forked from organicmaps/organicmaps
[search] Relaxed parsing in Geocoder.
This commit is contained in:
parent
c7f14933ec
commit
79dc8f45c5
8 changed files with 300 additions and 116 deletions
|
@ -315,7 +315,8 @@ CBV DecimateCianResults(CBV const & cbv)
|
|||
// to worsen the percieved result.
|
||||
size_t const kMaxCianResults = 10000;
|
||||
minstd_rand rng(0);
|
||||
auto survivedIds = base::RandomSample(cbv.PopCount(), kMaxCianResults, rng);
|
||||
auto survivedIds =
|
||||
base::RandomSample(base::checked_cast<size_t>(cbv.PopCount()), kMaxCianResults, rng);
|
||||
sort(survivedIds.begin(), survivedIds.end());
|
||||
auto it = survivedIds.begin();
|
||||
vector<uint64_t> setBits;
|
||||
|
@ -767,7 +768,7 @@ void Geocoder::ForEachCountry(vector<shared_ptr<MwmInfo>> const & infos, TFn &&
|
|||
}
|
||||
}
|
||||
|
||||
void Geocoder::MatchCategories(BaseContext & ctx, bool aroundPivot)
|
||||
size_t Geocoder::MatchCategories(BaseContext & ctx, bool aroundPivot)
|
||||
{
|
||||
auto features = ctx.m_features[0];
|
||||
|
||||
|
@ -778,13 +779,16 @@ void Geocoder::MatchCategories(BaseContext & ctx, bool aroundPivot)
|
|||
features = filter.Filter(features);
|
||||
}
|
||||
|
||||
size_t numEmitted = 0;
|
||||
auto emit = [&](uint64_t bit) {
|
||||
auto const featureId = base::asserted_cast<uint32_t>(bit);
|
||||
Model::Type type;
|
||||
if (!GetTypeInGeocoding(ctx, featureId, type))
|
||||
return;
|
||||
|
||||
EmitResult(ctx, m_context->GetId(), featureId, type, TokenRange(0, 1), nullptr /* geoParts */);
|
||||
EmitResult(ctx, m_context->GetId(), featureId, type, TokenRange(0, 1), nullptr /* geoParts */,
|
||||
true /* allTokensUsed */);
|
||||
++numEmitted;
|
||||
};
|
||||
|
||||
// By now there's only one token and zero prefix tokens.
|
||||
|
@ -792,23 +796,27 @@ void Geocoder::MatchCategories(BaseContext & ctx, bool aroundPivot)
|
|||
// using the exact (non-fuzzy) matching and intersected
|
||||
// with viewport, if needed. Every such feature is relevant.
|
||||
features.ForEach(emit);
|
||||
|
||||
return numEmitted;
|
||||
}
|
||||
|
||||
void Geocoder::MatchRegions(BaseContext & ctx, Region::Type type)
|
||||
size_t Geocoder::MatchRegions(BaseContext & ctx, Region::Type type)
|
||||
{
|
||||
size_t numEmitted = 0;
|
||||
|
||||
switch (type)
|
||||
{
|
||||
case Region::TYPE_STATE:
|
||||
// Tries to skip state matching and go to cities matching.
|
||||
// Then, performs states matching.
|
||||
MatchCities(ctx);
|
||||
numEmitted += MatchCities(ctx);
|
||||
break;
|
||||
case Region::TYPE_COUNTRY:
|
||||
// Tries to skip country matching and go to states matching.
|
||||
// Then, performs countries matching.
|
||||
MatchRegions(ctx, Region::TYPE_STATE);
|
||||
numEmitted += MatchRegions(ctx, Region::TYPE_STATE);
|
||||
break;
|
||||
case Region::TYPE_COUNT: ASSERT(false, ("Invalid region type.")); return;
|
||||
case Region::TYPE_COUNT: ASSERT(false, ("Invalid region type.")); return numEmitted;
|
||||
}
|
||||
|
||||
auto const & regions = m_regions[type];
|
||||
|
@ -850,27 +858,32 @@ void Geocoder::MatchRegions(BaseContext & ctx, Region::Type type)
|
|||
MY_SCOPE_GUARD(cleanup, [&ctx]() { ctx.m_regions.pop_back(); });
|
||||
|
||||
ScopedMarkTokens mark(ctx.m_tokens, BaseContext::FromRegionType(type), tokenRange);
|
||||
|
||||
if (ctx.AllTokensUsed())
|
||||
{
|
||||
// Region matches to search query, we need to emit it as is.
|
||||
EmitResult(ctx, region, tokenRange);
|
||||
EmitResult(ctx, region, tokenRange, true /* allTokensUsed */);
|
||||
continue;
|
||||
}
|
||||
|
||||
switch (type)
|
||||
{
|
||||
case Region::TYPE_STATE: MatchCities(ctx); break;
|
||||
case Region::TYPE_COUNTRY: MatchRegions(ctx, Region::TYPE_STATE); break;
|
||||
case Region::TYPE_STATE: numEmitted += MatchCities(ctx); break;
|
||||
case Region::TYPE_COUNTRY: numEmitted += MatchRegions(ctx, Region::TYPE_STATE); break;
|
||||
case Region::TYPE_COUNT: ASSERT(false, ("Invalid region type.")); break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return numEmitted;
|
||||
}
|
||||
|
||||
void Geocoder::MatchCities(BaseContext & ctx)
|
||||
size_t Geocoder::MatchCities(BaseContext & ctx)
|
||||
{
|
||||
ASSERT(!ctx.m_city, ());
|
||||
|
||||
size_t numEmitted = 0;
|
||||
|
||||
// Localities are ordered my (m_startToken, m_endToken) pairs.
|
||||
for (auto const & p : m_cities)
|
||||
{
|
||||
|
@ -895,7 +908,8 @@ void Geocoder::MatchCities(BaseContext & ctx)
|
|||
if (ctx.AllTokensUsed())
|
||||
{
|
||||
// City matches to search query, we need to emit it as is.
|
||||
EmitResult(ctx, city, tokenRange);
|
||||
EmitResult(ctx, city, tokenRange, true /* allTokensUsed */);
|
||||
++numEmitted;
|
||||
continue;
|
||||
}
|
||||
|
||||
|
@ -909,19 +923,21 @@ void Geocoder::MatchCities(BaseContext & ctx)
|
|||
continue;
|
||||
|
||||
LocalityFilter filter(cityFeatures);
|
||||
LimitedSearch(ctx, filter);
|
||||
numEmitted += LimitedSearch(ctx, filter);
|
||||
}
|
||||
}
|
||||
|
||||
return numEmitted;
|
||||
}
|
||||
|
||||
void Geocoder::MatchAroundPivot(BaseContext & ctx)
|
||||
size_t Geocoder::MatchAroundPivot(BaseContext & ctx)
|
||||
{
|
||||
auto const features = RetrieveGeometryFeatures(*m_context, m_params.m_pivot, RECT_ID_PIVOT);
|
||||
ViewportFilter filter(features, m_preRanker.Limit() /* threshold */);
|
||||
LimitedSearch(ctx, filter);
|
||||
return LimitedSearch(ctx, filter);
|
||||
}
|
||||
|
||||
void Geocoder::LimitedSearch(BaseContext & ctx, FeaturesFilter const & filter)
|
||||
size_t Geocoder::LimitedSearch(BaseContext & ctx, FeaturesFilter const & filter)
|
||||
{
|
||||
m_filter = &filter;
|
||||
MY_SCOPE_GUARD(resetFilter, [&]()
|
||||
|
@ -932,16 +948,19 @@ void Geocoder::LimitedSearch(BaseContext & ctx, FeaturesFilter const & filter)
|
|||
if (!ctx.m_streets)
|
||||
ctx.m_streets = m_streetsCache.Get(*m_context);
|
||||
|
||||
MatchUnclassified(ctx, 0 /* curToken */);
|
||||
size_t numEmitted = 0;
|
||||
|
||||
auto const search = [this, &ctx]()
|
||||
{
|
||||
GreedilyMatchStreets(ctx);
|
||||
MatchPOIsAndBuildings(ctx, 0 /* curToken */);
|
||||
numEmitted += MatchUnclassified(ctx, 0 /* curToken */);
|
||||
|
||||
auto const search = [this, &ctx, &numEmitted]() {
|
||||
numEmitted += GreedilyMatchStreets(ctx);
|
||||
numEmitted += MatchPOIsAndBuildings(ctx, 0 /* curToken */);
|
||||
};
|
||||
|
||||
WithPostcodes(ctx, search);
|
||||
search();
|
||||
|
||||
return numEmitted;
|
||||
}
|
||||
|
||||
template <typename TFn>
|
||||
|
@ -983,17 +1002,20 @@ void Geocoder::WithPostcodes(BaseContext & ctx, TFn && fn)
|
|||
}
|
||||
}
|
||||
|
||||
void Geocoder::GreedilyMatchStreets(BaseContext & ctx)
|
||||
size_t Geocoder::GreedilyMatchStreets(BaseContext & ctx)
|
||||
{
|
||||
vector<StreetsMatcher::Prediction> predictions;
|
||||
StreetsMatcher::Go(ctx, *m_filter, m_params, predictions);
|
||||
|
||||
size_t numEmitted = 0;
|
||||
for (auto const & prediction : predictions)
|
||||
CreateStreetsLayerAndMatchLowerLayers(ctx, prediction);
|
||||
numEmitted += CreateStreetsLayerAndMatchLowerLayers(ctx, prediction);
|
||||
|
||||
return numEmitted;
|
||||
}
|
||||
|
||||
void Geocoder::CreateStreetsLayerAndMatchLowerLayers(BaseContext & ctx,
|
||||
StreetsMatcher::Prediction const & prediction)
|
||||
size_t Geocoder::CreateStreetsLayerAndMatchLowerLayers(
|
||||
BaseContext & ctx, StreetsMatcher::Prediction const & prediction)
|
||||
{
|
||||
auto & layers = ctx.m_layers;
|
||||
ASSERT(layers.empty(), ());
|
||||
|
@ -1005,20 +1027,28 @@ void Geocoder::CreateStreetsLayerAndMatchLowerLayers(BaseContext & ctx,
|
|||
InitLayer(Model::TYPE_STREET, prediction.m_tokenRange, layer);
|
||||
|
||||
vector<uint32_t> sortedFeatures;
|
||||
sortedFeatures.reserve(prediction.m_features.PopCount());
|
||||
sortedFeatures.reserve(base::checked_cast<size_t>(prediction.m_features.PopCount()));
|
||||
prediction.m_features.ForEach([&sortedFeatures](uint64_t bit) {
|
||||
sortedFeatures.push_back(base::asserted_cast<uint32_t>(bit));
|
||||
});
|
||||
layer.m_sortedFeatures = &sortedFeatures;
|
||||
|
||||
ScopedMarkTokens mark(ctx.m_tokens, BaseContext::TOKEN_TYPE_STREET, prediction.m_tokenRange);
|
||||
MatchPOIsAndBuildings(ctx, 0 /* curToken */);
|
||||
size_t numEmitted = MatchPOIsAndBuildings(ctx, 0 /* curToken */);
|
||||
|
||||
// A relaxed best effort parse: at least show the street if we can find one.
|
||||
if (numEmitted == 0)
|
||||
numEmitted += FindPaths(ctx);
|
||||
|
||||
return numEmitted;
|
||||
}
|
||||
|
||||
void Geocoder::MatchPOIsAndBuildings(BaseContext & ctx, size_t curToken)
|
||||
size_t Geocoder::MatchPOIsAndBuildings(BaseContext & ctx, size_t curToken)
|
||||
{
|
||||
BailIfCancelled();
|
||||
|
||||
size_t numEmitted = 0;
|
||||
|
||||
auto & layers = ctx.m_layers;
|
||||
|
||||
curToken = ctx.SkipUsedTokens(curToken);
|
||||
|
@ -1027,7 +1057,10 @@ void Geocoder::MatchPOIsAndBuildings(BaseContext & ctx, size_t curToken)
|
|||
// All tokens were consumed, find paths through layers, emit
|
||||
// features.
|
||||
if (m_postcodes.m_features.IsEmpty())
|
||||
return FindPaths(ctx);
|
||||
{
|
||||
numEmitted += FindPaths(ctx);
|
||||
return numEmitted;
|
||||
}
|
||||
|
||||
// When there are no layers but user entered a postcode, we have
|
||||
// to emit all features matching to the postcode.
|
||||
|
@ -1042,14 +1075,18 @@ void Geocoder::MatchPOIsAndBuildings(BaseContext & ctx, size_t curToken)
|
|||
if (GetTypeInGeocoding(ctx, featureId, type))
|
||||
{
|
||||
EmitResult(ctx, m_context->GetId(), featureId, type, m_postcodes.m_tokenRange,
|
||||
nullptr /* geoParts */);
|
||||
nullptr /* geoParts */, true /* allTokensUsed */);
|
||||
++numEmitted;
|
||||
}
|
||||
});
|
||||
return;
|
||||
return numEmitted;
|
||||
}
|
||||
|
||||
if (!(layers.size() == 1 && layers[0].m_type == Model::TYPE_STREET))
|
||||
return FindPaths(ctx);
|
||||
{
|
||||
numEmitted += FindPaths(ctx);
|
||||
return numEmitted;
|
||||
}
|
||||
|
||||
// If there're only one street layer but user also entered a
|
||||
// postcode, we need to emit all features matching to postcode on
|
||||
|
@ -1064,7 +1101,8 @@ void Geocoder::MatchPOIsAndBuildings(BaseContext & ctx, size_t curToken)
|
|||
if (!m_postcodes.m_features.HasBit(id))
|
||||
continue;
|
||||
EmitResult(ctx, m_context->GetId(), id, Model::TYPE_STREET, layers.back().m_tokenRange,
|
||||
nullptr /* geoParts */);
|
||||
nullptr /* geoParts */, true /* allTokensUsed */);
|
||||
++numEmitted;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1081,7 +1119,8 @@ void Geocoder::MatchPOIsAndBuildings(BaseContext & ctx, size_t curToken)
|
|||
features.push_back(base::asserted_cast<uint32_t>(bit));
|
||||
});
|
||||
layer.m_sortedFeatures = &features;
|
||||
return FindPaths(ctx);
|
||||
numEmitted += FindPaths(ctx);
|
||||
return numEmitted;
|
||||
}
|
||||
|
||||
layers.emplace_back();
|
||||
|
@ -1135,7 +1174,6 @@ void Geocoder::MatchPOIsAndBuildings(BaseContext & ctx, size_t curToken)
|
|||
|
||||
bool const looksLikeHouseNumber = house_numbers::LooksLikeHouseNumber(
|
||||
layers.back().m_subQuery, layers.back().m_lastTokenIsPrefix);
|
||||
|
||||
if (filtered.IsEmpty() && !looksLikeHouseNumber)
|
||||
break;
|
||||
|
||||
|
@ -1197,9 +1235,11 @@ void Geocoder::MatchPOIsAndBuildings(BaseContext & ctx, size_t curToken)
|
|||
ScopedMarkTokens mark(ctx.m_tokens, BaseContext::FromModelType(layer.m_type),
|
||||
TokenRange(curToken, curToken + n));
|
||||
if (IsLayerSequenceSane(layers))
|
||||
MatchPOIsAndBuildings(ctx, curToken + n);
|
||||
numEmitted += MatchPOIsAndBuildings(ctx, curToken + n);
|
||||
}
|
||||
}
|
||||
|
||||
return numEmitted;
|
||||
}
|
||||
|
||||
bool Geocoder::IsLayerSequenceSane(vector<FeaturesLayer> const & layers) const
|
||||
|
@ -1244,12 +1284,14 @@ bool Geocoder::IsLayerSequenceSane(vector<FeaturesLayer> const & layers) const
|
|||
return true;
|
||||
}
|
||||
|
||||
void Geocoder::FindPaths(BaseContext const & ctx)
|
||||
size_t Geocoder::FindPaths(BaseContext const & ctx)
|
||||
{
|
||||
auto const & layers = ctx.m_layers;
|
||||
|
||||
size_t numEmitted = 0;
|
||||
|
||||
if (layers.empty())
|
||||
return;
|
||||
return numEmitted;
|
||||
|
||||
// Layers ordered by search type.
|
||||
vector<FeaturesLayer const *> sortedLayers;
|
||||
|
@ -1264,13 +1306,17 @@ void Geocoder::FindPaths(BaseContext const & ctx)
|
|||
m_matcher->SetPostcodes(&m_postcodes.m_features);
|
||||
else
|
||||
m_matcher->SetPostcodes(nullptr);
|
||||
|
||||
m_finder.ForEachReachableVertex(
|
||||
*m_matcher, sortedLayers, [this, &ctx, &innermostLayer](IntersectionResult const & result)
|
||||
{
|
||||
*m_matcher, sortedLayers,
|
||||
[this, &ctx, &innermostLayer, &numEmitted](IntersectionResult const & result) {
|
||||
ASSERT(result.IsValid(), ());
|
||||
EmitResult(ctx, m_context->GetId(), result.InnermostResult(), innermostLayer.m_type,
|
||||
innermostLayer.m_tokenRange, &result);
|
||||
innermostLayer.m_tokenRange, &result, ctx.AllTokensUsed());
|
||||
++numEmitted;
|
||||
});
|
||||
|
||||
return numEmitted;
|
||||
}
|
||||
|
||||
void Geocoder::TraceResult(Tracer & tracer, BaseContext const & ctx, MwmSet::MwmId const & mwmId,
|
||||
|
@ -1298,7 +1344,7 @@ void Geocoder::TraceResult(Tracer & tracer, BaseContext const & ctx, MwmSet::Mwm
|
|||
|
||||
void Geocoder::EmitResult(BaseContext const & ctx, MwmSet::MwmId const & mwmId, uint32_t ftId,
|
||||
Model::Type type, TokenRange const & tokenRange,
|
||||
IntersectionResult const * geoParts)
|
||||
IntersectionResult const * geoParts, bool allTokensUsed)
|
||||
{
|
||||
FeatureID id(mwmId, ftId);
|
||||
|
||||
|
@ -1333,26 +1379,32 @@ void Geocoder::EmitResult(BaseContext const & ctx, MwmSet::MwmId const & mwmId,
|
|||
if (geoParts)
|
||||
info.m_geoParts = *geoParts;
|
||||
|
||||
info.m_allTokensUsed = allTokensUsed;
|
||||
|
||||
m_preRanker.Emplace(id, info);
|
||||
}
|
||||
|
||||
void Geocoder::EmitResult(BaseContext const & ctx, Region const & region,
|
||||
TokenRange const & tokenRange)
|
||||
TokenRange const & tokenRange, bool allTokensUsed)
|
||||
{
|
||||
auto const type = Region::ToModelType(region.m_type);
|
||||
EmitResult(ctx, region.m_countryId, region.m_featureId, type, tokenRange, nullptr /* geoParts */);
|
||||
EmitResult(ctx, region.m_countryId, region.m_featureId, type, tokenRange, nullptr /* geoParts */,
|
||||
allTokensUsed);
|
||||
}
|
||||
|
||||
void Geocoder::EmitResult(BaseContext const & ctx, City const & city, TokenRange const & tokenRange)
|
||||
void Geocoder::EmitResult(BaseContext const & ctx, City const & city, TokenRange const & tokenRange,
|
||||
bool allTokensUsed)
|
||||
{
|
||||
EmitResult(ctx, city.m_countryId, city.m_featureId, city.m_type, tokenRange,
|
||||
nullptr /* geoParts */);
|
||||
nullptr /* geoParts */, allTokensUsed);
|
||||
}
|
||||
|
||||
void Geocoder::MatchUnclassified(BaseContext & ctx, size_t curToken)
|
||||
size_t Geocoder::MatchUnclassified(BaseContext & ctx, size_t curToken)
|
||||
{
|
||||
size_t numEmitted = 0;
|
||||
|
||||
if (m_params.m_cianMode)
|
||||
return;
|
||||
return numEmitted;
|
||||
|
||||
ASSERT(ctx.m_layers.empty(), ());
|
||||
|
||||
|
@ -1364,7 +1416,7 @@ void Geocoder::MatchUnclassified(BaseContext & ctx, size_t curToken)
|
|||
// ok to match something to "Park London Hyde", because tokens
|
||||
// "Park" and "Hyde" are not adjacent.
|
||||
if (ctx.NumUnusedTokenGroups() != 1)
|
||||
return;
|
||||
return numEmitted;
|
||||
|
||||
CBV allFeatures;
|
||||
allFeatures.SetFull();
|
||||
|
@ -1388,10 +1440,12 @@ void Geocoder::MatchUnclassified(BaseContext & ctx, size_t curToken)
|
|||
if (type == Model::TYPE_UNCLASSIFIED)
|
||||
{
|
||||
EmitResult(ctx, m_context->GetId(), featureId, type, TokenRange(startToken, curToken),
|
||||
nullptr /* geoParts */);
|
||||
nullptr /* geoParts */, true /* allTokensUsed */);
|
||||
++numEmitted;
|
||||
}
|
||||
};
|
||||
allFeatures.ForEach(emitUnclassified);
|
||||
return numEmitted;
|
||||
}
|
||||
|
||||
CBV Geocoder::RetrievePostcodeFeatures(MwmContext const & context, TokenSlice const & slice)
|
||||
|
|
|
@ -167,41 +167,49 @@ private:
|
|||
inline void BailIfCancelled() { ::search::BailIfCancelled(m_cancellable); }
|
||||
|
||||
// A fast-path branch for categorial requests.
|
||||
void MatchCategories(BaseContext & ctx, bool aroundPivot);
|
||||
// Returns the number of emitted results.
|
||||
size_t MatchCategories(BaseContext & ctx, bool aroundPivot);
|
||||
|
||||
// Tries to find all countries and states in a search query and then
|
||||
// performs matching of cities in found maps.
|
||||
void MatchRegions(BaseContext & ctx, Region::Type type);
|
||||
// Returns the number of emitted results.
|
||||
size_t MatchRegions(BaseContext & ctx, Region::Type type);
|
||||
|
||||
// Tries to find all cities in a search query and then performs
|
||||
// matching of streets in found cities.
|
||||
void MatchCities(BaseContext & ctx);
|
||||
// Returns the number of emitted results.
|
||||
size_t MatchCities(BaseContext & ctx);
|
||||
|
||||
// Tries to do geocoding without localities, ie. find POIs,
|
||||
// BUILDINGs and STREETs without knowledge about country, state,
|
||||
// city or village. If during the geocoding too many features are
|
||||
// retrieved, viewport is used to throw away excess features.
|
||||
void MatchAroundPivot(BaseContext & ctx);
|
||||
// Returns the number of emitted results.
|
||||
size_t MatchAroundPivot(BaseContext & ctx);
|
||||
|
||||
// Tries to do geocoding in a limited scope, assuming that knowledge
|
||||
// about high-level features, like cities or countries, is
|
||||
// incorporated into |filter|.
|
||||
void LimitedSearch(BaseContext & ctx, FeaturesFilter const & filter);
|
||||
// Returns the number of emitted results.
|
||||
size_t LimitedSearch(BaseContext & ctx, FeaturesFilter const & filter);
|
||||
|
||||
template <typename TFn>
|
||||
void WithPostcodes(BaseContext & ctx, TFn && fn);
|
||||
|
||||
// Tries to match some adjacent tokens in the query as streets and
|
||||
// then performs geocoding in street vicinities.
|
||||
void GreedilyMatchStreets(BaseContext & ctx);
|
||||
// Returns the number of emitted results.
|
||||
size_t GreedilyMatchStreets(BaseContext & ctx);
|
||||
|
||||
void CreateStreetsLayerAndMatchLowerLayers(BaseContext & ctx,
|
||||
StreetsMatcher::Prediction const & prediction);
|
||||
// Returns the number of emitted results.
|
||||
size_t CreateStreetsLayerAndMatchLowerLayers(BaseContext & ctx,
|
||||
StreetsMatcher::Prediction const & prediction);
|
||||
|
||||
// Tries to find all paths in a search tree, where each edge is
|
||||
// marked with some substring of the query tokens. These paths are
|
||||
// called "layer sequence" and current path is stored in |m_layers|.
|
||||
void MatchPOIsAndBuildings(BaseContext & ctx, size_t curToken);
|
||||
// Returns the number of emitted results.
|
||||
size_t MatchPOIsAndBuildings(BaseContext & ctx, size_t curToken);
|
||||
|
||||
// Returns true if current path in the search tree (see comment for
|
||||
// MatchPOIsAndBuildings()) looks sane. This method is used as a fast
|
||||
|
@ -210,7 +218,8 @@ private:
|
|||
|
||||
// Finds all paths through layers and emits reachable features from
|
||||
// the lowest layer.
|
||||
void FindPaths(BaseContext const & ctx);
|
||||
// Returns the number of emitted results.
|
||||
size_t FindPaths(BaseContext const & ctx);
|
||||
|
||||
void TraceResult(Tracer & tracer, BaseContext const & ctx, MwmSet::MwmId const & mwmId,
|
||||
uint32_t ftId, Model::Type type, TokenRange const & tokenRange);
|
||||
|
@ -218,14 +227,17 @@ private:
|
|||
// Forms result and feeds it to |m_preRanker|.
|
||||
void EmitResult(BaseContext const & ctx, MwmSet::MwmId const & mwmId, uint32_t ftId,
|
||||
Model::Type type, TokenRange const & tokenRange,
|
||||
IntersectionResult const * geoParts);
|
||||
void EmitResult(BaseContext const & ctx, Region const & region, TokenRange const & tokenRange);
|
||||
void EmitResult(BaseContext const & ctx, City const & city, TokenRange const & tokenRange);
|
||||
IntersectionResult const * geoParts, bool allTokensUsed);
|
||||
void EmitResult(BaseContext const & ctx, Region const & region, TokenRange const & tokenRange,
|
||||
bool allTokensUsed);
|
||||
void EmitResult(BaseContext const & ctx, City const & city, TokenRange const & tokenRange,
|
||||
bool allTokensUsed);
|
||||
|
||||
// Tries to match unclassified objects from lower layers, like
|
||||
// parks, forests, lakes, rivers, etc. This method finds all
|
||||
// UNCLASSIFIED objects that match to all currently unused tokens.
|
||||
void MatchUnclassified(BaseContext & ctx, size_t curToken);
|
||||
// Returns the number of emitted results.
|
||||
size_t MatchUnclassified(BaseContext & ctx, size_t curToken);
|
||||
|
||||
// A wrapper around RetrievePostcodeFeatures.
|
||||
CBV RetrievePostcodeFeatures(MwmContext const & context, TokenSlice const & slice);
|
||||
|
|
|
@ -22,13 +22,13 @@ struct PreRankingInfo
|
|||
m_tokenRange[m_type] = range;
|
||||
}
|
||||
|
||||
inline TokenRange const & InnermostTokenRange() const
|
||||
TokenRange const & InnermostTokenRange() const
|
||||
{
|
||||
ASSERT_LESS(m_type, Model::TYPE_COUNT, ());
|
||||
return m_tokenRange[m_type];
|
||||
}
|
||||
|
||||
inline size_t GetNumTokens() const { return InnermostTokenRange().Size(); }
|
||||
size_t GetNumTokens() const { return InnermostTokenRange().Size(); }
|
||||
|
||||
// An abstract distance from the feature to the pivot. Measurement
|
||||
// units do not matter here.
|
||||
|
@ -44,6 +44,10 @@ struct PreRankingInfo
|
|||
// building and street ids are in |m_geoParts|.
|
||||
IntersectionResult m_geoParts;
|
||||
|
||||
// True iff all tokens that are not stop-words
|
||||
// were used when retrieving the feature.
|
||||
bool m_allTokensUsed = true;
|
||||
|
||||
// Rank of the feature.
|
||||
uint8_t m_rank = 0;
|
||||
|
||||
|
|
|
@ -3,6 +3,8 @@
|
|||
#include "search/emitter.hpp"
|
||||
#include "search/geometry_utils.hpp"
|
||||
#include "search/highlighting.hpp"
|
||||
#include "search/model.hpp"
|
||||
#include "search/pre_ranking_info.hpp"
|
||||
#include "search/token_slice.hpp"
|
||||
#include "search/utils.hpp"
|
||||
|
||||
|
@ -231,6 +233,7 @@ class RankerResultMaker
|
|||
info.m_distanceToPivot = MercatorBounds::DistanceOnEarth(center, pivot);
|
||||
info.m_rank = preInfo.m_rank;
|
||||
info.m_type = preInfo.m_type;
|
||||
info.m_allTokensUsed = preInfo.m_allTokensUsed;
|
||||
|
||||
auto const nameScores = GetNameScores(ft, m_params, preInfo.InnermostTokenRange(), info.m_type);
|
||||
|
||||
|
|
|
@ -12,25 +12,26 @@ namespace
|
|||
{
|
||||
// See search/search_quality/scoring_model.py for details. In short,
|
||||
// these coeffs correspond to coeffs in a linear model.
|
||||
double const kDistanceToPivot = -1.0000000;
|
||||
double const kRank = 0.5238890;
|
||||
double const kFalseCats = -0.7319971;
|
||||
double const kErrorsMade = -0.0238639;
|
||||
double const kDistanceToPivot = -0.3359819;
|
||||
double const kRank = 0.3886029;
|
||||
double const kFalseCats = 0.0000000;
|
||||
double const kErrorsMade = 0.0201364;
|
||||
double const kAllTokensUsed = 1.0000000;
|
||||
double const kNameScore[NameScore::NAME_SCORE_COUNT] = {
|
||||
-0.1683931 /* Zero */,
|
||||
0.0268117 /* Substring */,
|
||||
0.0599575 /* Prefix */,
|
||||
0.0816240 /* Full Match */
|
||||
-0.6731264 /* Zero */,
|
||||
0.2244507 /* Substring */,
|
||||
0.2141080 /* Prefix */,
|
||||
0.2345677 /* Full Match */
|
||||
};
|
||||
double const kType[Model::TYPE_COUNT] = {
|
||||
-0.4322325 /* POI */,
|
||||
-0.4322325 /* Building */,
|
||||
-0.3823704 /* Street */,
|
||||
-0.3747346 /* Unclassified */,
|
||||
-0.4453585 /* Village */,
|
||||
0.3900264 /* City */,
|
||||
0.5397572 /* State */,
|
||||
0.7049124 /* Country */
|
||||
-0.1749965 /* POI */,
|
||||
-0.1749965 /* Building */,
|
||||
-0.0777042 /* Street */,
|
||||
-0.0695158 /* Unclassified */,
|
||||
-0.1233553 /* Village */,
|
||||
0.0391744 /* City */,
|
||||
0.1592614 /* State */,
|
||||
0.2471361 /* Country */
|
||||
};
|
||||
|
||||
double TransformDistance(double distance)
|
||||
|
@ -51,7 +52,8 @@ void RankingInfo::PrintCSVHeader(ostream & os)
|
|||
<< ",ErrorsMade"
|
||||
<< ",SearchType"
|
||||
<< ",PureCats"
|
||||
<< ",FalseCats";
|
||||
<< ",FalseCats"
|
||||
<< ",AllTokensUsed";
|
||||
}
|
||||
|
||||
string DebugPrint(RankingInfo const & info)
|
||||
|
@ -64,7 +66,8 @@ string DebugPrint(RankingInfo const & info)
|
|||
os << "m_errorsMade:" << DebugPrint(info.m_errorsMade) << ",";
|
||||
os << "m_type:" << DebugPrint(info.m_type) << ",";
|
||||
os << "m_pureCats:" << info.m_pureCats << ",";
|
||||
os << "m_falseCats:" << info.m_falseCats;
|
||||
os << "m_falseCats:" << info.m_falseCats << ",";
|
||||
os << "m_allTokensUsed:" << boolalpha << info.m_allTokensUsed;
|
||||
os << "]";
|
||||
return os.str();
|
||||
}
|
||||
|
@ -78,7 +81,8 @@ void RankingInfo::ToCSV(ostream & os) const
|
|||
os << GetErrorsMade() << ",";
|
||||
os << DebugPrint(m_type) << ",";
|
||||
os << m_pureCats << ",";
|
||||
os << m_falseCats;
|
||||
os << m_falseCats << ",";
|
||||
os << (m_allTokensUsed ? 1 : 0);
|
||||
}
|
||||
|
||||
double RankingInfo::GetLinearModelRank() const
|
||||
|
@ -102,8 +106,15 @@ double RankingInfo::GetLinearModelRank() const
|
|||
nameScore = NAME_SCORE_ZERO;
|
||||
}
|
||||
|
||||
return kDistanceToPivot * distanceToPivot + kRank * rank + kNameScore[nameScore] +
|
||||
kErrorsMade * GetErrorsMade() + kType[m_type] + m_falseCats * kFalseCats;
|
||||
double result = 0.0;
|
||||
result += kDistanceToPivot * distanceToPivot;
|
||||
result += kRank * rank;
|
||||
result += kNameScore[nameScore];
|
||||
result += kErrorsMade * GetErrorsMade();
|
||||
result += kType[m_type];
|
||||
result += m_falseCats * kFalseCats;
|
||||
result += (m_allTokensUsed ? +1.0 : -1.0) * kAllTokensUsed;
|
||||
return result;
|
||||
}
|
||||
|
||||
size_t RankingInfo::GetErrorsMade() const
|
||||
|
|
|
@ -29,6 +29,10 @@ struct RankingInfo
|
|||
// Number of typos.
|
||||
ErrorsMade m_errorsMade;
|
||||
|
||||
// True iff all tokens that are not stop-words
|
||||
// were used when retrieving the feature.
|
||||
bool m_allTokensUsed = true;
|
||||
|
||||
// Search type for the feature.
|
||||
Model::Type m_type = Model::TYPE_COUNT;
|
||||
|
||||
|
|
|
@ -192,23 +192,25 @@ UNIT_CLASS_TEST(ProcessorTest, Smoke)
|
|||
TEST(ResultsMatch("feynman street 3", rules), ());
|
||||
}
|
||||
{
|
||||
TRules rules = {ExactMatch(wonderlandId, feynmanHouse), ExactMatch(wonderlandId, lantern1)};
|
||||
TRules rules = {ExactMatch(wonderlandId, feynmanHouse), ExactMatch(wonderlandId, lantern1),
|
||||
ExactMatch(wonderlandId, firstAprilStreet)};
|
||||
TEST(ResultsMatch("feynman street 1", rules), ());
|
||||
}
|
||||
{
|
||||
TRules rules = {ExactMatch(wonderlandId, bohrHouse), ExactMatch(wonderlandId, hilbertHouse),
|
||||
ExactMatch(wonderlandId, lantern1)};
|
||||
ExactMatch(wonderlandId, lantern1), ExactMatch(wonderlandId, firstAprilStreet)};
|
||||
TEST(ResultsMatch("bohr street 1", rules), ());
|
||||
}
|
||||
{
|
||||
TEST(ResultsMatch("bohr street 1 unit 3", TRules()), ());
|
||||
TEST(ResultsMatch("bohr street 1 unit 3", {ExactMatch(wonderlandId, bohrStreet1)}), ());
|
||||
}
|
||||
{
|
||||
TRules rules = {ExactMatch(wonderlandId, lantern1), ExactMatch(wonderlandId, lantern2)};
|
||||
TEST(ResultsMatch("bohr street 1 lantern ", rules), ());
|
||||
}
|
||||
{
|
||||
TRules rules = {ExactMatch(wonderlandId, feynmanHouse)};
|
||||
TRules rules = {ExactMatch(wonderlandId, feynmanHouse),
|
||||
ExactMatch(wonderlandId, feynmanStreet)};
|
||||
TEST(ResultsMatch("wonderland los alamos feynman 1 unit 1 ", rules), ());
|
||||
}
|
||||
{
|
||||
|
@ -224,12 +226,13 @@ UNIT_CLASS_TEST(ProcessorTest, Smoke)
|
|||
TEST(ResultsMatch("Los Alamos 2", rules), ());
|
||||
}
|
||||
{
|
||||
TRules rules = {ExactMatch(wonderlandId, bornHouse)};
|
||||
TEST(ResultsMatch("long pond 1st april street 8", rules), ());
|
||||
TRules rules = {ExactMatch(wonderlandId, bornHouse),
|
||||
ExactMatch(wonderlandId, firstAprilStreet)};
|
||||
TEST(ResultsMatch("long pond 1st april street 8 ", rules), ());
|
||||
}
|
||||
|
||||
{
|
||||
TRules rules = {ExactMatch(wonderlandId, terranceHouse)};
|
||||
TRules rules = {ExactMatch(wonderlandId, terranceHouse), ExactMatch(wonderlandId, stradaDrive)};
|
||||
TEST(ResultsMatch("Toronto strada drive 155", rules), ());
|
||||
}
|
||||
}
|
||||
|
@ -483,27 +486,27 @@ UNIT_CLASS_TEST(ProcessorTest, TestHouseNumbers)
|
|||
});
|
||||
|
||||
{
|
||||
TRules rules{ExactMatch(countryId, building0)};
|
||||
TEST(ResultsMatch("Зеленоград генералова к100", "ru", rules), ());
|
||||
TRules rules{ExactMatch(countryId, building0), ExactMatch(countryId, street)};
|
||||
TEST(ResultsMatch("Зеленоград генералова к100 ", "ru", rules), ());
|
||||
}
|
||||
{
|
||||
TRules rules{ExactMatch(countryId, building1)};
|
||||
TEST(ResultsMatch("Зеленоград генералова к200", "ru", rules), ());
|
||||
TRules rules{ExactMatch(countryId, building1), ExactMatch(countryId, street)};
|
||||
TEST(ResultsMatch("Зеленоград генералова к200 ", "ru", rules), ());
|
||||
}
|
||||
{
|
||||
TRules rules{ExactMatch(countryId, building1)};
|
||||
TEST(ResultsMatch("Зеленоград к200 генералова", "ru", rules), ());
|
||||
TRules rules{ExactMatch(countryId, building1), ExactMatch(countryId, street)};
|
||||
TEST(ResultsMatch("Зеленоград к200 генералова ", "ru", rules), ());
|
||||
}
|
||||
{
|
||||
TRules rules{ExactMatch(countryId, building2)};
|
||||
TEST(ResultsMatch("Зеленоград 300 строение 400 генералова", "ru", rules), ());
|
||||
TRules rules{ExactMatch(countryId, building2), ExactMatch(countryId, street)};
|
||||
TEST(ResultsMatch("Зеленоград 300 строение 400 генералова ", "ru", rules), ());
|
||||
}
|
||||
{
|
||||
TRules rules{};
|
||||
TRules rules{ExactMatch(countryId, street)};
|
||||
TEST(ResultsMatch("Зеленоград генералова строе 300", "ru", rules), ());
|
||||
}
|
||||
{
|
||||
TRules rules{ExactMatch(countryId, building2)};
|
||||
TRules rules{ExactMatch(countryId, building2), ExactMatch(countryId, street)};
|
||||
TEST(ResultsMatch("Зеленоград генералова 300 строе", "ru", rules), ());
|
||||
}
|
||||
}
|
||||
|
@ -582,11 +585,11 @@ UNIT_CLASS_TEST(ProcessorTest, TestPostcodes)
|
|||
}
|
||||
|
||||
{
|
||||
TRules rules{ExactMatch(countryId, building28)};
|
||||
TEST(ResultsMatch("Долгопрудный первомайская 28а", "ru", rules), ());
|
||||
TRules rules{ExactMatch(countryId, building28), ExactMatch(countryId, street)};
|
||||
TEST(ResultsMatch("Долгопрудный первомайская 28а ", "ru", rules), ());
|
||||
}
|
||||
{
|
||||
TRules rules{ExactMatch(countryId, building28)};
|
||||
TRules rules{ExactMatch(countryId, building28), ExactMatch(countryId, street)};
|
||||
TEST(ResultsMatch("Долгопрудный первомайская 28а, 141701", "ru", rules), ());
|
||||
}
|
||||
{
|
||||
|
@ -595,7 +598,7 @@ UNIT_CLASS_TEST(ProcessorTest, TestPostcodes)
|
|||
TEST(ResultsMatch("Долгопрудный первомайская 141701", "ru", rules), ());
|
||||
}
|
||||
{
|
||||
TRules rules{ExactMatch(countryId, building31)};
|
||||
TRules rules{ExactMatch(countryId, building31), ExactMatch(countryId, street)};
|
||||
TEST(ResultsMatch("Долгопрудный первомайская 141702", "ru", rules), ());
|
||||
}
|
||||
{
|
||||
|
@ -929,8 +932,9 @@ UNIT_CLASS_TEST(ProcessorTest, FuzzyMatch)
|
|||
|
||||
SetViewport(m2::RectD(m2::PointD(-1.0, -1.0), m2::PointD(1.0, 1.0)));
|
||||
{
|
||||
TRules rules = {ExactMatch(id, bar)};
|
||||
TEST(ResultsMatch("москва черчилль", "ru", rules), ());
|
||||
TRules rulesWithoutStreet = {ExactMatch(id, bar)};
|
||||
TRules rules = {ExactMatch(id, bar), ExactMatch(id, street)};
|
||||
TEST(ResultsMatch("москва черчилль", "ru", rulesWithoutStreet), ());
|
||||
TEST(ResultsMatch("москва ленинградский черчилль", "ru", rules), ());
|
||||
TEST(ResultsMatch("москва ленинградский паб черчилль", "ru", rules), ());
|
||||
|
||||
|
@ -938,12 +942,12 @@ UNIT_CLASS_TEST(ProcessorTest, FuzzyMatch)
|
|||
TEST(ResultsMatch("масква ленинргадский черчиль", "ru", rules), ());
|
||||
|
||||
// Too many errors, can't do anything.
|
||||
TEST(ResultsMatch("масква ленинргадский чирчиль", "ru", TRules{}), ());
|
||||
TEST(ResultsMatch("масква лениноргадсский чирчиль", "ru", TRules{}), ());
|
||||
|
||||
TEST(ResultsMatch("моксва ленинргадский черчиль", "ru", rules), ());
|
||||
|
||||
TEST(ResultsMatch("food", "ru", rules), ());
|
||||
TEST(ResultsMatch("foood", "ru", rules), ());
|
||||
TEST(ResultsMatch("food", "ru", rulesWithoutStreet), ());
|
||||
TEST(ResultsMatch("foood", "ru", rulesWithoutStreet), ());
|
||||
TEST(ResultsMatch("fod", "ru", TRules{}), ());
|
||||
|
||||
TRules rulesMetro = {ExactMatch(id, metro)};
|
||||
|
@ -1058,11 +1062,13 @@ UNIT_CLASS_TEST(ProcessorTest, TestWeirdTypes)
|
|||
TEST(ResultsMatch("除細動器", "ja", rules), ());
|
||||
|
||||
TRules onlyFirst{ExactMatch(countryId, defibrillator1)};
|
||||
TRules firstWithStreet{ExactMatch(countryId, defibrillator1), ExactMatch(countryId, street)};
|
||||
|
||||
// City + category. Only the first defibrillator is inside.
|
||||
TEST(ResultsMatch("東京 除細動器", "ja", onlyFirst), ());
|
||||
TEST(ResultsMatch("東京 除細動器 ", "ja", onlyFirst), ());
|
||||
|
||||
// City + street + category.
|
||||
TEST(ResultsMatch("東京 竹下通り 除細動器", "ja", onlyFirst), ());
|
||||
TEST(ResultsMatch("東京 竹下通り 除細動器 ", "ja", firstWithStreet), ());
|
||||
}
|
||||
|
||||
{
|
||||
|
@ -1191,5 +1197,94 @@ UNIT_CLASS_TEST(ProcessorTest, CityBoundarySmoke)
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Tests for the non-strict aspects of retrieval.
|
||||
// Currently, the only possible non-strictness is that
|
||||
// some tokens in the query may be ignored,
|
||||
// which results in a pruned parse tree for the query.
|
||||
UNIT_CLASS_TEST(ProcessorTest, RelaxedRetrieval)
|
||||
{
|
||||
string const countryName = "Wonderland";
|
||||
TestCountry country(m2::PointD(10.0, 10.0), countryName, "en");
|
||||
|
||||
TestCity city({{-10.0, -10.0}, {10.0, -10.0}, {10.0, 10.0}, {-10.0, 10.0}} /* boundary */,
|
||||
"Sick City", "en", 255 /* rank */);
|
||||
|
||||
TestStreet street(vector<m2::PointD>{m2::PointD(-1.0, 0.0), m2::PointD(1.0, 0.0)}, "Queer Street",
|
||||
"en");
|
||||
TestBuilding building0(m2::PointD(-1.0, 0.0), "" /* name */, "0", street, "en");
|
||||
TestBuilding building1(m2::PointD(1.0, 0.0), "", "1", street, "en");
|
||||
TestBuilding building2(m2::PointD(2.0, 0.0), "named building", "" /* house number */, "en");
|
||||
TestBuilding building3(m2::PointD(3.0, 0.0), "named building", "", "en");
|
||||
|
||||
TestPOI poi0(m2::PointD(-1.0, 0.0), "Farmacia de guardia", "en");
|
||||
poi0.SetTypes({{"amenity", "pharmacy"}});
|
||||
|
||||
// A poi inside building2.
|
||||
TestPOI poi2(m2::PointD(2.0, 0.0), "Post box", "en");
|
||||
poi2.SetTypes({{"amenity", "post_box"}});
|
||||
|
||||
auto countryId = BuildCountry(countryName, [&](TestMwmBuilder & builder) {
|
||||
builder.Add(street);
|
||||
builder.Add(building0);
|
||||
builder.Add(building1);
|
||||
builder.Add(poi0);
|
||||
});
|
||||
RegisterCountry(countryName, m2::RectD(m2::PointD(-10.0, -10.0), m2::PointD(10.0, 10.0)));
|
||||
|
||||
auto worldId = BuildWorld([&](TestMwmBuilder & builder) {
|
||||
builder.Add(country);
|
||||
builder.Add(city);
|
||||
});
|
||||
|
||||
{
|
||||
TRules rulesStrict = {ExactMatch(countryId, building0)};
|
||||
TRules rulesRelaxed = {ExactMatch(countryId, street)};
|
||||
|
||||
// "street" instead of "street-building"
|
||||
TEST(ResultsMatch("queer street 0 ", rulesStrict), ());
|
||||
TEST(ResultsMatch("queer street ", rulesRelaxed), ());
|
||||
TEST(ResultsMatch("queer street 2 ", rulesRelaxed), ());
|
||||
}
|
||||
|
||||
{
|
||||
TRules rulesStrict = {ExactMatch(countryId, poi0), ExactMatch(countryId, street)};
|
||||
TRules rulesRelaxed = {ExactMatch(countryId, street)};
|
||||
|
||||
// "country-city-street" instead of "country-city-street-poi"
|
||||
TEST(ResultsMatch("wonderland sick city queer street pharmacy ", rulesStrict), ());
|
||||
TEST(ResultsMatch("wonderland sick city queer street school ", rulesRelaxed), ());
|
||||
}
|
||||
|
||||
{
|
||||
TRules rulesStrict = {ExactMatch(countryId, street)};
|
||||
TRules rulesRelaxed = {};
|
||||
|
||||
// Cities and larger toponyms should not be relaxed.
|
||||
// "city" instead of "city-street"
|
||||
TEST(ResultsMatch("sick city queer street ", rulesStrict), ());
|
||||
TEST(ResultsMatch("sick city sick street ", rulesRelaxed), ());
|
||||
}
|
||||
|
||||
{
|
||||
TRules rulesStrict = {ExactMatch(countryId, street)};
|
||||
TRules rulesRelaxed = {};
|
||||
|
||||
// Should not be relaxed.
|
||||
// "country-city" instead of "country-city-street"
|
||||
TEST(ResultsMatch("wonderland sick city queer street ", rulesStrict), ());
|
||||
TEST(ResultsMatch("wonderland sick city other street ", rulesRelaxed), ());
|
||||
}
|
||||
|
||||
{
|
||||
TRules rulesStrict = {ExactMatch(countryId, poi0)};
|
||||
TRules rulesRelaxed = {};
|
||||
|
||||
// Should not be relaxed.
|
||||
// "city" instead of "city-poi"
|
||||
TEST(ResultsMatch("sick city pharmacy ", rulesStrict), ());
|
||||
TEST(ResultsMatch("sick city library ", rulesRelaxed), ());
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
} // namespace search
|
||||
|
|
|
@ -19,7 +19,7 @@ MAX_RANK = 255
|
|||
RELEVANCES = {'Irrelevant': 0, 'Relevant': 1, 'Vital': 3}
|
||||
NAME_SCORES = ['Zero', 'Substring', 'Prefix', 'Full Match']
|
||||
SEARCH_TYPES = ['POI', 'Building', 'Street', 'Unclassified', 'Village', 'City', 'State', 'Country']
|
||||
FEATURES = ['DistanceToPivot', 'Rank', 'FalseCats', 'ErrorsMade'] + NAME_SCORES + SEARCH_TYPES
|
||||
FEATURES = ['DistanceToPivot', 'Rank', 'FalseCats', 'ErrorsMade', 'AllTokensUsed'] + NAME_SCORES + SEARCH_TYPES
|
||||
|
||||
BOOTSTRAP_ITERATIONS = 10000
|
||||
|
||||
|
@ -37,6 +37,7 @@ def normalize_data(data):
|
|||
data['DistanceToPivot'] = data['DistanceToPivot'].apply(transform_distance)
|
||||
data['Rank'] = data['Rank'].apply(lambda v: v / MAX_RANK)
|
||||
data['Relevance'] = data['Relevance'].apply(lambda v: RELEVANCES[v])
|
||||
data['AllTokensUsed'] = data['AllTokensUsed'].apply(lambda v : +1 if bool(v) else -1)
|
||||
|
||||
cats = data['PureCats'].combine(data['FalseCats'], max)
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue