forked from organicmaps/organicmaps
Review fixes.
This commit is contained in:
parent
75b1eecf66
commit
161abff6a0
1 changed files with 118 additions and 105 deletions
|
@ -8,6 +8,8 @@
|
|||
|
||||
namespace routing
|
||||
{
|
||||
namespace
|
||||
{
|
||||
double const kMaxSpeedMPS = 5000.0 / 3600;
|
||||
double const kEpsilon = 1e-6;
|
||||
|
||||
|
@ -15,8 +17,6 @@ double const kEpsilon = 1e-6;
|
|||
uint32_t const kCancelledPollPeriod = 128;
|
||||
uint32_t const kQueueSwitchPeriod = 128;
|
||||
|
||||
namespace
|
||||
{
|
||||
template <typename E>
|
||||
void SortUnique(vector<E> & v)
|
||||
{
|
||||
|
@ -35,10 +35,8 @@ void ReconstructRoute(RoadPos const & v, map<RoadPos, RoadPos> const & parent,
|
|||
{
|
||||
route.clear();
|
||||
RoadPos cur = v;
|
||||
LOG(LDEBUG, ("A-star has found a path:"));
|
||||
while (true)
|
||||
{
|
||||
LOG(LDEBUG, (cur));
|
||||
route.push_back(cur);
|
||||
auto it = parent.find(cur);
|
||||
if (it == parent.end())
|
||||
|
@ -81,6 +79,7 @@ void ReconstructRouteBidirectional(RoadPos const & v, RoadPos const & w,
|
|||
// for CalculateRouteM2M for more information.
|
||||
struct Vertex
|
||||
{
|
||||
Vertex() : dist(0.0) {}
|
||||
Vertex(RoadPos const & pos, double dist) : pos(pos), dist(dist) {}
|
||||
|
||||
bool operator<(Vertex const & v) const { return dist > v.dist; }
|
||||
|
@ -88,13 +87,70 @@ struct Vertex
|
|||
RoadPos pos;
|
||||
double dist;
|
||||
};
|
||||
|
||||
// BidirectionalStepContext keeps all the information that is needed to
|
||||
// search starting from one of the two directions. Its main
|
||||
// purpose is to make the code that changes directions more readable.
|
||||
struct BidirectionalStepContext
|
||||
{
|
||||
BidirectionalStepContext(bool forward, vector<RoadPos> const & startPos,
|
||||
vector<RoadPos> const & finalPos)
|
||||
: forward(forward), startPos(startPos), finalPos(finalPos)
|
||||
{
|
||||
bestVertex = forward ? Vertex(startPos[0], 0.0) : Vertex(finalPos[0], 0.0);
|
||||
pS = ConsistentHeuristic(Vertex(startPos[0], 0.0));
|
||||
}
|
||||
|
||||
double TopDistance() const
|
||||
{
|
||||
ASSERT(!queue.empty(), ());
|
||||
auto it = bestDistance.find(queue.top().pos);
|
||||
CHECK(it != bestDistance.end(), ());
|
||||
return it->second;
|
||||
}
|
||||
|
||||
// p_f(v) = 0.5*(π_f(v) - π_r(v)) + 0.5*π_r(t)
|
||||
// p_r(v) = 0.5*(π_r(v) - π_f(v)) + 0.5*π_f(s)
|
||||
// p_r(v) + p_f(v) = const. Note: this condition is called consistence.
|
||||
double ConsistentHeuristic(Vertex const & v) const
|
||||
{
|
||||
double piF = HeuristicCostEstimate(v.pos, finalPos);
|
||||
double piR = HeuristicCostEstimate(v.pos, startPos);
|
||||
double const piRT = HeuristicCostEstimate(finalPos[0], startPos);
|
||||
double const piFS = HeuristicCostEstimate(startPos[0], finalPos);
|
||||
if (forward)
|
||||
{
|
||||
/// @todo careful: with this "return" here and below in the Backward case
|
||||
/// the heuristic becomes inconsistent but still seems to work.
