Initial implementation of Constrained Delaunay Refinement
This commit is contained in:
parent
a43504d78a
commit
50dc8f0566
7 changed files with 219 additions and 3 deletions
|
@ -107,11 +107,16 @@ enum TessWindingRule
|
|||
// glEnd();
|
||||
// }
|
||||
//
|
||||
// TESS_CONSTRAINED_DELAUNAY_TRIANGLES
|
||||
// Similar to TESS_POLYGONS, but we output only triangles and we attempt to provide a valid
|
||||
// Constrained Delaunay triangulation.
|
||||
|
||||
enum TessElementType
|
||||
{
|
||||
TESS_POLYGONS,
|
||||
TESS_CONNECTED_POLYGONS,
|
||||
TESS_BOUNDARY_CONTOURS,
|
||||
TESS_CONSTRAINED_DELAUNAY_TRIANGLES,
|
||||
};
|
||||
|
||||
typedef float TESSreal;
|
||||
|
@ -189,7 +194,7 @@ void tessAddContour( TESStesselator *tess, int size, const void* pointer, int st
|
|||
// tess - pointer to tesselator object.
|
||||
// windingRule - winding rules used for tesselation, must be one of TessWindingRule.
|
||||
// elementType - defines the tesselation result element type, must be one of TessElementType.
|
||||
// polySize - defines maximum vertices per polygons if output is polygons.
|
||||
// polySize - defines maximum vertices per polygons if output is polygons. If elementType is TESS_CONSTRAINED_DELAUNAY_TRIANGLES, this parameter is ignored.
|
||||
// vertexSize - defines the number of coordinates in tesselation result vertex, must be 2 or 3.
|
||||
// normal - defines the normal of the input contours, of null the normal is calculated automatically.
|
||||
// Returns:
|
||||
|
|
|
@ -33,6 +33,7 @@
|
|||
#include <assert.h>
|
||||
#include "mesh.h"
|
||||
#include "geom.h"
|
||||
#include <math.h>
|
||||
|
||||
int tesvertLeq( TESSvertex *u, TESSvertex *v )
|
||||
{
|
||||
|
@ -259,3 +260,22 @@ void tesedgeIntersect( TESSvertex *o1, TESSvertex *d1,
|
|||
v->t = Interpolate( z1, o2->t, z2, d2->t );
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Calculate the angle between v1-v2 and v1-v0
|
||||
*/
|
||||
TESSreal calcAngle(TESSvertex *v0, TESSvertex *v1, TESSvertex *v2) {
|
||||
TESSreal a[2] = { v2->s - v1->s, v2->t - v1->t };
|
||||
TESSreal b[2] = { v0->s - v1->s, v0->t - v1->t };
|
||||
return acosf((a[0] * b[0] + a[1] * b[1]) /
|
||||
(sqrt(a[0] * a[0] + a[1] * a[1]) * sqrt(b[0] * b[0] + b[1] * b[1])));
|
||||
}
|
||||
|
||||
/*
|
||||
Returns 1 is edge is locally delaunay
|
||||
*/
|
||||
int tesedgeIsLocallyDelaunay( TESShalfEdge *e )
|
||||
{
|
||||
return (calcAngle(e->Lnext->Org, e->Lnext->Lnext->Org, e->Org) +
|
||||
calcAngle(e->Sym->Lnext->Org, e->Sym->Lnext->Lnext->Org, e->Sym->Org)) < (M_PI + 0.01);
|
||||
}
|
||||
|
|
|
@ -59,6 +59,7 @@
|
|||
|
||||
#define EdgeGoesLeft(e) VertLeq( (e)->Dst, (e)->Org )
|
||||
#define EdgeGoesRight(e) VertLeq( (e)->Org, (e)->Dst )
|
||||
#define EdgeIsInternal(e) e->Rface && e->Rface->inside
|
||||
|
||||
#define ABS(x) ((x) < 0 ? -(x) : (x))
|
||||
#define VertL1dist(u,v) (ABS(u->s - v->s) + ABS(u->t - v->t))
|
||||
|
@ -72,5 +73,6 @@ TESSreal testransEval( TESSvertex *u, TESSvertex *v, TESSvertex *w );
|
|||
TESSreal testransSign( TESSvertex *u, TESSvertex *v, TESSvertex *w );
|
||||
int tesvertCCW( TESSvertex *u, TESSvertex *v, TESSvertex *w );
|
||||
void tesedgeIntersect( TESSvertex *o1, TESSvertex *d1, TESSvertex *o2, TESSvertex *d2, TESSvertex *v );
|
||||
int tesedgeIsLocallyDelaunay( TESShalfEdge *e );
|
||||
|
||||
#endif
|
||||
|
|
|
@ -80,6 +80,7 @@ static TESShalfEdge *MakeEdge( TESSmesh* mesh, TESShalfEdge *eNext )
|
|||
e->Lface = NULL;
|
||||
e->winding = 0;
|
||||
e->activeRegion = NULL;
|
||||
e->mark = 0;
|
||||
|
||||
eSym->Sym = e;
|
||||
eSym->Onext = eSym;
|
||||
|
@ -88,6 +89,7 @@ static TESShalfEdge *MakeEdge( TESSmesh* mesh, TESShalfEdge *eNext )
|
|||
eSym->Lface = NULL;
|
||||
eSym->winding = 0;
|
||||
eSym->activeRegion = NULL;
|
||||
eSym->mark = 0;
|
||||
|
||||
return e;
|
||||
}
|
||||
|
@ -748,6 +750,85 @@ int tessMeshMergeConvexFaces( TESSmesh *mesh, int maxVertsPerFace )
|
|||
return 1;
|
||||
}
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
void tessMeshFlipEdge( TESSmesh *mesh, TESShalfEdge *edge )
|
||||
{
|
||||
assert(EdgeIsInternal(edge));
|
||||
|
||||
TESShalfEdge *a0 = edge;
|
||||
TESShalfEdge *a1 = a0->Lnext;
|
||||
TESShalfEdge *a2 = a1->Lnext;
|
||||
assert(a2->Lnext == a0);
|
||||
TESShalfEdge *b0 = edge->Sym;
|
||||
TESShalfEdge *b1 = b0->Lnext;
|
||||
TESShalfEdge *b2 = b1->Lnext;
|
||||
assert(b2->Lnext == b0);
|
||||
|
||||
TESSvertex *aOrg = a0->Org;
|
||||
TESSvertex *aOpp = a2->Org;
|
||||
TESSvertex *bOrg = b0->Org;
|
||||
TESSvertex *bOpp = b2->Org;
|
||||
|
||||
TESSface *fa = a0->Lface;
|
||||
TESSface *fb = b0->Lface;
|
||||
|
||||
a0->Org = bOpp;
|
||||
a0->Onext = b1->Sym;
|
||||
b0->Org = aOpp;
|
||||
b0->Onext = a1->Sym;
|
||||
a2->Onext = b0;
|
||||
b2->Onext = a0;
|
||||
b1->Onext = a2->Sym;
|
||||
a1->Onext = b2->Sym;
|
||||
|
||||
a0->Lnext = a2;
|
||||
a2->Lnext = b1;
|
||||
b1->Lnext = a0;
|
||||
|
||||
b0->Lnext = b2;
|
||||
b2->Lnext = a1;
|
||||
a1->Lnext = b0;
|
||||
|
||||
a1->Lface = fb;
|
||||
b1->Lface = fa;
|
||||
|
||||
fa->anEdge = a0;
|
||||
fb->anEdge = b0;
|
||||
|
||||
if (aOrg->anEdge == a0) aOrg->anEdge = b1;
|
||||
if (bOrg->anEdge == b0) bOrg->anEdge = a1;
|
||||
|
||||
assert( a0->Lnext->Onext->Sym == a0 );
|
||||
assert( a0->Onext->Sym->Lnext == a0 );
|
||||
assert( a0->Org->anEdge->Org == a0->Org );
|
||||
|
||||
|
||||
assert( a1->Lnext->Onext->Sym == a1 );
|
||||
assert( a1->Onext->Sym->Lnext == a1 );
|
||||
assert( a1->Org->anEdge->Org == a1->Org );
|
||||
|
||||
assert( a2->Lnext->Onext->Sym == a2 );
|
||||
assert( a2->Onext->Sym->Lnext == a2 );
|
||||
assert( a2->Org->anEdge->Org == a2->Org );
|
||||
|
||||
assert( b0->Lnext->Onext->Sym == b0 );
|
||||
assert( b0->Onext->Sym->Lnext == b0 );
|
||||
assert( b0->Org->anEdge->Org == b0->Org );
|
||||
|
||||
assert( b1->Lnext->Onext->Sym == b1 );
|
||||
assert( b1->Onext->Sym->Lnext == b1 );
|
||||
assert( b1->Org->anEdge->Org == b1->Org );
|
||||
|
||||
assert( b2->Lnext->Onext->Sym == b2 );
|
||||
assert( b2->Onext->Sym->Lnext == b2 );
|
||||
assert( b2->Org->anEdge->Org == b2->Org );
|
||||
|
||||
assert(aOrg->anEdge->Org == aOrg);
|
||||
assert(bOrg->anEdge->Org == bOrg);
|
||||
|
||||
assert(a0->Oprev->Onext->Org == a0->Org);
|
||||
}
|
||||
|
||||
#ifdef DELETE_BY_ZAPPING
|
||||
|
||||
|
|
|
@ -143,6 +143,7 @@ struct TESShalfEdge {
|
|||
ActiveRegion *activeRegion; /* a region with this upper edge (sweep.c) */
|
||||
int winding; /* change in winding number when crossing
|
||||
from the right face to the left face */
|
||||
int mark; /* Used by the Edge Flip algorithm */
|
||||
};
|
||||
|
||||
#define Rface Sym->Lface
|
||||
|
@ -155,7 +156,6 @@ struct TESShalfEdge {
|
|||
#define Dnext Rprev->Sym /* 3 pointers */
|
||||
#define Rnext Oprev->Sym /* 3 pointers */
|
||||
|
||||
|
||||
struct TESSmesh {
|
||||
TESSvertex vHead; /* dummy header for vertex list */
|
||||
TESSface fHead; /* dummy header for face list */
|
||||
|
@ -258,6 +258,8 @@ int tessMeshMergeConvexFaces( TESSmesh *mesh, int maxVertsPerFace );
|
|||
void tessMeshDeleteMesh( TESSalloc* alloc, TESSmesh *mesh );
|
||||
void tessMeshZapFace( TESSmesh *mesh, TESSface *fZap );
|
||||
|
||||
void tessMeshFlipEdge( TESSmesh *mesh, TESShalfEdge *edge );
|
||||
|
||||
#ifdef NDEBUG
|
||||
#define tessMeshCheckMesh( mesh )
|
||||
#else
|
||||
|
|
100
Source/tess.c
100
Source/tess.c
|
@ -365,7 +365,6 @@ int tessMeshTessellateMonoRegion( TESSmesh *mesh, TESSface *face )
|
|||
return 1;
|
||||
}
|
||||
|
||||
|
||||
/* tessMeshTessellateInterior( mesh ) tessellates each region of
|
||||
* the mesh which is marked "inside" the polygon. Each such region
|
||||
* must be monotone.
|
||||
|
@ -382,6 +381,100 @@ int tessMeshTessellateInterior( TESSmesh *mesh )
|
|||
if ( !tessMeshTessellateMonoRegion( mesh, f ) ) return 0;
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
struct EdgeStackNode {
|
||||
TESShalfEdge *edge;
|
||||
struct EdgeStackNode *next;
|
||||
};
|
||||
|
||||
struct EdgeStack {
|
||||
struct EdgeStackNode *top;
|
||||
};
|
||||
|
||||
void stackInit(struct EdgeStack *stack)
|
||||
{
|
||||
stack->top = NULL;
|
||||
}
|
||||
|
||||
int stackEmpty(struct EdgeStack *stack)
|
||||
{
|
||||
return stack->top == NULL;
|
||||
}
|
||||
|
||||
void stackPush(struct EdgeStack *stack, TESShalfEdge *e)
|
||||
{
|
||||
struct EdgeStackNode *node = malloc(sizeof(struct EdgeStackNode));
|
||||
node->edge = e;
|
||||
node->next = stack->top;
|
||||
stack->top = node;
|
||||
}
|
||||
|
||||
TESShalfEdge *stackPop(struct EdgeStack *stack)
|
||||
{
|
||||
TESShalfEdge *e = NULL;
|
||||
struct EdgeStackNode *node = stack->top;
|
||||
if (node) {
|
||||
stack->top = node->next;
|
||||
e = node->edge;
|
||||
free(node);
|
||||
}
|
||||
return e;
|
||||
}
|
||||
|
||||
/*
|
||||
Starting with a valid triangulation, uses the Edge Flip algorithm to
|
||||
refine the triangulation into a Constrained Delaunay Triangulation.
|
||||
*/
|
||||
int tessMeshRefineDelaunay( TESSmesh *mesh )
|
||||
{
|
||||
/* At this point, we have a valid, but not optimal, triangulation.
|
||||
We refine the triangulation using the Edge Flip algorithm */
|
||||
|
||||
/*
|
||||
1) Find all internal edges
|
||||
2) Mark all dual edges
|
||||
3) insert all dual edges into a queue
|
||||
*/
|
||||
TESSface *f;
|
||||
struct EdgeStack stack;
|
||||
stackInit(&stack);
|
||||
TESShalfEdge *e;
|
||||
TESShalfEdge *edges[4];
|
||||
for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
|
||||
if ( f->inside) {
|
||||
e = f->anEdge;
|
||||
do {
|
||||
e->mark = EdgeIsInternal(e); /* Mark internal edges */
|
||||
if (e->mark && !e->Sym->mark) stackPush(&stack, e); /* Insert into queue */
|
||||
e = e->Lnext;
|
||||
} while (e != f->anEdge);
|
||||
}
|
||||
}
|
||||
|
||||
// Pop stack until we find a reversed edge
|
||||
// Flip the reversed edge, and insert any of the four opposite edges
|
||||
// which are internal and not already in the stack (!marked)
|
||||
while (!stackEmpty(&stack)) {
|
||||
e = stackPop(&stack);
|
||||
e->mark = e->Sym->mark = 0;
|
||||
if (!tesedgeIsLocallyDelaunay(e)) {
|
||||
tessMeshFlipEdge(mesh, e);
|
||||
// for each opposite edge
|
||||
edges[0] = e->Lnext;
|
||||
edges[1] = e->Lprev;
|
||||
edges[2] = e->Sym->Lnext;
|
||||
edges[3] = e->Sym->Lprev;
|
||||
for (int i=0;i<3;i++) {
|
||||
if (!edges[i]->mark && EdgeIsInternal(edges[i])) {
|
||||
edges[i]->mark = edges[i]->Sym->mark = 1;
|
||||
stackPush(&stack, edges[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
@ -926,6 +1019,11 @@ int tessTesselate( TESStesselator *tess, int windingRule, int elementType,
|
|||
rc = tessMeshSetWindingNumber( mesh, 1, TRUE );
|
||||
} else {
|
||||
rc = tessMeshTessellateInterior( mesh );
|
||||
if (elementType == TESS_CONSTRAINED_DELAUNAY_TRIANGLES) {
|
||||
rc = tessMeshRefineDelaunay( mesh );
|
||||
elementType = TESS_POLYGONS;
|
||||
polySize = 3;
|
||||
}
|
||||
}
|
||||
if (rc == 0) longjmp(tess->env,1); /* could've used a label */
|
||||
|
||||
|
|
|
@ -223,3 +223,11 @@ triangles into fans and strips. We do this using a greedy approach.
|
|||
The triangulation itself is not optimized to reduce the number of
|
||||
primitives; we just try to get a reasonable decomposition of the
|
||||
computed triangulation.
|
||||
|
||||
Optionally, it's possible to output a Constrained Delaunay Triangulation.
|
||||
This is done by doing a delaunay refinement with the normal triangulation as
|
||||
a basis. The Edge Flip algorithm is used, which is guaranteed to terminate in O(n^2).
|
||||
|
||||
Note: We don't use robust predicates to check if edges are locally
|
||||
delaunay, but currently us a naive epsilon of 0.01 radians to ensure
|
||||
termination.
|
||||
|
|
Loading…
Add table
Reference in a new issue