icu/icu4c/source/i18n/chnsecal.cpp
2025-03-19 16:22:43 -07:00

1223 lines
41 KiB
C++

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
* Copyright (C) 2007-2014, International Business Machines Corporation
* and others. All Rights Reserved.
******************************************************************************
*
* File CHNSECAL.CPP
*
* Modification History:
*
* Date Name Description
* 9/18/2007 ajmacher ported from java ChineseCalendar
*****************************************************************************
*/
#include "chnsecal.h"
#include <cstdint>
#if !UCONFIG_NO_FORMATTING
#include "umutex.h"
#include <float.h>
#include "gregoimp.h" // Math
#include "astro.h" // CalendarAstronomer and CalendarCache
#include "unicode/simpletz.h"
#include "uhash.h"
#include "ucln_in.h"
#include "cstring.h"
// Debugging
#ifdef U_DEBUG_CHNSECAL
# include <stdio.h>
# include <stdarg.h>
static void debug_chnsecal_loc(const char *f, int32_t l)
{
fprintf(stderr, "%s:%d: ", f, l);
}
static void debug_chnsecal_msg(const char *pat, ...)
{
va_list ap;
va_start(ap, pat);
vfprintf(stderr, pat, ap);
fflush(stderr);
}
// must use double parens, i.e.: U_DEBUG_CHNSECAL_MSG(("four is: %d",4));
#define U_DEBUG_CHNSECAL_MSG(x) {debug_chnsecal_loc(__FILE__,__LINE__);debug_chnsecal_msg x;}
#else
#define U_DEBUG_CHNSECAL_MSG(x)
#endif
// Lazy Creation & Access synchronized by class CalendarCache with a mutex.
static icu::CalendarCache *gWinterSolsticeCache = nullptr;
static icu::CalendarCache *gNewYearCache = nullptr;
static icu::TimeZone *gAstronomerTimeZone = nullptr;
static icu::UInitOnce gAstronomerTimeZoneInitOnce {};
/**
* The start year of the Chinese calendar, the 61st year of the reign
* of Huang Di. Some sources use the first year of his reign,
* resulting in EXTENDED_YEAR values 60 years greater and ERA (cycle)
* values one greater.
*/
static const int32_t CHINESE_EPOCH_YEAR = -2636; // Gregorian year
/**
* The offset from GMT in milliseconds at which we perform astronomical
* computations. Some sources use a different historically accurate
* offset of GMT+7:45:40 for years before 1929; we do not do this.
*/
static const int32_t CHINA_OFFSET = 8 * kOneHour;
/**
* Value to be added or subtracted from the local days of a new moon to
* get close to the next or prior new moon, but not cross it. Must be
* >= 1 and < CalendarAstronomer.SYNODIC_MONTH.
*/
static const int32_t SYNODIC_GAP = 25;
U_CDECL_BEGIN
static UBool calendar_chinese_cleanup() {
if (gWinterSolsticeCache) {
delete gWinterSolsticeCache;
gWinterSolsticeCache = nullptr;
}
if (gNewYearCache) {
delete gNewYearCache;
gNewYearCache = nullptr;
}
if (gAstronomerTimeZone) {
delete gAstronomerTimeZone;
gAstronomerTimeZone = nullptr;
}
gAstronomerTimeZoneInitOnce.reset();
return true;
}
U_CDECL_END
U_NAMESPACE_BEGIN
// Implementation of the ChineseCalendar class
//-------------------------------------------------------------------------
// Constructors...
//-------------------------------------------------------------------------
namespace {
const TimeZone* getAstronomerTimeZone();
int32_t newMoonNear(const TimeZone*, double, UBool, UErrorCode&);
int32_t newYear(const icu::ChineseCalendar::Setting&, int32_t, UErrorCode&);
UBool isLeapMonthBetween(const TimeZone*, int32_t, int32_t, UErrorCode&);
} // namespace
ChineseCalendar* ChineseCalendar::clone() const {
return new ChineseCalendar(*this);
}
ChineseCalendar::ChineseCalendar(const Locale& aLocale, UErrorCode& success)
: Calendar(TimeZone::forLocaleOrDefault(aLocale), aLocale, success),
hasLeapMonthBetweenWinterSolstices(false)
{
}
ChineseCalendar::ChineseCalendar(const ChineseCalendar& other) : Calendar(other) {
hasLeapMonthBetweenWinterSolstices = other.hasLeapMonthBetweenWinterSolstices;
}
ChineseCalendar::~ChineseCalendar()
{
}
const char *ChineseCalendar::getType() const {
return "chinese";
}
namespace { // anonymous
static void U_CALLCONV initAstronomerTimeZone() {
gAstronomerTimeZone = new SimpleTimeZone(CHINA_OFFSET, UNICODE_STRING_SIMPLE("CHINA_ZONE") );
ucln_i18n_registerCleanup(UCLN_I18N_CHINESE_CALENDAR, calendar_chinese_cleanup);
}
const TimeZone* getAstronomerTimeZone() {
umtx_initOnce(gAstronomerTimeZoneInitOnce, &initAstronomerTimeZone);
return gAstronomerTimeZone;
}
} // namespace anonymous
//-------------------------------------------------------------------------
// Minimum / Maximum access functions
//-------------------------------------------------------------------------
static const int32_t LIMITS[UCAL_FIELD_COUNT][4] = {
// Minimum Greatest Least Maximum
// Minimum Maximum
{ 1, 1, 83333, 83333}, // ERA
{ 1, 1, 60, 60}, // YEAR
{ 0, 0, 11, 11}, // MONTH
{ 1, 1, 50, 55}, // WEEK_OF_YEAR
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH
{ 1, 1, 29, 30}, // DAY_OF_MONTH
{ 1, 1, 353, 385}, // DAY_OF_YEAR
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK
{ -1, -1, 5, 5}, // DAY_OF_WEEK_IN_MONTH
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET
{ -5000000, -5000000, 5000000, 5000000}, // YEAR_WOY
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL
{ -5000000, -5000000, 5000000, 5000000}, // EXTENDED_YEAR
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY
{ 0, 0, 1, 1}, // IS_LEAP_MONTH
{ 0, 0, 11, 12}, // ORDINAL_MONTH
};
/**
* @draft ICU 2.4
*/
int32_t ChineseCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const {
return LIMITS[field][limitType];
}
//----------------------------------------------------------------------
// Calendar framework
//----------------------------------------------------------------------
/**
* Implement abstract Calendar method to return the extended year
* defined by the current fields. This will use either the ERA and
* YEAR field as the cycle and year-of-cycle, or the EXTENDED_YEAR
* field as the continuous year count, depending on which is newer.
* @stable ICU 2.8
*/
int32_t ChineseCalendar::handleGetExtendedYear(UErrorCode& status) {
if (U_FAILURE(status)) {
return 0;
}
int32_t year;
// if UCAL_EXTENDED_YEAR is not older than UCAL_ERA nor UCAL_YEAR
if (newerField(UCAL_EXTENDED_YEAR, newerField(UCAL_ERA, UCAL_YEAR)) ==
UCAL_EXTENDED_YEAR) {
year = internalGet(UCAL_EXTENDED_YEAR, 1); // Default to year 1
} else {
// adjust to the instance specific epoch
int32_t cycle = internalGet(UCAL_ERA, 1);
year = internalGet(UCAL_YEAR, 1);
const Setting setting = getSetting(status);
if (U_FAILURE(status)) {
return 0;
}
// Handle int32 overflow calculation for
// year = year + (cycle-1) * 60 -(fEpochYear - CHINESE_EPOCH_YEAR)
if (uprv_add32_overflow(cycle, -1, &cycle) || // 0-based cycle
uprv_mul32_overflow(cycle, 60, &cycle) ||
uprv_add32_overflow(year, cycle, &year) ||
uprv_add32_overflow(year, -(setting.epochYear-CHINESE_EPOCH_YEAR),
&year)) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
}
return year;
}
/**
* Override Calendar method to return the number of days in the given
* extended year and month.
*
* <p>Note: This method also reads the IS_LEAP_MONTH field to determine
* whether or not the given month is a leap month.
* @stable ICU 2.8
*/
int32_t ChineseCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month, UErrorCode& status) const {
bool isLeapMonth = internalGet(UCAL_IS_LEAP_MONTH) == 1;
return handleGetMonthLengthWithLeap(extendedYear, month, isLeapMonth, status);
}
int32_t ChineseCalendar::handleGetMonthLengthWithLeap(int32_t extendedYear, int32_t month, bool leap, UErrorCode& status) const {
const Setting setting = getSetting(status);
if (U_FAILURE(status)) {
return 0;
}
int32_t thisStart = handleComputeMonthStartWithLeap(extendedYear, month, leap, status);
if (U_FAILURE(status)) {
return 0;
}
thisStart = thisStart -
kEpochStartAsJulianDay + 1; // Julian day -> local days
int32_t nextStart = newMoonNear(setting.zoneAstroCalc, thisStart + SYNODIC_GAP, true, status);
return nextStart - thisStart;
}
/**
* Field resolution table that incorporates IS_LEAP_MONTH.
*/
const UFieldResolutionTable ChineseCalendar::CHINESE_DATE_PRECEDENCE[] =
{
{
{ UCAL_DAY_OF_MONTH, kResolveSTOP },
{ UCAL_WEEK_OF_YEAR, UCAL_DAY_OF_WEEK, kResolveSTOP },
{ UCAL_WEEK_OF_MONTH, UCAL_DAY_OF_WEEK, kResolveSTOP },
{ UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DAY_OF_WEEK, kResolveSTOP },
{ UCAL_WEEK_OF_YEAR, UCAL_DOW_LOCAL, kResolveSTOP },
{ UCAL_WEEK_OF_MONTH, UCAL_DOW_LOCAL, kResolveSTOP },
{ UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DOW_LOCAL, kResolveSTOP },
{ UCAL_DAY_OF_YEAR, kResolveSTOP },
{ kResolveRemap | UCAL_DAY_OF_MONTH, UCAL_IS_LEAP_MONTH, kResolveSTOP },
{ kResolveSTOP }
},
{
{ UCAL_WEEK_OF_YEAR, kResolveSTOP },
{ UCAL_WEEK_OF_MONTH, kResolveSTOP },
{ UCAL_DAY_OF_WEEK_IN_MONTH, kResolveSTOP },
{ kResolveRemap | UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DAY_OF_WEEK, kResolveSTOP },
{ kResolveRemap | UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DOW_LOCAL, kResolveSTOP },
{ kResolveSTOP }
},
{{kResolveSTOP}}
};
/**
* Override Calendar to add IS_LEAP_MONTH to the field resolution
* table.
* @stable ICU 2.8
*/
const UFieldResolutionTable* ChineseCalendar::getFieldResolutionTable() const {
return CHINESE_DATE_PRECEDENCE;
}
namespace {
struct MonthInfo {
int32_t month;
int32_t ordinalMonth;
int32_t thisMoon;
bool isLeapMonth;
bool hasLeapMonthBetweenWinterSolstices;
};
struct MonthInfo computeMonthInfo(
const icu::ChineseCalendar::Setting& setting,
int32_t gyear, int32_t days, UErrorCode& status);
} // namespace
/**
* Return the Julian day number of day before the first day of the
* given month in the given extended year.
*
* <p>Note: This method reads the IS_LEAP_MONTH field to determine
* whether the given month is a leap month.
* @param eyear the extended year
* @param month the zero-based month. The month is also determined
* by reading the IS_LEAP_MONTH field.
* @return the Julian day number of the day before the first
* day of the given month and year
* @stable ICU 2.8
*/
int64_t ChineseCalendar::handleComputeMonthStart(int32_t eyear, int32_t month, UBool useMonth, UErrorCode& status) const {
bool isLeapMonth = false;
if (useMonth) {
isLeapMonth = internalGet(UCAL_IS_LEAP_MONTH) != 0;
}
return handleComputeMonthStartWithLeap(eyear, month, isLeapMonth, status);
}
int64_t ChineseCalendar::handleComputeMonthStartWithLeap(int32_t eyear, int32_t month, bool isLeapMonth, UErrorCode& status) const {
if (U_FAILURE(status)) {
return 0;
}
// If the month is out of range, adjust it into range, and
// modify the extended year value accordingly.
if (month < 0 || month > 11) {
if (uprv_add32_overflow(eyear, ClockMath::floorDivide(month, 12, &month), &eyear)) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
}
const Setting setting = getSetting(status);
if (U_FAILURE(status)) {
return 0;
}
int32_t gyear;
if (uprv_add32_overflow(eyear, setting.epochYear - 1, &gyear)) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
int32_t theNewYear = newYear(setting, gyear, status);
int32_t newMoon = newMoonNear(setting.zoneAstroCalc, theNewYear + month * 29, true, status);
if (U_FAILURE(status)) {
return 0;
}
int32_t newMonthYear = Grego::dayToYear(newMoon, status);
struct MonthInfo monthInfo = computeMonthInfo(setting, newMonthYear, newMoon, status);
if (U_FAILURE(status)) {
return 0;
}
if (month != monthInfo.month-1 || isLeapMonth != monthInfo.isLeapMonth) {
newMoon = newMoonNear(setting.zoneAstroCalc, newMoon + SYNODIC_GAP, true, status);
if (U_FAILURE(status)) {
return 0;
}
}
int32_t julianDay;
if (uprv_add32_overflow(newMoon-1, kEpochStartAsJulianDay, &julianDay)) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
return julianDay;
}
/**
* Override Calendar to handle leap months properly.
* @stable ICU 2.8
*/
void ChineseCalendar::add(UCalendarDateFields field, int32_t amount, UErrorCode& status) {
switch (field) {
case UCAL_MONTH:
case UCAL_ORDINAL_MONTH:
if (amount != 0) {
int32_t dom = get(UCAL_DAY_OF_MONTH, status);
if (U_FAILURE(status)) break;
int32_t day = get(UCAL_JULIAN_DAY, status) - kEpochStartAsJulianDay; // Get local day
if (U_FAILURE(status)) break;
int32_t moon = day - dom + 1; // New moon
offsetMonth(moon, dom, amount, status);
}
break;
default:
Calendar::add(field, amount, status);
break;
}
}
/**
* Override Calendar to handle leap months properly.
* @stable ICU 2.8
*/
void ChineseCalendar::add(EDateFields field, int32_t amount, UErrorCode& status) {
add(static_cast<UCalendarDateFields>(field), amount, status);
}
namespace {
struct RollMonthInfo {
int32_t month;
int32_t newMoon;
int32_t thisMoon;
};
struct RollMonthInfo rollMonth(const TimeZone* timeZone, int32_t amount, int32_t day, int32_t month, int32_t dayOfMonth,
bool isLeapMonth, bool hasLeapMonthBetweenWinterSolstices,
UErrorCode& status) {
struct RollMonthInfo output = {0, 0, 0};
if (U_FAILURE(status)) {
return output;
}
output.thisMoon = day - dayOfMonth + 1; // New moon (start of this month)
// Note throughout the following: Months 12 and 1 are never
// followed by a leap month (D&R p. 185).
// Compute the adjusted month number m. This is zero-based
// value from 0..11 in a non-leap year, and from 0..12 in a
// leap year.
if (hasLeapMonthBetweenWinterSolstices) { // (member variable)
if (isLeapMonth) {
++month;
} else {
// Check for a prior leap month. (In the
// following, month 0 is the first month of the
// year.) Month 0 is never followed by a leap
// month, and we know month m is not a leap month.
// moon1 will be the start of month 0 if there is
// no leap month between month 0 and month m;
// otherwise it will be the start of month 1.
int prevMoon = output.thisMoon -
static_cast<int>(CalendarAstronomer::SYNODIC_MONTH * (month - 0.5));
prevMoon = newMoonNear(timeZone, prevMoon, true, status);
if (U_FAILURE(status)) {
return output;
}
if (isLeapMonthBetween(timeZone, prevMoon, output.thisMoon, status)) {
++month;
}
if (U_FAILURE(status)) {
return output;
}
}
}
// Now do the standard roll computation on month, with the
// allowed range of 0..n-1, where n is 12 or 13.
int32_t numberOfMonths = hasLeapMonthBetweenWinterSolstices ? 13 : 12; // Months in this year
if (uprv_add32_overflow(amount, month, &amount)) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return output;
}
output.newMoon = amount % numberOfMonths;
if (output.newMoon < 0) {
output.newMoon += numberOfMonths;
}
output.month = month;
return output;
}
} // namespace
/**
* Override Calendar to handle leap months properly.
* @stable ICU 2.8
*/
void ChineseCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status) {
switch (field) {
case UCAL_MONTH:
case UCAL_ORDINAL_MONTH:
if (amount != 0) {
const Setting setting = getSetting(status);
int32_t day = get(UCAL_JULIAN_DAY, status) - kEpochStartAsJulianDay; // Get local day
int32_t month = get(UCAL_MONTH, status); // 0-based month
int32_t dayOfMonth = get(UCAL_DAY_OF_MONTH, status);
bool isLeapMonth = get(UCAL_IS_LEAP_MONTH, status) == 1;
if (U_FAILURE(status)) break;
struct RollMonthInfo r = rollMonth(
setting.zoneAstroCalc, amount, day, month, dayOfMonth, isLeapMonth,
hasLeapMonthBetweenWinterSolstices, status);
if (U_FAILURE(status)) break;
if (r.newMoon != r.month) {
offsetMonth(r.thisMoon, dayOfMonth, r.newMoon - r.month, status);
}
}
break;
default:
Calendar::roll(field, amount, status);
break;
}
}
void ChineseCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) {
roll(static_cast<UCalendarDateFields>(field), amount, status);
}
//------------------------------------------------------------------
// Support methods and constants
//------------------------------------------------------------------
namespace {
/**
* Convert local days to UTC epoch milliseconds.
* This is not an accurate conversion in that getTimezoneOffset
* takes the milliseconds in GMT (not local time). In theory, more
* accurate algorithm can be implemented but practically we do not need
* to go through that complication as long as the historical timezone
* changes did not happen around the 'tricky' new moon (new moon around
* midnight).
*
* @param timeZone time zone for the Astro calculation.
* @param days days after January 1, 1970 0:00 in the astronomical base zone
* @return milliseconds after January 1, 1970 0:00 GMT
*/
double daysToMillis(const TimeZone* timeZone, double days, UErrorCode& status) {
if (U_FAILURE(status)) {
return 0;
}
double millis = days * kOneDay;
if (timeZone != nullptr) {
int32_t rawOffset, dstOffset;
timeZone->getOffset(millis, false, rawOffset, dstOffset, status);
if (U_FAILURE(status)) {
return 0;
}
return millis - static_cast<double>(rawOffset + dstOffset);
}
return millis - static_cast<double>(CHINA_OFFSET);
}
/**
* Convert UTC epoch milliseconds to local days.
* @param timeZone time zone for the Astro calculation.
* @param millis milliseconds after January 1, 1970 0:00 GMT
* @return days after January 1, 1970 0:00 in the astronomical base zone
*/
double millisToDays(const TimeZone* timeZone, double millis, UErrorCode& status) {
if (U_FAILURE(status)) {
return 0;
}
if (timeZone != nullptr) {
int32_t rawOffset, dstOffset;
timeZone->getOffset(millis, false, rawOffset, dstOffset, status);
if (U_FAILURE(status)) {
return 0;
}
return ClockMath::floorDivide(millis + static_cast<double>(rawOffset + dstOffset), kOneDay);
}
return ClockMath::floorDivide(millis + static_cast<double>(CHINA_OFFSET), kOneDay);
}
//------------------------------------------------------------------
// Astronomical computations
//------------------------------------------------------------------
/**
* Return the major solar term on or after December 15 of the given
* Gregorian year, that is, the winter solstice of the given year.
* Computations are relative to Asia/Shanghai time zone.
* @param setting setting (time zone and caches) for the Astro calculation.
* @param gyear a Gregorian year
* @return days after January 1, 1970 0:00 Asia/Shanghai of the
* winter solstice of the given year
*/
int32_t winterSolstice(const icu::ChineseCalendar::Setting& setting,
int32_t gyear, UErrorCode& status) {
if (U_FAILURE(status)) {
return 0;
}
const TimeZone* timeZone = setting.zoneAstroCalc;
int32_t cacheValue = CalendarCache::get(setting.winterSolsticeCache, gyear, status);
if (U_FAILURE(status)) {
return 0;
}
if (cacheValue == 0) {
// In books December 15 is used, but it fails for some years
// using our algorithms, e.g.: 1298 1391 1492 1553 1560. That
// is, winterSolstice(1298) starts search at Dec 14 08:00:00
// PST 1298 with a final result of Dec 14 10:31:59 PST 1299.
double ms = daysToMillis(timeZone, Grego::fieldsToDay(gyear, UCAL_DECEMBER, 1), status);
if (U_FAILURE(status)) {
return 0;
}
// Winter solstice is 270 degrees solar longitude aka Dongzhi
double days = millisToDays(timeZone,
CalendarAstronomer(ms)
.getSunTime(CalendarAstronomer::WINTER_SOLSTICE(), true),
status);
if (U_FAILURE(status)) {
return 0;
}
if (days < INT32_MIN || days > INT32_MAX) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
cacheValue = static_cast<int32_t>(days);
CalendarCache::put(setting.winterSolsticeCache, gyear, cacheValue, status);
}
if(U_FAILURE(status)) {
cacheValue = 0;
}
return cacheValue;
}
/**
* Return the closest new moon to the given date, searching either
* forward or backward in time.
* @param timeZone time zone for the Astro calculation.
* @param days days after January 1, 1970 0:00 Asia/Shanghai
* @param after if true, search for a new moon on or after the given
* date; otherwise, search for a new moon before it
* @param status
* @return days after January 1, 1970 0:00 Asia/Shanghai of the nearest
* new moon after or before <code>days</code>
*/
int32_t newMoonNear(const TimeZone* timeZone, double days, UBool after, UErrorCode& status) {
if (U_FAILURE(status)) {
return 0;
}
double ms = daysToMillis(timeZone, days, status);
if (U_FAILURE(status)) {
return 0;
}
return static_cast<int32_t>(millisToDays(
timeZone,
CalendarAstronomer(ms)
.getMoonTime(CalendarAstronomer::NEW_MOON(), after),
status));
}
/**
* Return the nearest integer number of synodic months between
* two dates.
* @param day1 days after January 1, 1970 0:00 Asia/Shanghai
* @param day2 days after January 1, 1970 0:00 Asia/Shanghai
* @return the nearest integer number of months between day1 and day2
*/
int32_t synodicMonthsBetween(int32_t day1, int32_t day2) {
double roundme = ((day2 - day1) / CalendarAstronomer::SYNODIC_MONTH);
return static_cast<int32_t>(roundme + (roundme >= 0 ? .5 : -.5));
}
/**
* Return the major solar term on or before a given date. This
* will be an integer from 1..12, with 1 corresponding to 330 degrees,
* 2 to 0 degrees, 3 to 30 degrees,..., and 12 to 300 degrees.
* @param timeZone time zone for the Astro calculation.
* @param days days after January 1, 1970 0:00 Asia/Shanghai
*/
int32_t majorSolarTerm(const TimeZone* timeZone, int32_t days, UErrorCode& status) {
if (U_FAILURE(status)) {
return 0;
}
// Compute (floor(solarLongitude / (pi/6)) + 2) % 12
double ms = daysToMillis(timeZone, days, status);
if (U_FAILURE(status)) {
return 0;
}
int32_t term = ((static_cast<int32_t>(6 * CalendarAstronomer(ms)
.getSunLongitude() / CalendarAstronomer::PI)) + 2 ) % 12;
if (U_FAILURE(status)) {
return 0;
}
if (term < 1) {
term += 12;
}
return term;
}
/**
* Return true if the given month lacks a major solar term.
* @param timeZone time zone for the Astro calculation.
* @param newMoon days after January 1, 1970 0:00 Asia/Shanghai of a new
* moon
*/
UBool hasNoMajorSolarTerm(const TimeZone* timeZone, int32_t newMoon, UErrorCode& status) {
if (U_FAILURE(status)) {
return false;
}
int32_t term1 = majorSolarTerm(timeZone, newMoon, status);
int32_t term2 = majorSolarTerm(
timeZone, newMoonNear(timeZone, newMoon + SYNODIC_GAP, true, status), status);
if (U_FAILURE(status)) {
return false;
}
return term1 == term2;
}
//------------------------------------------------------------------
// Time to fields
//------------------------------------------------------------------
/**
* Return true if there is a leap month on or after month newMoon1 and
* at or before month newMoon2.
* @param timeZone time zone for the Astro calculation.
* @param newMoon1 days after January 1, 1970 0:00 astronomical base zone
* of a new moon
* @param newMoon2 days after January 1, 1970 0:00 astronomical base zone
* of a new moon
*/
UBool isLeapMonthBetween(const TimeZone* timeZone, int32_t newMoon1, int32_t newMoon2, UErrorCode& status) {
if (U_FAILURE(status)) {
return false;
}
#ifdef U_DEBUG_CHNSECAL
// This is only needed to debug the timeOfAngle divergence bug.
// Remove this later. Liu 11/9/00
if (synodicMonthsBetween(newMoon1, newMoon2) >= 50) {
U_DEBUG_CHNSECAL_MSG((
"isLeapMonthBetween(%d, %d): Invalid parameters", newMoon1, newMoon2
));
}
#endif
while (newMoon2 >= newMoon1) {
if (hasNoMajorSolarTerm(timeZone, newMoon2, status)) {
return true;
}
newMoon2 = newMoonNear(timeZone, newMoon2 - SYNODIC_GAP, false, status);
if (U_FAILURE(status)) {
return false;
}
}
return false;
}
/**
* Compute the information about the year.
* @param setting setting (time zone and caches) for the Astro calculation.
* @param gyear the Gregorian year of the given date
* @param days days after January 1, 1970 0:00 astronomical base zone
* of the date to compute fields for
* @return The MonthInfo result.
*/
struct MonthInfo computeMonthInfo(
const icu::ChineseCalendar::Setting& setting,
int32_t gyear, int32_t days, UErrorCode& status) {
struct MonthInfo output = {0, 0, 0, false, false};
if (U_FAILURE(status)) {
return output;
}
// Find the winter solstices before and after the target date.
// These define the boundaries of this Chinese year, specifically,
// the position of month 11, which always contains the solstice.
// We want solsticeBefore <= date < solsticeAfter.
int32_t solsticeBefore;
int32_t solsticeAfter = winterSolstice(setting, gyear, status);
if (U_FAILURE(status)) {
return output;
}
if (days < solsticeAfter) {
solsticeBefore = winterSolstice(setting, gyear - 1, status);
} else {
solsticeBefore = solsticeAfter;
solsticeAfter = winterSolstice(setting, gyear + 1, status);
}
if (!(solsticeBefore <= days && days < solsticeAfter)) {
status = U_ILLEGAL_ARGUMENT_ERROR;
}
if (U_FAILURE(status)) {
return output;
}
const TimeZone* timeZone = setting.zoneAstroCalc;
// Find the start of the month after month 11. This will be either
// the prior month 12 or leap month 11 (very rare). Also find the
// start of the following month 11.
int32_t firstMoon = newMoonNear(timeZone, solsticeBefore + 1, true, status);
int32_t lastMoon = newMoonNear(timeZone, solsticeAfter + 1, false, status);
if (U_FAILURE(status)) {
return output;
}
output.thisMoon = newMoonNear(timeZone, days + 1, false, status); // Start of this month
if (U_FAILURE(status)) {
return output;
}
output.hasLeapMonthBetweenWinterSolstices = synodicMonthsBetween(firstMoon, lastMoon) == 12;
output.month = synodicMonthsBetween(firstMoon, output.thisMoon);
int32_t theNewYear = newYear(setting, gyear, status);
if (U_FAILURE(status)) {
return output;
}
if (days < theNewYear) {
theNewYear = newYear(setting, gyear-1, status);
if (U_FAILURE(status)) {
return output;
}
}
if (output.hasLeapMonthBetweenWinterSolstices &&
isLeapMonthBetween(timeZone, firstMoon, output.thisMoon, status)) {
output.month--;
}
if (U_FAILURE(status)) {
return output;
}
if (output.month < 1) {
output.month += 12;
}
output.ordinalMonth = synodicMonthsBetween(theNewYear, output.thisMoon);
if (output.ordinalMonth < 0) {
output.ordinalMonth += 12;
}
output.isLeapMonth = output.hasLeapMonthBetweenWinterSolstices &&
hasNoMajorSolarTerm(timeZone, output.thisMoon, status) &&
!isLeapMonthBetween(timeZone, firstMoon,
newMoonNear(timeZone, output.thisMoon - SYNODIC_GAP, false, status),
status);
if (U_FAILURE(status)) {
return output;
}
return output;
}
} // namespace
/**
* Override Calendar to compute several fields specific to the Chinese
* calendar system. These are:
*
* <ul><li>ERA
* <li>YEAR
* <li>MONTH
* <li>DAY_OF_MONTH
* <li>DAY_OF_YEAR
* <li>EXTENDED_YEAR</ul>
*
* The DAY_OF_WEEK and DOW_LOCAL fields are already set when this
* method is called. The getGregorianXxx() methods return Gregorian
* calendar equivalents for the given Julian day.
*
* <p>Compute the ChineseCalendar-specific field IS_LEAP_MONTH.
* @stable ICU 2.8
*/
void ChineseCalendar::handleComputeFields(int32_t julianDay, UErrorCode & status) {
if (U_FAILURE(status)) {
return;
}
int32_t days;
if (uprv_add32_overflow(julianDay, -kEpochStartAsJulianDay, &days)) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
int32_t gyear = getGregorianYear();
int32_t gmonth = getGregorianMonth();
const Setting setting = getSetting(status);
if (U_FAILURE(status)) {
return;
}
struct MonthInfo monthInfo = computeMonthInfo(setting, gyear, days, status);
if (U_FAILURE(status)) {
return;
}
hasLeapMonthBetweenWinterSolstices = monthInfo.hasLeapMonthBetweenWinterSolstices;
// Extended year and cycle year is based on the epoch year
int32_t eyear = gyear - setting.epochYear;
int32_t cycle_year = gyear - CHINESE_EPOCH_YEAR;
if (monthInfo.month < 11 ||
gmonth >= UCAL_JULY) {
eyear++;
cycle_year++;
}
int32_t dayOfMonth = days - monthInfo.thisMoon + 1;
// 0->0,60 1->1,1 60->1,60 61->2,1 etc.
int32_t yearOfCycle;
int32_t cycle = ClockMath::floorDivide(cycle_year - 1, 60, &yearOfCycle);
// Days will be before the first new year we compute if this
// date is in month 11, leap 11, 12. There is never a leap 12.
// New year computations are cached so this should be cheap in
// the long run.
int32_t theNewYear = newYear(setting, gyear, status);
if (U_FAILURE(status)) {
return;
}
if (days < theNewYear) {
theNewYear = newYear(setting, gyear-1, status);
}
if (U_FAILURE(status)) {
return;
}
cycle++;
yearOfCycle++;
int32_t dayOfYear = days - theNewYear + 1;
int32_t minYear = this->handleGetLimit(UCAL_EXTENDED_YEAR, UCAL_LIMIT_MINIMUM);
if (eyear < minYear) {
if (!isLenient()) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
eyear = minYear;
}
int32_t maxYear = this->handleGetLimit(UCAL_EXTENDED_YEAR, UCAL_LIMIT_MAXIMUM);
if (maxYear < eyear) {
if (!isLenient()) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
eyear = maxYear;
}
internalSet(UCAL_MONTH, monthInfo.month-1); // Convert from 1-based to 0-based
internalSet(UCAL_ORDINAL_MONTH, monthInfo.ordinalMonth); // Convert from 1-based to 0-based
internalSet(UCAL_IS_LEAP_MONTH, monthInfo.isLeapMonth?1:0);
internalSet(UCAL_EXTENDED_YEAR, eyear);
internalSet(UCAL_ERA, cycle);
internalSet(UCAL_YEAR, yearOfCycle);
internalSet(UCAL_DAY_OF_MONTH, dayOfMonth);
internalSet(UCAL_DAY_OF_YEAR, dayOfYear);
}
//------------------------------------------------------------------
// Fields to time
//------------------------------------------------------------------
namespace {
/**
* Return the Chinese new year of the given Gregorian year.
* @param setting setting (time zone and caches) for the Astro calculation.
* @param gyear a Gregorian year
* @return days after January 1, 1970 0:00 astronomical base zone of the
* Chinese new year of the given year (this will be a new moon)
*/
int32_t newYear(const icu::ChineseCalendar::Setting& setting,
int32_t gyear, UErrorCode& status) {
if (U_FAILURE(status)) {
return 0;
}
const TimeZone* timeZone = setting.zoneAstroCalc;
int32_t cacheValue = CalendarCache::get(setting.newYearCache, gyear, status);
if (U_FAILURE(status)) {
return 0;
}
if (cacheValue == 0) {
int32_t solsticeBefore= winterSolstice(setting, gyear - 1, status);
int32_t solsticeAfter = winterSolstice(setting, gyear, status);
int32_t newMoon1 = newMoonNear(timeZone, solsticeBefore + 1, true, status);
int32_t newMoon2 = newMoonNear(timeZone, newMoon1 + SYNODIC_GAP, true, status);
int32_t newMoon11 = newMoonNear(timeZone, solsticeAfter + 1, false, status);
if (U_FAILURE(status)) {
return 0;
}
if (synodicMonthsBetween(newMoon1, newMoon11) == 12 &&
(hasNoMajorSolarTerm(timeZone, newMoon1, status) ||
hasNoMajorSolarTerm(timeZone, newMoon2, status))) {
cacheValue = newMoonNear(timeZone, newMoon2 + SYNODIC_GAP, true, status);
} else {
cacheValue = newMoon2;
}
if (U_FAILURE(status)) {
return 0;
}
CalendarCache::put(setting.newYearCache, gyear, cacheValue, status);
}
if(U_FAILURE(status)) {
cacheValue = 0;
}
return cacheValue;
}
} // namespace
/**
* Adjust this calendar to be delta months before or after a given
* start position, pinning the day of month if necessary. The start
* position is given as a local days number for the start of the month
* and a day-of-month. Used by add() and roll().
* @param newMoon the local days of the first day of the month of the
* start position (days after January 1, 1970 0:00 Asia/Shanghai)
* @param dayOfMonth the 1-based day-of-month of the start position
* @param delta the number of months to move forward or backward from
* the start position
* @param status The status.
*/
void ChineseCalendar::offsetMonth(int32_t newMoon, int32_t dayOfMonth, int32_t delta,
UErrorCode& status) {
const Setting setting = getSetting(status);
if (U_FAILURE(status)) {
return;
}
// Move to the middle of the month before our target month.
double value = newMoon;
value += (CalendarAstronomer::SYNODIC_MONTH *
(static_cast<double>(delta) - 0.5));
if (value < INT32_MIN || value > INT32_MAX) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
newMoon = static_cast<int32_t>(value);
// Search forward to the target month's new moon
newMoon = newMoonNear(setting.zoneAstroCalc, newMoon, true, status);
if (U_FAILURE(status)) {
return;
}
// Find the target dayOfMonth
int32_t jd;
if (uprv_add32_overflow(newMoon, kEpochStartAsJulianDay - 1, &jd) ||
uprv_add32_overflow(jd, dayOfMonth, &jd)) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
// Pin the dayOfMonth. In this calendar all months are 29 or 30 days
// so pinning just means handling dayOfMonth 30.
if (dayOfMonth > 29) {
set(UCAL_JULIAN_DAY, jd-1);
// TODO Fix this. We really shouldn't ever have to
// explicitly call complete(). This is either a bug in
// this method, in ChineseCalendar, or in
// Calendar.getActualMaximum(). I suspect the last.
complete(status);
if (U_FAILURE(status)) return;
if (getActualMaximum(UCAL_DAY_OF_MONTH, status) >= dayOfMonth) {
if (U_FAILURE(status)) return;
set(UCAL_JULIAN_DAY, jd);
}
} else {
set(UCAL_JULIAN_DAY, jd);
}
}
constexpr uint32_t kChineseRelatedYearDiff = -2637;
int32_t ChineseCalendar::getRelatedYear(UErrorCode &status) const
{
int32_t year = get(UCAL_EXTENDED_YEAR, status);
if (U_FAILURE(status)) {
return 0;
}
if (uprv_add32_overflow(year, kChineseRelatedYearDiff, &year)) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
return year;
}
void ChineseCalendar::setRelatedYear(int32_t year)
{
// set extended year
set(UCAL_EXTENDED_YEAR, year - kChineseRelatedYearDiff);
}
IMPL_SYSTEM_DEFAULT_CENTURY(ChineseCalendar, "@calendar=chinese")
bool
ChineseCalendar::inTemporalLeapYear(UErrorCode &status) const
{
int32_t days = getActualMaximum(UCAL_DAY_OF_YEAR, status);
if (U_FAILURE(status)) return false;
return days > 360;
}
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(ChineseCalendar)
static const char * const gTemporalLeapMonthCodes[] = {
"M01L", "M02L", "M03L", "M04L", "M05L", "M06L",
"M07L", "M08L", "M09L", "M10L", "M11L", "M12L", nullptr
};
const char* ChineseCalendar::getTemporalMonthCode(UErrorCode &status) const {
// We need to call get, not internalGet, to force the calculation
// from UCAL_ORDINAL_MONTH.
int32_t is_leap = get(UCAL_IS_LEAP_MONTH, status);
if (U_FAILURE(status)) return nullptr;
if (is_leap != 0) {
int32_t month = get(UCAL_MONTH, status);
if (U_FAILURE(status)) return nullptr;
return gTemporalLeapMonthCodes[month];
}
return Calendar::getTemporalMonthCode(status);
}
void
ChineseCalendar::setTemporalMonthCode(const char* code, UErrorCode& status )
{
if (U_FAILURE(status)) return;
int32_t len = static_cast<int32_t>(uprv_strlen(code));
if (len != 4 || code[0] != 'M' || code[3] != 'L') {
set(UCAL_IS_LEAP_MONTH, 0);
return Calendar::setTemporalMonthCode(code, status);
}
for (int m = 0; gTemporalLeapMonthCodes[m] != nullptr; m++) {
if (uprv_strcmp(code, gTemporalLeapMonthCodes[m]) == 0) {
set(UCAL_MONTH, m);
set(UCAL_IS_LEAP_MONTH, 1);
return;
}
}
status = U_ILLEGAL_ARGUMENT_ERROR;
}
int32_t ChineseCalendar::internalGetMonth(UErrorCode& status) const {
if (U_FAILURE(status)) {
return 0;
}
if (resolveFields(kMonthPrecedence) == UCAL_MONTH) {
return internalGet(UCAL_MONTH);
}
LocalPointer<Calendar> temp(this->clone());
temp->set(UCAL_MONTH, 0);
temp->set(UCAL_IS_LEAP_MONTH, 0);
temp->set(UCAL_DATE, 1);
// Calculate the UCAL_MONTH and UCAL_IS_LEAP_MONTH by adding number of
// months.
temp->roll(UCAL_MONTH, internalGet(UCAL_ORDINAL_MONTH), status);
if (U_FAILURE(status)) {
return 0;
}
ChineseCalendar* nonConstThis = const_cast<ChineseCalendar*>(this); // cast away const
nonConstThis->internalSet(UCAL_IS_LEAP_MONTH, temp->get(UCAL_IS_LEAP_MONTH, status));
int32_t month = temp->get(UCAL_MONTH, status);
if (U_FAILURE(status)) {
return 0;
}
nonConstThis->internalSet(UCAL_MONTH, month);
return month;
}
int32_t ChineseCalendar::internalGetMonth(int32_t defaultValue, UErrorCode& status) const {
if (U_FAILURE(status)) {
return 0;
}
switch (resolveFields(kMonthPrecedence)) {
case UCAL_MONTH:
return internalGet(UCAL_MONTH);
case UCAL_ORDINAL_MONTH:
return internalGetMonth(status);
default:
return defaultValue;
}
}
ChineseCalendar::Setting ChineseCalendar::getSetting(UErrorCode&) const {
return {
CHINESE_EPOCH_YEAR,
getAstronomerTimeZone(),
&gWinterSolsticeCache,
&gNewYearCache
};
}
int32_t
ChineseCalendar::getActualMaximum(UCalendarDateFields field, UErrorCode& status) const
{
if (U_FAILURE(status)) {
return 0;
}
if (field == UCAL_DATE) {
LocalPointer<ChineseCalendar> cal(clone(), status);
if(U_FAILURE(status)) {
return 0;
}
cal->setLenient(true);
cal->prepareGetActual(field,false,status);
int32_t year = cal->get(UCAL_EXTENDED_YEAR, status);
int32_t month = cal->get(UCAL_MONTH, status);
bool leap = cal->get(UCAL_IS_LEAP_MONTH, status) != 0;
return handleGetMonthLengthWithLeap(year, month, leap, status);
}
return Calendar::getActualMaximum(field, status);
}
U_NAMESPACE_END
#endif