|
||||
/// return HeuristicCostEstimate(v.pos, finalPos);
|
||||
return 0.5 * (piF - piR + piRT);
|
||||
}
|
||||
else
|
||||
{
|
||||
// return HeuristicCostEstimate(v.pos, startPos);
|
||||
return 0.5 * (piR - piF + piFS);
|
||||
}
|
||||
}
|
||||
|
||||
bool const forward;
|
||||
vector<RoadPos> const & startPos;
|
||||
vector<RoadPos> const & finalPos;
|
||||
|
||||
priority_queue<Vertex> queue;
|
||||
map<RoadPos, double> bestDistance;
|
||||
map<RoadPos, RoadPos> parent;
|
||||
Vertex bestVertex;
|
||||
|
||||
double pS;
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
// This implementation is based on the view that the A* algorithm
|
||||
// is equivalent to Dijkstra's algorithm that is run on a reweighted
|
||||
// version of the graph. If an edge (v, w) has length l(v, w), its reduced
|
||||
// cost is l_r(v, w) = l(v, w) + pi(w) - pi(v), where pi() is any function
|
||||
// that ensures l_r(v, w) >= 0 for every edge. We set pi() to calculate
|
||||
// cost is l_r(v, w) = l(v, w) + π(w) - π(v), where π() is any function
|
||||
// that ensures l_r(v, w) >= 0 for every edge. We set π() to calculate
|
||||
// the shortest possible distance to a goal node, and this is a common
|
||||
// heuristic that people use in A*.
|
||||
// Refer to this paper for more information:
|
||||
|
@ -115,7 +171,6 @@ IRouter::ResultCode AStarRouter::CalculateRouteM2M(vector<RoadPos> const & start
|
|||
LOG(LDEBUG, ("AStarRouter::CalculateM2MRoute(): finalPos:", roadPos));
|
||||
#endif // defined(DEBUG)
|
||||
|
||||
route.clear();
|
||||
vector<uint32_t> sortedStartFeatures(startPos.size());
|
||||
for (size_t i = 0; i < startPos.size(); ++i)
|
||||
sortedStartFeatures[i] = startPos[i].GetFeatureId();
|
||||
|
@ -150,8 +205,8 @@ IRouter::ResultCode AStarRouter::CalculateRouteM2M(vector<RoadPos> const & start
|
|||
if (v.dist > bestDistance[v.pos])
|
||||
continue;
|
||||
|
||||
// We need the original start position because it contains the projection point to the road
|
||||
// feature.
|
||||
// We need the original start position because it contains
|
||||
// the projection point to the road feature.
|
||||
auto pos = lower_bound(sortedStartPos.begin(), sortedStartPos.end(), v.pos);
|
||||
if (pos != sortedStartPos.end() && *pos == v.pos)
|
||||
{
|
||||
|
@ -208,75 +263,35 @@ IRouter::ResultCode AStarRouter::CalculateRouteBidirectional(vector<RoadPos> con
|
|||
LOG(LDEBUG, ("AStarRouter::CalculateRouteBidirectional(): finalPos:", roadPos));
|
||||
#endif // defined(DEBUG)
|
||||
|
||||
route.clear();
|
||||
BidirectionalStepContext forward(true /* forward */, startPos, finalPos);
|
||||
BidirectionalStepContext backward(false /* forward */, startPos, finalPos);
|
||||
|
||||
vector<RoadPos> sortedStartPos(startPos.begin(), startPos.end());
|
||||
sort(sortedStartPos.begin(), sortedStartPos.end());
|
||||
|
||||
vector<RoadPos> sortedFinalPos(finalPos.begin(), finalPos.end());
|
||||
sort(sortedFinalPos.begin(), sortedFinalPos.end());
|
||||
|
||||
priority_queue<Vertex> queueForward;
|
||||
priority_queue<Vertex> queueBackward;
|
||||
map<RoadPos, double> bestDistanceForward;
|
||||
map<RoadPos, double> bestDistanceBackward;
|
||||
map<RoadPos, RoadPos> parentForward;
|
||||
map<RoadPos, RoadPos> parentBackward;
|
||||
for (auto const & rp : startPos)
|
||||
{
|
||||
VERIFY(bestDistanceForward.insert({rp, 0.0}).second, ());
|
||||
queueForward.push(Vertex(rp, 0.0 /* distance */));
|
||||
}
|
||||
for (auto const & rp : finalPos)
|
||||
{
|
||||
VERIFY(bestDistanceBackward.insert({rp, 0.0}).second, ());
|
||||
queueBackward.push(Vertex(rp, 0.0 /* distance */));
|
||||
}
|
||||
|
||||
bool curForward = true;
|
||||
priority_queue<Vertex> * curQueue = &queueForward;
|
||||
priority_queue<Vertex> * nxtQueue = &queueBackward;
|
||||
map<RoadPos, double> * curBestDistance = &bestDistanceForward;
|
||||
map<RoadPos, double> * nxtBestDistance = &bestDistanceBackward;
|
||||
map<RoadPos, RoadPos> * curParent = &parentForward;
|
||||
map<RoadPos, RoadPos> * nxtParent = &parentBackward;
|
||||
vector<RoadPos> * curSortedPos = &sortedStartPos;
|
||||
vector<RoadPos> * nxtSortedPos = &sortedFinalPos;
|
||||
Vertex curBest(startPos[0], 0.0 /* distance */);
|
||||
Vertex nxtBest(finalPos[0], 0.0 /* distance */);
|
||||
bool foundAnyPath = false;
|
||||
double bestPathLength = 0.0;
|
||||
|
||||
// p_f(v) = 0.5*(pi_f(v) - pi_r(v)) + 0.5*pi_r(t)
|
||||
// p_r(v) = 0.5*(pi_r(v) - pi_f(v)) + 0.5*pi_f(s)
|
||||
// p_r(v) + p_f(v) = const. Note: this condition is called consistence.
|
||||
auto consistentHeuristicForward = [&](Vertex const & v) -> double
|
||||
for (auto const & rp : startPos)
|
||||
{
|
||||
/// @todo careful: with this "return" here and below in the Backward case
|
||||
/// the heuristic becomes inconsistent but still seems to work.
|
||||
// return HeuristicCostEstimate(v.pos, finalPos);
|
||||
static double const piRT = HeuristicCostEstimate(finalPos[0], startPos);
|
||||
double piF = HeuristicCostEstimate(v.pos, finalPos);
|
||||
double piR = HeuristicCostEstimate(v.pos, startPos);
|
||||
return 0.5 * (piF - piR + piRT);
|
||||
};
|
||||
auto consistentHeuristicBackward = [&](Vertex const & v) -> double
|
||||
VERIFY(forward.bestDistance.insert({rp, 0.0}).second, ());
|
||||
forward.queue.push(Vertex(rp, 0.0 /* distance */));
|
||||
}
|
||||
for (auto const & rp : finalPos)
|
||||
{
|
||||
// return HeuristicCostEstimate(v.pos, startPos);
|
||||
static double const piS = HeuristicCostEstimate(startPos[0], finalPos);
|
||||
double piF = HeuristicCostEstimate(v.pos, finalPos);
|
||||
double piR = HeuristicCostEstimate(v.pos, startPos);
|
||||
return 0.5 * (piR - piF + piS);
|
||||
};
|
||||
VERIFY(backward.bestDistance.insert({rp, 0.0}).second, ());
|
||||
backward.queue.push(Vertex(rp, 0.0 /* distance */));
|
||||
}
|
||||
|
||||
double pS = consistentHeuristicForward(Vertex(startPos[0], 0.0));
|
||||
double pT = consistentHeuristicBackward(Vertex(finalPos[0], 0.0));
|
||||
// To use the search code both for backward and forward directions
|
||||
// we keep the pointers to everything related to the search in the
|
||||
// 'current' and 'next' directions. Swapping these pointers indicates
|
||||
// changing the end we are searching from.
|
||||
BidirectionalStepContext * cur = &forward;
|
||||
BidirectionalStepContext * nxt = &backward;
|
||||
|
||||
// It is not necessary to check emptiness for both queues here
|
||||
// because if we have not found a path by the time one of the
|
||||
// queues is exhausted, we never will.
|
||||
uint32_t steps = 0;
|
||||
while (!curQueue->empty() && !nxtQueue->empty())
|
||||
while (!cur->queue.empty() && !nxt->queue.empty())
|
||||
{
|
||||
++steps;
|
||||
|
||||
|
@ -288,39 +303,36 @@ IRouter::ResultCode AStarRouter::CalculateRouteBidirectional(vector<RoadPos> con
|
|||
|
||||
if (steps % kQueueSwitchPeriod == 0)
|
||||
{
|
||||
curForward ^= true;
|
||||
swap(curQueue, nxtQueue);
|
||||
swap(curBestDistance, nxtBestDistance);
|
||||
swap(curParent, nxtParent);
|
||||
swap(curSortedPos, nxtSortedPos);
|
||||
swap(curBest, nxtBest);
|
||||
swap(pS, pT);
|
||||
swap(cur, nxt);
|
||||
}
|
||||
|
||||
double curTop = (*curBestDistance)[curQueue->top().pos];
|
||||
double nxtTop = (*nxtBestDistance)[nxtQueue->top().pos];
|
||||
double const curTop = cur->TopDistance();
|
||||
double const nxtTop = nxt->TopDistance();
|
||||
double const pTopV = cur->ConsistentHeuristic(cur->queue.top());
|
||||
double const pTopW = nxt->ConsistentHeuristic(nxt->queue.top());
|
||||
|
||||
double pTopV = (curForward ? consistentHeuristicForward(curQueue->top())
|
||||
: consistentHeuristicBackward(curQueue->top()));
|
||||
double pTopW = (curForward ? consistentHeuristicBackward(nxtQueue->top())
|
||||
: consistentHeuristicForward(nxtQueue->top()));
|
||||
|
||||
if (foundAnyPath && curTop + nxtTop - pTopV + pS - pTopW + pT >= bestPathLength - kEpsilon)
|
||||
// The intuition behind this is that we cannot obtain a path shorter
|
||||
// than the left side of the inequality because that is how any path we find
|
||||
// will look like (see comment for curPathLength below).
|
||||
// We do not yet have the proof that we will not miss a good path by doing so.
|
||||
if (foundAnyPath &&
|
||||
curTop + nxtTop - pTopV + cur->pS - pTopW + nxt->pS >= bestPathLength - kEpsilon)
|
||||
{
|
||||
ReconstructRouteBidirectional(curBest.pos, nxtBest.pos, *curParent, *nxtParent, route);
|
||||
CHECK_GREATER(route.size(), 1U, ());
|
||||
if (!Contains(sortedFinalPos, route[0]))
|
||||
ReconstructRouteBidirectional(cur->bestVertex.pos, nxt->bestVertex.pos, cur->parent,
|
||||
nxt->parent, route);
|
||||
CHECK(!route.empty(), ());
|
||||
if (cur->forward)
|
||||
reverse(route.begin(), route.end());
|
||||
ASSERT(Contains(sortedFinalPos, route[0]), ());
|
||||
ASSERT(Contains(sortedStartPos, route.back()), ());
|
||||
LOG(LINFO, ("bidirectional steps made:", steps));
|
||||
LOG(LDEBUG, ("Path found. Bidirectional steps made:", steps, "."));
|
||||
return IRouter::NoError;
|
||||
}
|
||||
|
||||
Vertex const v = curQueue->top();
|
||||
curQueue->pop();
|
||||
Vertex const v = cur->queue.top();
|
||||
cur->queue.pop();
|
||||
|
||||
if (v.dist > (*curBestDistance)[v.pos])
|
||||
if (v.dist > cur->bestDistance[v.pos])
|
||||
continue;
|
||||
|
||||
IRoadGraph::TurnsVectorT turns;
|
||||
|
@ -332,37 +344,38 @@ IRouter::ResultCode AStarRouter::CalculateRouteBidirectional(vector<RoadPos> con
|
|||
if (v.pos == w.pos)
|
||||
continue;
|
||||
double const len = DistanceBetween(v.pos, w.pos) / kMaxSpeedMPS;
|
||||
double const pV =
|
||||
(curForward ? consistentHeuristicForward(v) : consistentHeuristicBackward(v));
|
||||
double const pW =
|
||||
(curForward ? consistentHeuristicForward(w) : consistentHeuristicBackward(w));
|
||||
double const pV = cur->ConsistentHeuristic(v);
|
||||
double const pW = cur->ConsistentHeuristic(w);
|
||||
double const reducedLen = len + pW - pV;
|
||||
double const pRW =
|
||||
(curForward ? consistentHeuristicBackward(w) : consistentHeuristicForward(w));
|
||||
CHECK(reducedLen >= -kEpsilon, ("Invariant failed:", (len + pW - pV), "<", -kEpsilon));
|
||||
double const pRW = nxt->ConsistentHeuristic(w);
|
||||
CHECK(reducedLen >= -kEpsilon, ("Invariant failed:", reducedLen, "<", -kEpsilon));
|
||||
double newReducedDist = v.dist + max(reducedLen, 0.0);
|
||||
|
||||
map<RoadPos, double>::const_iterator t = curBestDistance->find(w.pos);
|
||||
if (t != curBestDistance->end() && newReducedDist >= t->second - kEpsilon)
|
||||
map<RoadPos, double>::const_iterator t = cur->bestDistance.find(w.pos);
|
||||
if (t != cur->bestDistance.end() && newReducedDist >= t->second - kEpsilon)
|
||||
continue;
|
||||
|
||||
if (nxtBestDistance->find(w.pos) != nxtBestDistance->end())
|
||||
if (nxt->bestDistance.find(w.pos) != nxt->bestDistance.end())
|
||||
{
|
||||
double const distW = (*nxtBestDistance)[w.pos];
|
||||
double const curPathLength = newReducedDist + distW - pW + pS - pRW + pT;
|
||||
double const distW = nxt->bestDistance[w.pos];
|
||||
// Length that the path we've just found has in the original graph:
|
||||
// find the length of the path's parts in the reduced forward and backward
|
||||
// graphs and remove the heuristic adjustments.
|
||||
double const curPathLength = newReducedDist + distW - pW + cur->pS - pRW + nxt->pS;
|
||||
// No epsilon here: it is ok to overshoot slightly.
|
||||
if (!foundAnyPath || bestPathLength > curPathLength)
|
||||
{
|
||||
bestPathLength = curPathLength;
|
||||
foundAnyPath = true;
|
||||
curBest = v;
|
||||
nxtBest = w;
|
||||
cur->bestVertex = v;
|
||||
nxt->bestVertex = w;
|
||||
}
|
||||
}
|
||||
|
||||
w.dist = newReducedDist;
|
||||
(*curBestDistance)[w.pos] = newReducedDist;
|
||||
(*curParent)[w.pos] = v.pos;
|
||||
curQueue->push(w);
|
||||
cur->bestDistance[w.pos] = newReducedDist;
|
||||
cur->parent[w.pos] = v.pos;
|
||||
cur->queue.push(w);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue