|
* accurate algorithm can be implemented but practically we do not need
|
|
* to go through that complication as long as the historical timezone
|
|
* changes did not happen around the 'tricky' new moon (new moon around
|
|
* midnight).
|
|
*
|
|
* @param timeZone time zone for the Astro calculation.
|
|
* @param days days after January 1, 1970 0:00 in the astronomical base zone
|
|
* @return milliseconds after January 1, 1970 0:00 GMT
|
|
*/
|
|
double daysToMillis(const TimeZone* timeZone, double days, UErrorCode& status) {
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
double millis = days * kOneDay;
|
|
if (timeZone != nullptr) {
|
|
int32_t rawOffset, dstOffset;
|
|
timeZone->getOffset(millis, false, rawOffset, dstOffset, status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
return millis - static_cast<double>(rawOffset + dstOffset);
|
|
}
|
|
return millis - static_cast<double>(CHINA_OFFSET);
|
|
}
|
|
|
|
/**
|
|
* Convert UTC epoch milliseconds to local days.
|
|
* @param timeZone time zone for the Astro calculation.
|
|
* @param millis milliseconds after January 1, 1970 0:00 GMT
|
|
* @return days after January 1, 1970 0:00 in the astronomical base zone
|
|
*/
|
|
double millisToDays(const TimeZone* timeZone, double millis, UErrorCode& status) {
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
if (timeZone != nullptr) {
|
|
int32_t rawOffset, dstOffset;
|
|
timeZone->getOffset(millis, false, rawOffset, dstOffset, status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
return ClockMath::floorDivide(millis + static_cast<double>(rawOffset + dstOffset), kOneDay);
|
|
}
|
|
return ClockMath::floorDivide(millis + static_cast<double>(CHINA_OFFSET), kOneDay);
|
|
}
|
|
|
|
//------------------------------------------------------------------
|
|
// Astronomical computations
|
|
//------------------------------------------------------------------
|
|
|
|
|
|
/**
|
|
* Return the major solar term on or after December 15 of the given
|
|
* Gregorian year, that is, the winter solstice of the given year.
|
|
* Computations are relative to Asia/Shanghai time zone.
|
|
* @param setting setting (time zone and caches) for the Astro calculation.
|
|
* @param gyear a Gregorian year
|
|
* @return days after January 1, 1970 0:00 Asia/Shanghai of the
|
|
* winter solstice of the given year
|
|
*/
|
|
int32_t winterSolstice(const icu::ChineseCalendar::Setting& setting,
|
|
int32_t gyear, UErrorCode& status) {
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
const TimeZone* timeZone = setting.zoneAstroCalc;
|
|
|
|
int32_t cacheValue = CalendarCache::get(setting.winterSolsticeCache, gyear, status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
|
|
if (cacheValue == 0) {
|
|
// In books December 15 is used, but it fails for some years
|
|
// using our algorithms, e.g.: 1298 1391 1492 1553 1560. That
|
|
// is, winterSolstice(1298) starts search at Dec 14 08:00:00
|
|
// PST 1298 with a final result of Dec 14 10:31:59 PST 1299.
|
|
double ms = daysToMillis(timeZone, Grego::fieldsToDay(gyear, UCAL_DECEMBER, 1), status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
|
|
// Winter solstice is 270 degrees solar longitude aka Dongzhi
|
|
double days = millisToDays(timeZone,
|
|
CalendarAstronomer(ms)
|
|
.getSunTime(CalendarAstronomer::WINTER_SOLSTICE(), true),
|
|
status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
if (days < INT32_MIN || days > INT32_MAX) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
cacheValue = static_cast<int32_t>(days);
|
|
CalendarCache::put(setting.winterSolsticeCache, gyear, cacheValue, status);
|
|
}
|
|
if(U_FAILURE(status)) {
|
|
cacheValue = 0;
|
|
}
|
|
return cacheValue;
|
|
}
|
|
|
|
/**
|
|
* Return the closest new moon to the given date, searching either
|
|
* forward or backward in time.
|
|
* @param timeZone time zone for the Astro calculation.
|
|
* @param days days after January 1, 1970 0:00 Asia/Shanghai
|
|
* @param after if true, search for a new moon on or after the given
|
|
* date; otherwise, search for a new moon before it
|
|
* @param status
|
|
* @return days after January 1, 1970 0:00 Asia/Shanghai of the nearest
|
|
* new moon after or before <code>days</code>
|
|
*/
|
|
int32_t newMoonNear(const TimeZone* timeZone, double days, UBool after, UErrorCode& status) {
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
double ms = daysToMillis(timeZone, days, status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
return static_cast<int32_t>(millisToDays(
|
|
timeZone,
|
|
CalendarAstronomer(ms)
|
|
.getMoonTime(CalendarAstronomer::NEW_MOON(), after),
|
|
status));
|
|
}
|
|
|
|
/**
|
|
* Return the nearest integer number of synodic months between
|
|
* two dates.
|
|
* @param day1 days after January 1, 1970 0:00 Asia/Shanghai
|
|
* @param day2 days after January 1, 1970 0:00 Asia/Shanghai
|
|
* @return the nearest integer number of months between day1 and day2
|
|
*/
|
|
int32_t synodicMonthsBetween(int32_t day1, int32_t day2) {
|
|
double roundme = ((day2 - day1) / CalendarAstronomer::SYNODIC_MONTH);
|
|
return static_cast<int32_t>(roundme + (roundme >= 0 ? .5 : -.5));
|
|
}
|
|
|
|
/**
|
|
* Return the major solar term on or before a given date. This
|
|
* will be an integer from 1..12, with 1 corresponding to 330 degrees,
|
|
* 2 to 0 degrees, 3 to 30 degrees,..., and 12 to 300 degrees.
|
|
* @param timeZone time zone for the Astro calculation.
|
|
* @param days days after January 1, 1970 0:00 Asia/Shanghai
|
|
*/
|
|
int32_t majorSolarTerm(const TimeZone* timeZone, int32_t days, UErrorCode& status) {
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
// Compute (floor(solarLongitude / (pi/6)) + 2) % 12
|
|
double ms = daysToMillis(timeZone, days, status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
int32_t term = ((static_cast<int32_t>(6 * CalendarAstronomer(ms)
|
|
.getSunLongitude() / CalendarAstronomer::PI)) + 2 ) % 12;
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
if (term < 1) {
|
|
term += 12;
|
|
}
|
|
return term;
|
|
}
|
|
|
|
/**
|
|
* Return true if the given month lacks a major solar term.
|
|
* @param timeZone time zone for the Astro calculation.
|
|
* @param newMoon days after January 1, 1970 0:00 Asia/Shanghai of a new
|
|
* moon
|
|
*/
|
|
UBool hasNoMajorSolarTerm(const TimeZone* timeZone, int32_t newMoon, UErrorCode& status) {
|
|
if (U_FAILURE(status)) {
|
|
return false;
|
|
}
|
|
int32_t term1 = majorSolarTerm(timeZone, newMoon, status);
|
|
int32_t term2 = majorSolarTerm(
|
|
timeZone, newMoonNear(timeZone, newMoon + SYNODIC_GAP, true, status), status);
|
|
if (U_FAILURE(status)) {
|
|
return false;
|
|
}
|
|
return term1 == term2;
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------
|
|
// Time to fields
|
|
//------------------------------------------------------------------
|
|
|
|
/**
|
|
* Return true if there is a leap month on or after month newMoon1 and
|
|
* at or before month newMoon2.
|
|
* @param timeZone time zone for the Astro calculation.
|
|
* @param newMoon1 days after January 1, 1970 0:00 astronomical base zone
|
|
* of a new moon
|
|
* @param newMoon2 days after January 1, 1970 0:00 astronomical base zone
|
|
* of a new moon
|
|
*/
|
|
UBool isLeapMonthBetween(const TimeZone* timeZone, int32_t newMoon1, int32_t newMoon2, UErrorCode& status) {
|
|
if (U_FAILURE(status)) {
|
|
return false;
|
|
}
|
|
|
|
#ifdef U_DEBUG_CHNSECAL
|
|
// This is only needed to debug the timeOfAngle divergence bug.
|
|
// Remove this later. Liu 11/9/00
|
|
if (synodicMonthsBetween(newMoon1, newMoon2) >= 50) {
|
|
U_DEBUG_CHNSECAL_MSG((
|
|
"isLeapMonthBetween(%d, %d): Invalid parameters", newMoon1, newMoon2
|
|
));
|
|
}
|
|
#endif
|
|
|
|
while (newMoon2 >= newMoon1) {
|
|
if (hasNoMajorSolarTerm(timeZone, newMoon2, status)) {
|
|
return true;
|
|
}
|
|
newMoon2 = newMoonNear(timeZone, newMoon2 - SYNODIC_GAP, false, status);
|
|
if (U_FAILURE(status)) {
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute the information about the year.
|
|
* @param setting setting (time zone and caches) for the Astro calculation.
|
|
* @param gyear the Gregorian year of the given date
|
|
* @param days days after January 1, 1970 0:00 astronomical base zone
|
|
* of the date to compute fields for
|
|
* @return The MonthInfo result.
|
|
*/
|
|
struct MonthInfo computeMonthInfo(
|
|
const icu::ChineseCalendar::Setting& setting,
|
|
int32_t gyear, int32_t days, UErrorCode& status) {
|
|
struct MonthInfo output = {0, 0, 0, false, false};
|
|
if (U_FAILURE(status)) {
|
|
return output;
|
|
}
|
|
// Find the winter solstices before and after the target date.
|
|
// These define the boundaries of this Chinese year, specifically,
|
|
// the position of month 11, which always contains the solstice.
|
|
// We want solsticeBefore <= date < solsticeAfter.
|
|
int32_t solsticeBefore;
|
|
int32_t solsticeAfter = winterSolstice(setting, gyear, status);
|
|
if (U_FAILURE(status)) {
|
|
return output;
|
|
}
|
|
if (days < solsticeAfter) {
|
|
solsticeBefore = winterSolstice(setting, gyear - 1, status);
|
|
} else {
|
|
solsticeBefore = solsticeAfter;
|
|
solsticeAfter = winterSolstice(setting, gyear + 1, status);
|
|
}
|
|
if (!(solsticeBefore <= days && days < solsticeAfter)) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
}
|
|
if (U_FAILURE(status)) {
|
|
return output;
|
|
}
|
|
|
|
const TimeZone* timeZone = setting.zoneAstroCalc;
|
|
// Find the start of the month after month 11. This will be either
|
|
// the prior month 12 or leap month 11 (very rare). Also find the
|
|
// start of the following month 11.
|
|
int32_t firstMoon = newMoonNear(timeZone, solsticeBefore + 1, true, status);
|
|
int32_t lastMoon = newMoonNear(timeZone, solsticeAfter + 1, false, status);
|
|
if (U_FAILURE(status)) {
|
|
return output;
|
|
}
|
|
output.thisMoon = newMoonNear(timeZone, days + 1, false, status); // Start of this month
|
|
if (U_FAILURE(status)) {
|
|
return output;
|
|
}
|
|
output.hasLeapMonthBetweenWinterSolstices = synodicMonthsBetween(firstMoon, lastMoon) == 12;
|
|
|
|
output.month = synodicMonthsBetween(firstMoon, output.thisMoon);
|
|
int32_t theNewYear = newYear(setting, gyear, status);
|
|
if (U_FAILURE(status)) {
|
|
return output;
|
|
}
|
|
if (days < theNewYear) {
|
|
theNewYear = newYear(setting, gyear-1, status);
|
|
if (U_FAILURE(status)) {
|
|
return output;
|
|
}
|
|
}
|
|
if (output.hasLeapMonthBetweenWinterSolstices &&
|
|
isLeapMonthBetween(timeZone, firstMoon, output.thisMoon, status)) {
|
|
output.month--;
|
|
}
|
|
if (U_FAILURE(status)) {
|
|
return output;
|
|
}
|
|
if (output.month < 1) {
|
|
output.month += 12;
|
|
}
|
|
output.ordinalMonth = synodicMonthsBetween(theNewYear, output.thisMoon);
|
|
if (output.ordinalMonth < 0) {
|
|
output.ordinalMonth += 12;
|
|
}
|
|
output.isLeapMonth = output.hasLeapMonthBetweenWinterSolstices &&
|
|
hasNoMajorSolarTerm(timeZone, output.thisMoon, status) &&
|
|
!isLeapMonthBetween(timeZone, firstMoon,
|
|
newMoonNear(timeZone, output.thisMoon - SYNODIC_GAP, false, status),
|
|
status);
|
|
if (U_FAILURE(status)) {
|
|
return output;
|
|
}
|
|
return output;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
/**
|
|
* Override Calendar to compute several fields specific to the Chinese
|
|
* calendar system. These are:
|
|
*
|
|
* <ul><li>ERA
|
|
* <li>YEAR
|
|
* <li>MONTH
|
|
* <li>DAY_OF_MONTH
|
|
* <li>DAY_OF_YEAR
|
|
* <li>EXTENDED_YEAR</ul>
|
|
*
|
|
* The DAY_OF_WEEK and DOW_LOCAL fields are already set when this
|
|
* method is called. The getGregorianXxx() methods return Gregorian
|
|
* calendar equivalents for the given Julian day.
|
|
*
|
|
* <p>Compute the ChineseCalendar-specific field IS_LEAP_MONTH.
|
|
* @stable ICU 2.8
|
|
*/
|
|
void ChineseCalendar::handleComputeFields(int32_t julianDay, UErrorCode & status) {
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
int32_t days;
|
|
if (uprv_add32_overflow(julianDay, -kEpochStartAsJulianDay, &days)) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return;
|
|
}
|
|
int32_t gyear = getGregorianYear();
|
|
int32_t gmonth = getGregorianMonth();
|
|
|
|
const Setting setting = getSetting(status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
struct MonthInfo monthInfo = computeMonthInfo(setting, gyear, days, status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
hasLeapMonthBetweenWinterSolstices = monthInfo.hasLeapMonthBetweenWinterSolstices;
|
|
|
|
// Extended year and cycle year is based on the epoch year
|
|
int32_t eyear = gyear - setting.epochYear;
|
|
int32_t cycle_year = gyear - CHINESE_EPOCH_YEAR;
|
|
if (monthInfo.month < 11 ||
|
|
gmonth >= UCAL_JULY) {
|
|
eyear++;
|
|
cycle_year++;
|
|
}
|
|
int32_t dayOfMonth = days - monthInfo.thisMoon + 1;
|
|
|
|
// 0->0,60 1->1,1 60->1,60 61->2,1 etc.
|
|
int32_t yearOfCycle;
|
|
int32_t cycle = ClockMath::floorDivide(cycle_year - 1, 60, &yearOfCycle);
|
|
|
|
// Days will be before the first new year we compute if this
|
|
// date is in month 11, leap 11, 12. There is never a leap 12.
|
|
// New year computations are cached so this should be cheap in
|
|
// the long run.
|
|
int32_t theNewYear = newYear(setting, gyear, status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
if (days < theNewYear) {
|
|
theNewYear = newYear(setting, gyear-1, status);
|
|
}
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
cycle++;
|
|
yearOfCycle++;
|
|
int32_t dayOfYear = days - theNewYear + 1;
|
|
|
|
int32_t minYear = this->handleGetLimit(UCAL_EXTENDED_YEAR, UCAL_LIMIT_MINIMUM);
|
|
if (eyear < minYear) {
|
|
if (!isLenient()) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return;
|
|
}
|
|
eyear = minYear;
|
|
}
|
|
int32_t maxYear = this->handleGetLimit(UCAL_EXTENDED_YEAR, UCAL_LIMIT_MAXIMUM);
|
|
if (maxYear < eyear) {
|
|
if (!isLenient()) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return;
|
|
}
|
|
eyear = maxYear;
|
|
}
|
|
|
|
internalSet(UCAL_MONTH, monthInfo.month-1); // Convert from 1-based to 0-based
|
|
internalSet(UCAL_ORDINAL_MONTH, monthInfo.ordinalMonth); // Convert from 1-based to 0-based
|
|
internalSet(UCAL_IS_LEAP_MONTH, monthInfo.isLeapMonth?1:0);
|
|
|
|
internalSet(UCAL_EXTENDED_YEAR, eyear);
|
|
internalSet(UCAL_ERA, cycle);
|
|
internalSet(UCAL_YEAR, yearOfCycle);
|
|
internalSet(UCAL_DAY_OF_MONTH, dayOfMonth);
|
|
internalSet(UCAL_DAY_OF_YEAR, dayOfYear);
|
|
}
|
|
|
|
//------------------------------------------------------------------
|
|
// Fields to time
|
|
//------------------------------------------------------------------
|
|
|
|
namespace {
|
|
|
|
/**
|
|
* Return the Chinese new year of the given Gregorian year.
|
|
* @param setting setting (time zone and caches) for the Astro calculation.
|
|
* @param gyear a Gregorian year
|
|
* @return days after January 1, 1970 0:00 astronomical base zone of the
|
|
* Chinese new year of the given year (this will be a new moon)
|
|
*/
|
|
int32_t newYear(const icu::ChineseCalendar::Setting& setting,
|
|
int32_t gyear, UErrorCode& status) {
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
const TimeZone* timeZone = setting.zoneAstroCalc;
|
|
int32_t cacheValue = CalendarCache::get(setting.newYearCache, gyear, status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
|
|
if (cacheValue == 0) {
|
|
|
|
int32_t solsticeBefore= winterSolstice(setting, gyear - 1, status);
|
|
int32_t solsticeAfter = winterSolstice(setting, gyear, status);
|
|
int32_t newMoon1 = newMoonNear(timeZone, solsticeBefore + 1, true, status);
|
|
int32_t newMoon2 = newMoonNear(timeZone, newMoon1 + SYNODIC_GAP, true, status);
|
|
int32_t newMoon11 = newMoonNear(timeZone, solsticeAfter + 1, false, status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
|
|
if (synodicMonthsBetween(newMoon1, newMoon11) == 12 &&
|
|
(hasNoMajorSolarTerm(timeZone, newMoon1, status) ||
|
|
hasNoMajorSolarTerm(timeZone, newMoon2, status))) {
|
|
cacheValue = newMoonNear(timeZone, newMoon2 + SYNODIC_GAP, true, status);
|
|
} else {
|
|
cacheValue = newMoon2;
|
|
}
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
|
|
CalendarCache::put(setting.newYearCache, gyear, cacheValue, status);
|
|
}
|
|
if(U_FAILURE(status)) {
|
|
cacheValue = 0;
|
|
}
|
|
return cacheValue;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
/**
|
|
* Adjust this calendar to be delta months before or after a given
|
|
* start position, pinning the day of month if necessary. The start
|
|
* position is given as a local days number for the start of the month
|
|
* and a day-of-month. Used by add() and roll().
|
|
* @param newMoon the local days of the first day of the month of the
|
|
* start position (days after January 1, 1970 0:00 Asia/Shanghai)
|
|
* @param dayOfMonth the 1-based day-of-month of the start position
|
|
* @param delta the number of months to move forward or backward from
|
|
* the start position
|
|
* @param status The status.
|
|
*/
|
|
void ChineseCalendar::offsetMonth(int32_t newMoon, int32_t dayOfMonth, int32_t delta,
|
|
UErrorCode& status) {
|
|
const Setting setting = getSetting(status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
|
|
// Move to the middle of the month before our target month.
|
|
double value = newMoon;
|
|
value += (CalendarAstronomer::SYNODIC_MONTH *
|
|
(static_cast<double>(delta) - 0.5));
|
|
if (value < INT32_MIN || value > INT32_MAX) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return;
|
|
}
|
|
newMoon = static_cast<int32_t>(value);
|
|
|
|
// Search forward to the target month's new moon
|
|
newMoon = newMoonNear(setting.zoneAstroCalc, newMoon, true, status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
|
|
// Find the target dayOfMonth
|
|
int32_t jd;
|
|
if (uprv_add32_overflow(newMoon, kEpochStartAsJulianDay - 1, &jd) ||
|
|
uprv_add32_overflow(jd, dayOfMonth, &jd)) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return;
|
|
}
|
|
|
|
// Pin the dayOfMonth. In this calendar all months are 29 or 30 days
|
|
// so pinning just means handling dayOfMonth 30.
|
|
if (dayOfMonth > 29) {
|
|
set(UCAL_JULIAN_DAY, jd-1);
|
|
// TODO Fix this. We really shouldn't ever have to
|
|
// explicitly call complete(). This is either a bug in
|
|
// this method, in ChineseCalendar, or in
|
|
// Calendar.getActualMaximum(). I suspect the last.
|
|
complete(status);
|
|
if (U_FAILURE(status)) return;
|
|
if (getActualMaximum(UCAL_DAY_OF_MONTH, status) >= dayOfMonth) {
|
|
if (U_FAILURE(status)) return;
|
|
set(UCAL_JULIAN_DAY, jd);
|
|
}
|
|
} else {
|
|
set(UCAL_JULIAN_DAY, jd);
|
|
}
|
|
}
|
|
|
|
constexpr uint32_t kChineseRelatedYearDiff = -2637;
|
|
|
|
int32_t ChineseCalendar::getRelatedYear(UErrorCode &status) const
|
|
{
|
|
int32_t year = get(UCAL_EXTENDED_YEAR, status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
if (uprv_add32_overflow(year, kChineseRelatedYearDiff, &year)) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
return year;
|
|
}
|
|
|
|
void ChineseCalendar::setRelatedYear(int32_t year)
|
|
{
|
|
// set extended year
|
|
set(UCAL_EXTENDED_YEAR, year - kChineseRelatedYearDiff);
|
|
}
|
|
|
|
IMPL_SYSTEM_DEFAULT_CENTURY(ChineseCalendar, "@calendar=chinese")
|
|
|
|
bool
|
|
ChineseCalendar::inTemporalLeapYear(UErrorCode &status) const
|
|
{
|
|
int32_t days = getActualMaximum(UCAL_DAY_OF_YEAR, status);
|
|
if (U_FAILURE(status)) return false;
|
|
return days > 360;
|
|
}
|
|
|
|
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(ChineseCalendar)
|
|
|
|
|
|
static const char * const gTemporalLeapMonthCodes[] = {
|
|
"M01L", "M02L", "M03L", "M04L", "M05L", "M06L",
|
|
"M07L", "M08L", "M09L", "M10L", "M11L", "M12L", nullptr
|
|
};
|
|
|
|
const char* ChineseCalendar::getTemporalMonthCode(UErrorCode &status) const {
|
|
// We need to call get, not internalGet, to force the calculation
|
|
// from UCAL_ORDINAL_MONTH.
|
|
int32_t is_leap = get(UCAL_IS_LEAP_MONTH, status);
|
|
if (U_FAILURE(status)) return nullptr;
|
|
if (is_leap != 0) {
|
|
int32_t month = get(UCAL_MONTH, status);
|
|
if (U_FAILURE(status)) return nullptr;
|
|
return gTemporalLeapMonthCodes[month];
|
|
}
|
|
return Calendar::getTemporalMonthCode(status);
|
|
}
|
|
|
|
void
|
|
ChineseCalendar::setTemporalMonthCode(const char* code, UErrorCode& status )
|
|
{
|
|
if (U_FAILURE(status)) return;
|
|
int32_t len = static_cast<int32_t>(uprv_strlen(code));
|
|
if (len != 4 || code[0] != 'M' || code[3] != 'L') {
|
|
set(UCAL_IS_LEAP_MONTH, 0);
|
|
return Calendar::setTemporalMonthCode(code, status);
|
|
}
|
|
for (int m = 0; gTemporalLeapMonthCodes[m] != nullptr; m++) {
|
|
if (uprv_strcmp(code, gTemporalLeapMonthCodes[m]) == 0) {
|
|
set(UCAL_MONTH, m);
|
|
set(UCAL_IS_LEAP_MONTH, 1);
|
|
return;
|
|
}
|
|
}
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
}
|
|
|
|
int32_t ChineseCalendar::internalGetMonth(UErrorCode& status) const {
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
if (resolveFields(kMonthPrecedence) == UCAL_MONTH) {
|
|
return internalGet(UCAL_MONTH);
|
|
}
|
|
LocalPointer<Calendar> temp(this->clone());
|
|
temp->set(UCAL_MONTH, 0);
|
|
temp->set(UCAL_IS_LEAP_MONTH, 0);
|
|
temp->set(UCAL_DATE, 1);
|
|
// Calculate the UCAL_MONTH and UCAL_IS_LEAP_MONTH by adding number of
|
|
// months.
|
|
temp->roll(UCAL_MONTH, internalGet(UCAL_ORDINAL_MONTH), status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
|
|
ChineseCalendar* nonConstThis = const_cast<ChineseCalendar*>(this); // cast away const
|
|
nonConstThis->internalSet(UCAL_IS_LEAP_MONTH, temp->get(UCAL_IS_LEAP_MONTH, status));
|
|
int32_t month = temp->get(UCAL_MONTH, status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
nonConstThis->internalSet(UCAL_MONTH, month);
|
|
return month;
|
|
}
|
|
|
|
int32_t ChineseCalendar::internalGetMonth(int32_t defaultValue, UErrorCode& status) const {
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
switch (resolveFields(kMonthPrecedence)) {
|
|
case UCAL_MONTH:
|
|
return internalGet(UCAL_MONTH);
|
|
case UCAL_ORDINAL_MONTH:
|
|
return internalGetMonth(status);
|
|
default:
|
|
return defaultValue;
|
|
}
|
|
}
|
|
|
|
ChineseCalendar::Setting ChineseCalendar::getSetting(UErrorCode&) const {
|
|
return {
|
|
CHINESE_EPOCH_YEAR,
|
|
getAstronomerTimeZone(),
|
|
&gWinterSolsticeCache,
|
|
&gNewYearCache
|
|
};
|
|
}
|
|
|
|
int32_t
|
|
ChineseCalendar::getActualMaximum(UCalendarDateFields field, UErrorCode& status) const
|
|
{
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
if (field == UCAL_DATE) {
|
|
LocalPointer<ChineseCalendar> cal(clone(), status);
|
|
if(U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
cal->setLenient(true);
|
|
cal->prepareGetActual(field,false,status);
|
|
int32_t year = cal->get(UCAL_EXTENDED_YEAR, status);
|
|
int32_t month = cal->get(UCAL_MONTH, status);
|
|
bool leap = cal->get(UCAL_IS_LEAP_MONTH, status) != 0;
|
|
return handleGetMonthLengthWithLeap(year, month, leap, status);
|
|
}
|
|
return Calendar::getActualMaximum(field, status);
|
|
}
|
|
|
|
U_NAMESPACE_END
|
|
|
|
#endif
|
|
|