ICU-22698 Clean up CalendarAstronomer

This commit is contained in:
Frank Tang 2024-03-18 19:59:23 -07:00 committed by Frank Yung-Fong Tang
parent cce162bf4d
commit 0b77215040
12 changed files with 110 additions and 2280 deletions

View file

@ -242,7 +242,7 @@ inline static double normPI(double angle) {
* @deprecated ICU 2.4. This class may be removed or modified.
*/
CalendarAstronomer::CalendarAstronomer():
fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(false) {
fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(false) {
clearCache();
}
@ -252,30 +252,7 @@ CalendarAstronomer::CalendarAstronomer():
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(false) {
clearCache();
}
/**
* Construct a new <code>CalendarAstronomer</code> object with the given
* latitude and longitude. The object's time is set to the current
* date and time.
* <p>
* @param longitude The desired longitude, in <em>degrees</em> east of
* the Greenwich meridian.
*
* @param latitude The desired latitude, in <em>degrees</em>. Positive
* values signify North, negative South.
*
* @see java.util.Date#getTime()
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) :
fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(false) {
fLongitude = normPI(longitude * (double)DEG_RAD);
fLatitude = normPI(latitude * (double)DEG_RAD);
fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2);
CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), moonPosition(0,0), moonPositionSet(false) {
clearCache();
}
@ -301,31 +278,9 @@ CalendarAstronomer::~CalendarAstronomer()
*/
void CalendarAstronomer::setTime(UDate aTime) {
fTime = aTime;
U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset)));
clearCache();
}
/**
* Set the current date and time of this <code>CalendarAstronomer</code> object. All
* astronomical calculations are performed based on this time setting.
*
* @param jdn the desired time, expressed as a "julian day number",
* which is the number of elapsed days since
* 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day
* numbers start at <em>noon</em>. To get the jdn for
* the corresponding midnight, subtract 0.5.
*
* @see #getJulianDay
* @see #JULIAN_EPOCH_MS
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
void CalendarAstronomer::setJulianDay(double jdn) {
fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS;
clearCache();
julianDay = jdn;
}
/**
* Get the current time of this <code>CalendarAstronomer</code> object,
* represented as the number of milliseconds since
@ -357,97 +312,10 @@ double CalendarAstronomer::getJulianDay() {
return julianDay;
}
/**
* Return this object's time expressed in julian centuries:
* the number of centuries after 1/1/1900 AD, 12:00 GMT
*
* @see #getJulianDay
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double CalendarAstronomer::getJulianCentury() {
if (isINVALID(julianCentury)) {
julianCentury = (getJulianDay() - 2415020.0) / 36525.0;
}
return julianCentury;
}
/**
* Returns the current Greenwich sidereal time, measured in hours
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double CalendarAstronomer::getGreenwichSidereal() {
if (isINVALID(siderealTime)) {
// See page 86 of "Practical Astronomy with your Calculator",
// by Peter Duffet-Smith, for details on the algorithm.
double UT = normalize(fTime/(double)HOUR_MS, 24.);
siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.);
}
return siderealTime;
}
double CalendarAstronomer::getSiderealOffset() {
if (isINVALID(siderealT0)) {
double JD = uprv_floor(getJulianDay() - 0.5) + 0.5;
double S = JD - 2451545.0;
double T = S / 36525.0;
siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24);
}
return siderealT0;
}
/**
* Returns the current local sidereal time, measured in hours
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double CalendarAstronomer::getLocalSidereal() {
return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.);
}
/**
* Converts local sidereal time to Universal Time.
*
* @param lst The Local Sidereal Time, in hours since sidereal midnight
* on this object's current date.
*
* @return The corresponding Universal Time, in milliseconds since
* 1 Jan 1970, GMT.
*/
double CalendarAstronomer::lstToUT(double lst) {
// Convert to local mean time
double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24);
// Then find local midnight on this day
double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset;
//out(" lt =" + lt + " hours");
//out(" base=" + new Date(base));
return base + (long)(lt * HOUR_MS);
}
//-------------------------------------------------------------------------
// Coordinate transformations, all based on the current time of this object
//-------------------------------------------------------------------------
/**
* Convert from ecliptic to equatorial coordinates.
*
* @param ecliptic A point in the sky in ecliptic coordinates.
* @return The corresponding point in equatorial coordinates.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic)
{
return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude);
}
/**
* Convert from ecliptic to equatorial coordinates.
*
@ -479,46 +347,6 @@ CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(Calenda
return result;
}
/**
* Convert from ecliptic longitude to equatorial coordinates.
*
* @param eclipLong The ecliptic longitude
*
* @return The corresponding point in equatorial coordinates.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong)
{
return eclipticToEquatorial(result, eclipLong, 0); // TODO: optimize
}
/**
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong)
{
Equatorial equatorial;
eclipticToEquatorial(equatorial, eclipLong);
double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension; // Hour-angle
double sinH = ::sin(H);
double cosH = cos(H);
double sinD = ::sin(equatorial.declination);
double cosD = cos(equatorial.declination);
double sinL = ::sin(fLatitude);
double cosL = cos(fLatitude);
double altitude = asin(sinD*sinL + cosD*cosL*cosH);
double azimuth = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude));
result.set(azimuth, altitude);
return result;
}
//-------------------------------------------------------------------------
// The Sun
//-------------------------------------------------------------------------
@ -657,50 +485,6 @@ double CalendarAstronomer::getSunLongitude()
longitude = norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G);
}
/**
* The position of the sun at this object's current date and time,
* in equatorial coordinates.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) {
return eclipticToEquatorial(result, getSunLongitude(), 0);
}
/**
* Constant representing the vernal equinox.
* For use with {@link #getSunTime getSunTime}.
* Note: In this case, "vernal" refers to the northern hemisphere's seasons.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
/*double CalendarAstronomer::VERNAL_EQUINOX() {
return 0;
}*/
/**
* Constant representing the summer solstice.
* For use with {@link #getSunTime getSunTime}.
* Note: In this case, "summer" refers to the northern hemisphere's seasons.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double CalendarAstronomer::SUMMER_SOLSTICE() {
return (CalendarAstronomer::PI/2);
}
/**
* Constant representing the autumnal equinox.
* For use with {@link #getSunTime getSunTime}.
* Note: In this case, "autumn" refers to the northern hemisphere's seasons.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
/*double CalendarAstronomer::AUTUMN_EQUINOX() {
return (CalendarAstronomer::PI);
}*/
/**
* Constant representing the winter solstice.
* For use with {@link #getSunTime getSunTime}.
@ -738,310 +522,6 @@ UDate CalendarAstronomer::getSunTime(double desired, UBool next)
next);
}
CalendarAstronomer::CoordFunc::~CoordFunc() {}
class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
public:
virtual ~RiseSetCoordFunc();
virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer& a) override { a.getSunPosition(result); }
};
RiseSetCoordFunc::~RiseSetCoordFunc() {}
UDate CalendarAstronomer::getSunRiseSet(UBool rise)
{
UDate t0 = fTime;
// Make a rough guess: 6am or 6pm local time on the current day
double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS);
U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset));
setTime(noon + ((rise ? -6 : 6) * HOUR_MS));
U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS)));
RiseSetCoordFunc func;
double t = riseOrSet(func,
rise,
.533 * DEG_RAD, // Angular Diameter
34. /60.0 * DEG_RAD, // Refraction correction
MINUTE_MS / 12.); // Desired accuracy
setTime(t0);
return t;
}
// Commented out - currently unused. ICU 2.6, Alan
// //-------------------------------------------------------------------------
// // Alternate Sun Rise/Set
// // See Duffett-Smith p.93
// //-------------------------------------------------------------------------
//
// // This yields worse results (as compared to USNO data) than getSunRiseSet().
// /**
// * TODO Make this when the entire class is package-private.
// */
// /*public*/ long getSunRiseSet2(boolean rise) {
// // 1. Calculate coordinates of the sun's center for midnight
// double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
// double[] sl = getSunLongitude(jd);// double lambda1 = sl[0];
// Equatorial pos1 = eclipticToEquatorial(lambda1, 0);
//
// // 2. Add ... to lambda to get position 24 hours later
// double lambda2 = lambda1 + 0.985647*DEG_RAD;
// Equatorial pos2 = eclipticToEquatorial(lambda2, 0);
//
// // 3. Calculate LSTs of rising and setting for these two positions
// double tanL = ::tan(fLatitude);
// double H = ::acos(-tanL * ::tan(pos1.declination));
// double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2;
// double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2;
// H = ::acos(-tanL * ::tan(pos2.declination));
// double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
// double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
// if (lst1r > 24) lst1r -= 24;
// if (lst1s > 24) lst1s -= 24;
// if (lst2r > 24) lst2r -= 24;
// if (lst2s > 24) lst2s -= 24;
//
// // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2.
// double gst1r = lstToGst(lst1r);
// double gst1s = lstToGst(lst1s);
// double gst2r = lstToGst(lst2r);
// double gst2s = lstToGst(lst2s);
// if (gst1r > gst2r) gst2r += 24;
// if (gst1s > gst2s) gst2s += 24;
//
// // 5. Calculate GST at 0h UT of this date
// double t00 = utToGst(0);
//
// // 6. Calculate GST at 0h on the observer's longitude
// double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.
// double t00p = t00 - offset*1.002737909;
// if (t00p < 0) t00p += 24; // do NOT normalize
//
// // 7. Adjust
// if (gst1r < t00p) {
// gst1r += 24;
// gst2r += 24;
// }
// if (gst1s < t00p) {
// gst1s += 24;
// gst2s += 24;
// }
//
// // 8.
// double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r);
// double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s);
//
// // 9. Correct for parallax, refraction, and sun's diameter
// double dec = (pos1.declination + pos2.declination) / 2;
// double psi = ::acos(sin(fLatitude) / cos(dec));
// double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter
// double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG;
// double delta_t = 240 * y / cos(dec) / 3600; // hours
//
// // 10. Add correction to GSTs, subtract from GSTr
// gstr -= delta_t;
// gsts += delta_t;
//
// // 11. Convert GST to UT and then to local civil time
// double ut = gstToUt(rise ? gstr : gsts);
// //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t);
// long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day
// return midnight + (long) (ut * 3600000);
// }
// Commented out - currently unused. ICU 2.6, Alan
// /**
// * Convert local sidereal time to Greenwich sidereal time.
// * Section 15. Duffett-Smith p.21
// * @param lst in hours (0..24)
// * @return GST in hours (0..24)
// */
// double lstToGst(double lst) {
// double delta = fLongitude * 24 / CalendarAstronomer_PI2;
// return normalize(lst - delta, 24);
// }
// Commented out - currently unused. ICU 2.6, Alan
// /**
// * Convert UT to GST on this date.
// * Section 12. Duffett-Smith p.17
// * @param ut in hours
// * @return GST in hours
// */
// double utToGst(double ut) {
// return normalize(getT0() + ut*1.002737909, 24);
// }
// Commented out - currently unused. ICU 2.6, Alan
// /**
// * Convert GST to UT on this date.
// * Section 13. Duffett-Smith p.18
// * @param gst in hours
// * @return UT in hours
// */
// double gstToUt(double gst) {
// return normalize(gst - getT0(), 24) * 0.9972695663;
// }
// Commented out - currently unused. ICU 2.6, Alan
// double getT0() {
// // Common computation for UT <=> GST
//
// // Find JD for 0h UT
// double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
//
// double s = jd - 2451545.0;
// double t = s / 36525.0;
// double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t;
// return t0;
// }
// Commented out - currently unused. ICU 2.6, Alan
// //-------------------------------------------------------------------------
// // Alternate Sun Rise/Set
// // See sci.astro FAQ
// // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html
// //-------------------------------------------------------------------------
//
// // Note: This method appears to produce inferior accuracy as
// // compared to getSunRiseSet().
//
// /**
// * TODO Make this when the entire class is package-private.
// */
// /*public*/ long getSunRiseSet3(boolean rise) {
//
// // Compute day number for 0.0 Jan 2000 epoch
// double d = (double)(time - EPOCH_2000_MS) / DAY_MS;
//
// // Now compute the Local Sidereal Time, LST:
// //
// double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/
// fLongitude*RAD_DEG;
// //
// // (east long. positive). Note that LST is here expressed in degrees,
// // where 15 degrees corresponds to one hour. Since LST really is an angle,
// // it's convenient to use one unit---degrees---throughout.
//
// // COMPUTING THE SUN'S POSITION
// // ----------------------------
// //
// // To be able to compute the Sun's rise/set times, you need to be able to
// // compute the Sun's position at any time. First compute the "day
// // number" d as outlined above, for the desired moment. Next compute:
// //
// double oblecl = 23.4393 - 3.563E-7 * d;
// //
// double w = 282.9404 + 4.70935E-5 * d;
// double M = 356.0470 + 0.9856002585 * d;
// double e = 0.016709 - 1.151E-9 * d;
// //
// // This is the obliquity of the ecliptic, plus some of the elements of
// // the Sun's apparent orbit (i.e., really the Earth's orbit): w =
// // argument of perihelion, M = mean anomaly, e = eccentricity.
// // Semi-major axis is here assumed to be exactly 1.0 (while not strictly
// // true, this is still an accurate approximation). Next compute E, the
// // eccentric anomaly:
// //
// double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) );
// //
// // where E and M are in degrees. This is it---no further iterations are
// // needed because we know e has a sufficiently small value. Next compute
// // the true anomaly, v, and the distance, r:
// //
// /* r * cos(v) = */ double A = cos(E*DEG_RAD) - e;
// /* r * ::sin(v) = */ double B = ::sqrt(1 - e*e) * ::sin(E*DEG_RAD);
// //
// // and
// //
// // r = sqrt( A*A + B*B )
// double v = ::atan2( B, A )*RAD_DEG;
// //
// // The Sun's true longitude, slon, can now be computed:
// //
// double slon = v + w;
// //
// // Since the Sun is always at the ecliptic (or at least very very close to
// // it), we can use simplified formulae to convert slon (the Sun's ecliptic
// // longitude) to sRA and sDec (the Sun's RA and Dec):
// //
// // ::sin(slon) * cos(oblecl)
// // tan(sRA) = -------------------------
// // cos(slon)
// //
// // ::sin(sDec) = ::sin(oblecl) * ::sin(slon)
// //
// // As was the case when computing az, the Azimuth, if possible use an
// // atan2() function to compute sRA.
//
// double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG;
//
// double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD);
// double sDec = ::asin(sin_sDec)*RAD_DEG;
//
// // COMPUTING RISE AND SET TIMES
// // ----------------------------
// //
// // To compute when an object rises or sets, you must compute when it
// // passes the meridian and the HA of rise/set. Then the rise time is
// // the meridian time minus HA for rise/set, and the set time is the
// // meridian time plus the HA for rise/set.
// //
// // To find the meridian time, compute the Local Sidereal Time at 0h local
// // time (or 0h UT if you prefer to work in UT) as outlined above---name
// // that quantity LST0. The Meridian Time, MT, will now be:
// //
// // MT = RA - LST0
// double MT = normalize(sRA - LST, 360);
// //
// // where "RA" is the object's Right Ascension (in degrees!). If negative,
// // add 360 deg to MT. If the object is the Sun, leave the time as it is,
// // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from
// // sidereal to solar time. Now, compute HA for rise/set, name that
// // quantity HA0:
// //
// // ::sin(h0) - ::sin(lat) * ::sin(Dec)
// // cos(HA0) = ---------------------------------
// // cos(lat) * cos(Dec)
// //
// // where h0 is the altitude selected to represent rise/set. For a purely
// // mathematical horizon, set h0 = 0 and simplify to:
// //
// // cos(HA0) = - tan(lat) * tan(Dec)
// //
// // If you want to account for refraction on the atmosphere, set h0 = -35/60
// // degrees (-35 arc minutes), and if you want to compute the rise/set times
// // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes).
// //
// double h0 = -50/60 * DEG_RAD;
//
// double HA0 = ::acos(
// (sin(h0) - ::sin(fLatitude) * sin_sDec) /
// (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG;
//
// // When HA0 has been computed, leave it as it is for the Sun but multiply
// // by 365.2422/366.2422 for stellar objects, to convert from sidereal to
// // solar time. Finally compute:
// //
// // Rise time = MT - HA0
// // Set time = MT + HA0
// //
// // convert the times from degrees to hours by dividing by 15.
// //
// // If you'd like to check that your calculations are accurate or just
// // need a quick result, check the USNO's Sun or Moon Rise/Set Table,
// // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>.
//
// double result = MT + (rise ? -HA0 : HA0); // in degrees
//
// // Find UT midnight on this day
// long midnight = DAY_MS * (time / DAY_MS);
//
// return midnight + (long) (result * 3600000 / 15);
// }
//-------------------------------------------------------------------------
// The Moon
//-------------------------------------------------------------------------
@ -1083,7 +563,7 @@ const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()
// Calculate the mean longitude and anomaly of the moon, based on
// a circular orbit. Similar to the corresponding solar calculation.
double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0);
meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);
double meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);
//
// Calculate the following corrections:
@ -1109,7 +589,7 @@ const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()
double a4 = 0.2140*PI/180 * ::sin(2 * meanAnomalyMoon);
// Now find the moon's corrected longitude
moonLongitude = meanLongitude + evection + center - annual + a4;
double moonLongitude = meanLongitude + evection + center - annual + a4;
//
// And finally, find the variation, caused by the fact that the sun's
@ -1149,7 +629,6 @@ const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()
* current ecliptic longitudes of the sun and the moon,
* measured in radians.
*
* @see #getMoonPhase
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
@ -1165,27 +644,6 @@ double CalendarAstronomer::getMoonAge() {
return norm2PI(moonEclipLong - sunLongitude);
}
/**
* Calculate the phase of the moon at the time set in this object.
* The returned phase is a <code>double</code> in the range
* <code>0 <= phase < 1</code>, interpreted as follows:
* <ul>
* <li>0.00: New moon
* <li>0.25: First quarter
* <li>0.50: Full moon
* <li>0.75: Last quarter
* </ul>
*
* @see #getMoonAge
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
double CalendarAstronomer::getMoonPhase() {
// See page 147 of "Practical Astronomy with your Calculator",
// by Peter Duffet-Smith, for details on the algorithm.
return 0.5 * (1 - cos(getMoonAge()));
}
/**
* Constant representing a new moon.
* For use with {@link #getMoonTime getMoonTime}
@ -1196,25 +654,6 @@ CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() {
return CalendarAstronomer::MoonAge(0);
}
/**
* Constant representing the moon's first quarter.
* For use with {@link #getMoonTime getMoonTime}
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
/*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() {
return CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2);
}*/
/**
* Constant representing a full moon.
* For use with {@link #getMoonTime getMoonTime}
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() {
return CalendarAstronomer::MoonAge(CalendarAstronomer::PI);
}
/**
* Constant representing the moon's last quarter.
* For use with {@link #getMoonTime getMoonTime}
@ -1234,26 +673,6 @@ MoonTimeAngleFunc::~MoonTimeAngleFunc() {}
return CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);
}*/
/**
* Find the next or previous time at which the Moon's ecliptic
* longitude will have the desired value.
* <p>
* @param desired The desired longitude.
* @param next <tt>true</tt> if the next occurrence of the phase
* is desired, <tt>false</tt> for the previous occurrence.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
UDate CalendarAstronomer::getMoonTime(double desired, UBool next)
{
MoonTimeAngleFunc func;
return timeOfAngle( func,
desired,
SYNODIC_MONTH,
MINUTE_MS,
next);
}
/**
* Find the next or previous time at which the moon will be in the
* desired phase.
@ -1265,31 +684,12 @@ UDate CalendarAstronomer::getMoonTime(double desired, UBool next)
* @deprecated ICU 2.4. This class may be removed or modified.
*/
UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) {
return getMoonTime(desired.value, next);
}
class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
public:
virtual ~MoonRiseSetCoordFunc();
virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer& a) override { result = a.getMoonPosition(); }
};
MoonRiseSetCoordFunc::~MoonRiseSetCoordFunc() {}
/**
* Returns the time (GMT) of sunrise or sunset on the local date to which
* this calendar is currently set.
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
UDate CalendarAstronomer::getMoonRiseSet(UBool rise)
{
MoonRiseSetCoordFunc func;
return riseOrSet(func,
rise,
.533 * DEG_RAD, // Angular Diameter
34 /60.0 * DEG_RAD, // Refraction correction
MINUTE_MS); // Desired accuracy
MoonTimeAngleFunc func;
return timeOfAngle( func,
desired.value,
SYNODIC_MONTH,
MINUTE_MS,
next);
}
//-------------------------------------------------------------------------
@ -1364,48 +764,7 @@ UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired,
return fTime;
}
UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise,
double diameter, double refraction,
double epsilon)
{
Equatorial pos;
double tanL = ::tan(fLatitude);
double deltaT = 0;
int32_t count = 0;
//
// Calculate the object's position at the current time, then use that
// position to calculate the time of rising or setting. The position
// will be different at that time, so iterate until the error is allowable.
//
U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n",
rise?"T":"F", diameter, refraction, epsilon));
do {
// See "Practical Astronomy With Your Calculator, section 33.
func.eval(pos, *this);
double angle = ::acos(-tanL * ::tan(pos.declination));
double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2;
// Convert from LST to Universal Time.
UDate newTime = lstToUT( lst );
deltaT = newTime - fTime;
setTime(newTime);
U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf, A=%.3lf/D=%.3lf\n",
count, deltaT, angle, lst, pos.ascension, pos.declination));
}
while (++ count < 5 && uprv_fabs(deltaT) > epsilon);
// Calculate the correction due to refraction and the object's angular diameter
double cosD = ::cos(pos.declination);
double psi = ::acos(sin(fLatitude) / cosD);
double x = diameter / 2 + refraction;
double y = ::asin(sin(x) / ::sin(psi));
long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS);
return fTime + (rise ? -delta : delta);
}
/**
/**
* Return the obliquity of the ecliptic (the angle between the ecliptic
* and the earth's equator) at the current time. This varies due to
* the precession of the earth's axis.
@ -1414,19 +773,16 @@ UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise,
* measured in radians.
*/
double CalendarAstronomer::eclipticObliquity() {
if (isINVALID(eclipObliquity)) {
const double epoch = 2451545.0; // 2000 AD, January 1.5
const double epoch = 2451545.0; // 2000 AD, January 1.5
double T = (getJulianDay() - epoch) / 36525;
double T = (getJulianDay() - epoch) / 36525;
eclipObliquity = 23.439292
- 46.815/3600 * T
- 0.0006/3600 * T*T
+ 0.00181/3600 * T*T*T;
double eclipObliquity = 23.439292
- 46.815/3600 * T
- 0.0006/3600 * T*T
+ 0.00181/3600 * T*T*T;
eclipObliquity *= DEG_RAD;
}
return eclipObliquity;
return eclipObliquity * DEG_RAD;
}
@ -1437,45 +793,13 @@ void CalendarAstronomer::clearCache() {
const double INVALID = uprv_getNaN();
julianDay = INVALID;
julianCentury = INVALID;
sunLongitude = INVALID;
meanAnomalySun = INVALID;
moonLongitude = INVALID;
moonEclipLong = INVALID;
meanAnomalyMoon = INVALID;
eclipObliquity = INVALID;
siderealTime = INVALID;
siderealT0 = INVALID;
moonPositionSet = false;
}
//private static void out(String s) {
// System.out.println(s);
//}
//private static String deg(double rad) {
// return Double.toString(rad * RAD_DEG);
//}
//private static String hours(long ms) {
// return Double.toString((double)ms / HOUR_MS) + " hours";
//}
/**
* @internal
* @deprecated ICU 2.4. This class may be removed or modified.
*/
/*UDate CalendarAstronomer::local(UDate localMillis) {
// TODO - srl ?
TimeZone *tz = TimeZone::createDefault();
int32_t rawOffset;
int32_t dstOffset;
UErrorCode status = U_ZERO_ERROR;
tz->getOffset(localMillis, true, rawOffset, dstOffset, status);
delete tz;
return localMillis - rawOffset;
}*/
// Debugging functions
UnicodeString CalendarAstronomer::Ecliptic::toString() const
{
@ -1500,34 +824,6 @@ UnicodeString CalendarAstronomer::Equatorial::toString() const
#endif
}
UnicodeString CalendarAstronomer::Horizon::toString() const
{
#ifdef U_DEBUG_ASTRO
char tmp[800];
snprintf(tmp, sizeof(tmp), "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG);
return UnicodeString(tmp, "");
#else
return UnicodeString();
#endif
}
// static private String radToHms(double angle) {
// int hrs = (int) (angle*RAD_HOUR);
// int min = (int)((angle*RAD_HOUR - hrs) * 60);
// int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600);
// return Integer.toString(hrs) + "h" + min + "m" + sec + "s";
// }
// static private String radToDms(double angle) {
// int deg = (int) (angle*RAD_DEG);
// int min = (int)((angle*RAD_DEG - deg) * 60);
// int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600);
// return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\"";
// }
// =============== Calendar Cache ================
void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) {

View file

@ -31,7 +31,7 @@ U_NAMESPACE_BEGIN
* at a given moment in time. Accordingly, each <code>CalendarAstronomer</code>
* object has a <code>time</code> property that determines the date
* and time for which its calculations are performed. You can set and
* retrieve this property with {@link #setDate setDate}, {@link #getDate getDate}
* retrieve this property with {@link #setTime setTime}, {@link #getTime getTime}
* and related methods.
* <p>
* Almost all of the calculations performed by this class, or by any
@ -72,7 +72,6 @@ public:
* value without worrying about whether other code will modify them.
*
* @see CalendarAstronomer.Equatorial
* @see CalendarAstronomer.Horizon
* @internal
*/
class U_I18N_API Ecliptic : public UMemory {
@ -141,7 +140,6 @@ public:
* value without worrying about whether other code will modify them.
*
* @see CalendarAstronomer.Ecliptic
* @see CalendarAstronomer.Horizon
* @internal
*/
class U_I18N_API Equatorial : public UMemory {
@ -201,66 +199,6 @@ public:
double declination;
};
/**
* Represents the position of an object in the sky relative to
* the local horizon.
* The <i>Altitude</i> represents the object's elevation above the horizon,
* with objects below the horizon having a negative altitude.
* The <i>Azimuth</i> is the geographic direction of the object from the
* observer's position, with 0 representing north. The azimuth increases
* clockwise from north.
* <p>
* Note that Horizon objects are immutable and cannot be modified
* once they are constructed. This allows them to be passed and returned by
* value without worrying about whether other code will modify them.
*
* @see CalendarAstronomer.Ecliptic
* @see CalendarAstronomer.Equatorial
* @internal
*/
class U_I18N_API Horizon : public UMemory {
public:
/**
* Constructs a Horizon coordinate object.
* <p>
* @param alt The altitude, measured in radians above the horizon.
* @param azim The azimuth, measured in radians clockwise from north.
* @internal
*/
Horizon(double alt=0, double azim=0)
: altitude(alt), azimuth(azim) { }
/**
* Setter for Ecliptic Coordinate object
* @param alt The altitude, measured in radians above the horizon.
* @param azim The azimuth, measured in radians clockwise from north.
* @internal
*/
void set(double alt, double azim) {
altitude = alt;
azimuth = azim;
}
/**
* Return a string representation of this object, with the
* angles measured in degrees.
* @internal
*/
UnicodeString toString() const;
/**
* The object's altitude above the horizon, in radians.
* @internal
*/
double altitude;
/**
* The object's direction, in radians clockwise from north.
* @internal
*/
double azimuth;
};
public:
//-------------------------------------------------------------------------
// Assorted private data used for conversions
@ -300,22 +238,6 @@ public:
*/
CalendarAstronomer(UDate d);
/**
* Construct a new <code>CalendarAstronomer</code> object with the given
* latitude and longitude. The object's time is set to the current
* date and time.
* <p>
* @param longitude The desired longitude, in <em>degrees</em> east of
* the Greenwich meridian.
*
* @param latitude The desired latitude, in <em>degrees</em>. Positive
* values signify North, negative South.
*
* @see java.util.Date#getTime()
* @internal
*/
CalendarAstronomer(double longitude, double latitude);
/**
* Destructor
* @internal
@ -333,48 +255,17 @@ public:
* @param aTime the date and time, expressed as the number of milliseconds since
* 1/1/1970 0:00 GMT (Gregorian).
*
* @see #setDate
* @see #getTime
* @internal
*/
void setTime(UDate aTime);
/**
* Set the current date and time of this <code>CalendarAstronomer</code> object. All
* astronomical calculations are performed based on this time setting.
*
* @param aTime the date and time, expressed as the number of milliseconds since
* 1/1/1970 0:00 GMT (Gregorian).
*
* @see #getTime
* @internal
*/
void setDate(UDate aDate) { setTime(aDate); }
/**
* Set the current date and time of this <code>CalendarAstronomer</code> object. All
* astronomical calculations are performed based on this time setting.
*
* @param jdn the desired time, expressed as a "julian day number",
* which is the number of elapsed days since
* 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day
* numbers start at <em>noon</em>. To get the jdn for
* the corresponding midnight, subtract 0.5.
*
* @see #getJulianDay
* @see #JULIAN_EPOCH_MS
* @internal
*/
void setJulianDay(double jdn);
/**
* Get the current time of this <code>CalendarAstronomer</code> object,
* represented as the number of milliseconds since
* 1/1/1970 AD 0:00 GMT (Gregorian).
*
* @see #setTime
* @see #getDate
* @internal
*/
UDate getTime();
@ -384,58 +275,12 @@ public:
* expressed as a "julian day number", which is the number of elapsed
* days since 1/1/4713 BC (Julian), 12:00 GMT.
*
* @see #setJulianDay
* @see #JULIAN_EPOCH_MS
* @internal
*/
double getJulianDay();
/**
* Return this object's time expressed in julian centuries:
* the number of centuries after 1/1/1900 AD, 12:00 GMT
*
* @see #getJulianDay
* @internal
*/
double getJulianCentury();
/**
* Returns the current Greenwich sidereal time, measured in hours
* @internal
*/
double getGreenwichSidereal();
private:
double getSiderealOffset();
public:
/**
* Returns the current local sidereal time, measured in hours
* @internal
*/
double getLocalSidereal();
/**
* Converts local sidereal time to Universal Time.
*
* @param lst The Local Sidereal Time, in hours since sidereal midnight
* on this object's current date.
*
* @return The corresponding Universal Time, in milliseconds since
* 1 Jan 1970, GMT.
*/
//private:
double lstToUT(double lst);
/**
*
* Convert from ecliptic to equatorial coordinates.
*
* @param ecliptic The ecliptic
* @param result Fillin result
* @return reference to result
*/
Equatorial& eclipticToEquatorial(Equatorial& result, const Ecliptic& ecliptic);
/**
* Convert from ecliptic to equatorial coordinates.
*
@ -447,21 +292,6 @@ public:
*/
Equatorial& eclipticToEquatorial(Equatorial& result, double eclipLong, double eclipLat);
/**
* Convert from ecliptic longitude to equatorial coordinates.
*
* @param eclipLong The ecliptic longitude
*
* @return The corresponding point in equatorial coordinates.
* @internal
*/
Equatorial& eclipticToEquatorial(Equatorial& result, double eclipLong) ;
/**
* @internal
*/
Horizon& eclipticToHorizon(Horizon& result, double eclipLong) ;
//-------------------------------------------------------------------------
// The Sun
//-------------------------------------------------------------------------
@ -484,39 +314,7 @@ public:
*/
/*public*/ void getSunLongitude(double julianDay, double &longitude, double &meanAnomaly);
/**
* The position of the sun at this object's current date and time,
* in equatorial coordinates.
* @param result fillin for the result
* @internal
*/
Equatorial& getSunPosition(Equatorial& result);
public:
/**
* Constant representing the vernal equinox.
* For use with {@link #getSunTime getSunTime}.
* Note: In this case, "vernal" refers to the northern hemisphere's seasons.
* @internal
*/
// static double VERNAL_EQUINOX();
/**
* Constant representing the summer solstice.
* For use with {@link #getSunTime getSunTime}.
* Note: In this case, "summer" refers to the northern hemisphere's seasons.
* @internal
*/
static double SUMMER_SOLSTICE();
/**
* Constant representing the autumnal equinox.
* For use with {@link #getSunTime getSunTime}.
* Note: In this case, "autumn" refers to the northern hemisphere's seasons.
* @internal
*/
// static double AUTUMN_EQUINOX();
/**
* Constant representing the winter solstice.
* For use with {@link #getSunTime getSunTime}.
@ -532,20 +330,6 @@ public:
*/
UDate getSunTime(double desired, UBool next);
/**
* Returns the time (GMT) of sunrise or sunset on the local date to which
* this calendar is currently set.
*
* NOTE: This method only works well if this object is set to a
* time near local noon. Because of variations between the local
* official time zone and the geographic longitude, the
* computation can flop over into an adjacent day if this object
* is set to a time near local midnight.
*
* @internal
*/
UDate getSunRiseSet(UBool rise);
//-------------------------------------------------------------------------
// The Moon
//-------------------------------------------------------------------------
@ -569,22 +353,6 @@ public:
*/
double getMoonAge();
/**
* Calculate the phase of the moon at the time set in this object.
* The returned phase is a <code>double</code> in the range
* <code>0 <= phase < 1</code>, interpreted as follows:
* <ul>
* <li>0.00: New moon
* <li>0.25: First quarter
* <li>0.50: Full moon
* <li>0.75: Last quarter
* </ul>
*
* @see #getMoonAge
* @internal
*/
double getMoonPhase();
class U_I18N_API MoonAge : public UMemory {
public:
MoonAge(double l)
@ -600,27 +368,6 @@ public:
*/
static MoonAge NEW_MOON();
/**
* Constant representing the moon's first quarter.
* For use with {@link #getMoonTime getMoonTime}
* @internal
*/
// static const MoonAge FIRST_QUARTER();
/**
* Constant representing a full moon.
* For use with {@link #getMoonTime getMoonTime}
* @internal
*/
static MoonAge FULL_MOON();
/**
* Constant representing the moon's last quarter.
* For use with {@link #getMoonTime getMoonTime}
* @internal
*/
// static const MoonAge LAST_QUARTER();
/**
* Find the next or previous time at which the Moon's ecliptic
* longitude will have the desired value.
@ -630,21 +377,13 @@ public:
* is desired, <tt>false</tt> for the previous occurrence.
* @internal
*/
UDate getMoonTime(double desired, UBool next);
UDate getMoonTime(const MoonAge& desired, UBool next);
/**
* Returns the time (GMT) of sunrise or sunset on the local date to which
* this calendar is currently set.
* @internal
*/
UDate getMoonRiseSet(UBool rise);
//-------------------------------------------------------------------------
// Interpolation methods for finding the time at which a given event occurs
//-------------------------------------------------------------------------
// private
public:
class AngleFunc : public UMemory {
public:
virtual double eval(CalendarAstronomer&) = 0;
@ -652,20 +391,10 @@ public:
};
friend class AngleFunc;
private:
UDate timeOfAngle(AngleFunc& func, double desired,
double periodDays, double epsilon, UBool next);
class CoordFunc : public UMemory {
public:
virtual void eval(Equatorial& result, CalendarAstronomer&) = 0;
virtual ~CoordFunc();
};
friend class CoordFunc;
double riseOrSet(CoordFunc& func, UBool rise,
double diameter, double refraction,
double epsilon);
//-------------------------------------------------------------------------
// Other utility methods
//-------------------------------------------------------------------------
@ -691,29 +420,13 @@ private:
*/
UDate fTime;
/* These aren't used yet, but they'll be needed for sunset calculations
* and equatorial to horizon coordinate conversions
*/
double fLongitude;
double fLatitude;
double fGmtOffset;
//
// The following fields are used to cache calculated results for improved
// performance. These values all depend on the current time setting
// of this object, so the clearCache method is provided.
//
double julianDay;
double julianCentury;
double sunLongitude;
double meanAnomalySun;
double moonLongitude;
double moonEclipLong;
double meanAnomalyMoon;
double eclipObliquity;
double siderealT0;
double siderealTime;
void clearCache();

View file

@ -53,11 +53,6 @@ static void debug_chnsecal_msg(const char *pat, ...)
#endif
// --- The cache --
static icu::UMutex astroLock;
static icu::CalendarAstronomer *gAstronomer = nullptr;
static icu::UInitOnce gAstronomerInitOnce {};
// Lazy Creation & Access synchronized by class CalendarCache with a mutex.
static icu::CalendarCache *gWinterSolsticeCache = nullptr;
static icu::CalendarCache *gNewYearCache = nullptr;
@ -90,10 +85,6 @@ static const int32_t SYNODIC_GAP = 25;
U_CDECL_BEGIN
static UBool calendar_chinese_cleanup() {
if (gAstronomer) {
delete gAstronomer;
gAstronomer = nullptr;
}
if (gWinterSolsticeCache) {
delete gWinterSolsticeCache;
gWinterSolsticeCache = nullptr;
@ -180,18 +171,8 @@ const TimeZone* getAstronomerTimeZone() {
return gAstronomerTimeZone;
}
static void U_CALLCONV initAstronomer() {
gAstronomer = new CalendarAstronomer();
ucln_i18n_registerCleanup(UCLN_I18N_CHINESE_CALENDAR, calendar_chinese_cleanup);
}
} // namespace anonymous
icu::CalendarAstronomer* getAstronomer() {
umtx_initOnce(gAstronomerInitOnce, &initAstronomer);
return gAstronomer;
}
//-------------------------------------------------------------------------
// Minimum / Maximum access functions
//-------------------------------------------------------------------------
@ -602,13 +583,10 @@ int32_t winterSolstice(const TimeZone* timeZone, int32_t gyear) {
// PST 1298 with a final result of Dec 14 10:31:59 PST 1299.
double ms = daysToMillis(timeZone, Grego::fieldsToDay(gyear, UCAL_DECEMBER, 1));
umtx_lock(&astroLock);
getAstronomer()->setTime(ms);
UDate solarLong = getAstronomer()->getSunTime(CalendarAstronomer::WINTER_SOLSTICE(), true);
umtx_unlock(&astroLock);
// Winter solstice is 270 degrees solar longitude aka Dongzhi
double days = millisToDays(timeZone, solarLong);
double days = millisToDays(timeZone,
CalendarAstronomer(ms)
.getSunTime(CalendarAstronomer::WINTER_SOLSTICE(), true));
if (days < INT32_MIN || days > INT32_MAX) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
@ -633,11 +611,10 @@ int32_t winterSolstice(const TimeZone* timeZone, int32_t gyear) {
* new moon after or before <code>days</code>
*/
int32_t newMoonNear(const TimeZone* timeZone, double days, UBool after) {
umtx_lock(&astroLock);
getAstronomer()->setTime(daysToMillis(timeZone, days));
UDate newMoon = getAstronomer()->getMoonTime(CalendarAstronomer::NEW_MOON(), after);
umtx_unlock(&astroLock);
return (int32_t) millisToDays(timeZone, newMoon);
return (int32_t) millisToDays(
timeZone,
CalendarAstronomer(daysToMillis(timeZone, days))
.getMoonTime(CalendarAstronomer::NEW_MOON(), after));
}
/**
@ -660,13 +637,9 @@ int32_t synodicMonthsBetween(int32_t day1, int32_t day2) {
* @param days days after January 1, 1970 0:00 Asia/Shanghai
*/
int32_t majorSolarTerm(const TimeZone* timeZone, int32_t days) {
umtx_lock(&astroLock);
getAstronomer()->setTime(daysToMillis(timeZone, days));
UDate solarLongitude = getAstronomer()->getSunLongitude();
umtx_unlock(&astroLock);
// Compute (floor(solarLongitude / (pi/6)) + 2) % 12
int32_t term = ( ((int32_t)(6 * solarLongitude / CalendarAstronomer::PI)) + 2 ) % 12;
int32_t term = ( ((int32_t)(6 * CalendarAstronomer(daysToMillis(timeZone, days))
.getSunLongitude() / CalendarAstronomer::PI)) + 2 ) % 12;
if (term < 1) {
term += 12;
}

View file

@ -55,7 +55,6 @@ static void debug_islamcal_msg(const char *pat, ...)
// --- The cache --
// cache of months
static icu::CalendarCache *gMonthCache = nullptr;
static icu::CalendarAstronomer *gIslamicCalendarAstro = nullptr;
U_CDECL_BEGIN
static UBool calendar_islamic_cleanup() {
@ -63,10 +62,6 @@ static UBool calendar_islamic_cleanup() {
delete gMonthCache;
gMonthCache = nullptr;
}
if (gIslamicCalendarAstro) {
delete gIslamicCalendarAstro;
gIslamicCalendarAstro = nullptr;
}
return true;
}
U_CDECL_END
@ -264,6 +259,8 @@ int32_t IslamicCalendar::handleGetLimit(UCalendarDateFields field, ELimitType li
// Assorted calculation utilities
//
namespace {
// we could compress this down more if we need to
static const int8_t umAlQuraYrStartEstimateFix[] = {
0, 0, -1, 0, -1, 0, 0, 0, 0, 0, // 1300..
@ -306,6 +303,10 @@ inline bool civilLeapYear(int32_t year) {
return (14 + 11 * year) % 30 < 11;
}
int32_t trueMonthStart(int32_t month);
} // namespace
/**
* Return the day # on which the given year starts. Days are counted
* from the Hijri epoch, origin 0.
@ -336,6 +337,18 @@ int64_t IslamicCalendar::monthStart(int32_t year, int32_t month, UErrorCode& sta
return trueMonthStart(month);
}
namespace {
/**
* Return the "age" of the moon at the given time; this is the difference
* in ecliptic latitude between the moon and the sun. This method simply
* calls CalendarAstronomer.moonAge, converts to degrees,
* and adjusts the resultto be in the range [-180, 180].
*
* @param time The time at which the moon's age is desired,
* in millis since 1/1/1970.
*/
double moonAge(UDate time);
/**
* Find the day number on which a particular month of the true/lunar
* Islamic calendar starts.
@ -344,82 +357,46 @@ int64_t IslamicCalendar::monthStart(int32_t year, int32_t month, UErrorCode& sta
*
* @return The day number on which the given month starts.
*/
int32_t IslamicCalendar::trueMonthStart(int32_t month) const
{
int32_t trueMonthStart(int32_t month) {
ucln_i18n_registerCleanup(UCLN_I18N_ISLAMIC_CALENDAR, calendar_islamic_cleanup);
UErrorCode status = U_ZERO_ERROR;
int64_t start = CalendarCache::get(&gMonthCache, month, status);
if (start==0) {
if (U_SUCCESS(status) && start==0) {
// Make a guess at when the month started, using the average length
UDate origin = HIJRA_MILLIS
+ uprv_floor(month * CalendarAstronomer::SYNODIC_MONTH) * kOneDay;
// moonAge will fail due to memory allocation error
double age = moonAge(origin, status);
if (U_FAILURE(status)) {
goto trueMonthStartEnd;
}
double age = moonAge(origin);
if (age >= 0) {
// The month has already started
do {
origin -= kOneDay;
age = moonAge(origin, status);
if (U_FAILURE(status)) {
goto trueMonthStartEnd;
}
age = moonAge(origin);
} while (age >= 0);
}
else {
// Preceding month has not ended yet.
do {
origin += kOneDay;
age = moonAge(origin, status);
if (U_FAILURE(status)) {
goto trueMonthStartEnd;
}
age = moonAge(origin);
} while (age < 0);
}
start = ClockMath::floorDivideInt64(
(int64_t)((int64_t)origin - HIJRA_MILLIS), (int64_t)kOneDay) + 1;
CalendarCache::put(&gMonthCache, month, start, status);
}
trueMonthStartEnd :
if(U_FAILURE(status)) {
start = 0;
}
return start;
}
/**
* Return the "age" of the moon at the given time; this is the difference
* in ecliptic latitude between the moon and the sun. This method simply
* calls CalendarAstronomer.moonAge, converts to degrees,
* and adjusts the result to be in the range [-180, 180].
*
* @param time The time at which the moon's age is desired,
* in millis since 1/1/1970.
*/
double IslamicCalendar::moonAge(UDate time, UErrorCode &status)
{
double age = 0;
static UMutex astroLock; // pod bay door lock
umtx_lock(&astroLock);
if(gIslamicCalendarAstro == nullptr) {
gIslamicCalendarAstro = new CalendarAstronomer();
if (gIslamicCalendarAstro == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return age;
}
ucln_i18n_registerCleanup(UCLN_I18N_ISLAMIC_CALENDAR, calendar_islamic_cleanup);
}
gIslamicCalendarAstro->setTime(time);
age = gIslamicCalendarAstro->getMoonAge();
umtx_unlock(&astroLock);
double moonAge(UDate time) {
// Convert to degrees and normalize...
age = age * 180 / CalendarAstronomer::PI;
double age = CalendarAstronomer(time).getMoonAge() * 180 / CalendarAstronomer::PI;
if (age > 180) {
age = age - 360;
}
@ -427,6 +404,7 @@ double IslamicCalendar::moonAge(UDate time, UErrorCode &status)
return age;
}
} // namespace
//----------------------------------------------------------------------
// Calendar framework
//----------------------------------------------------------------------
@ -536,11 +514,7 @@ void IslamicCalendar::handleComputeFields(int32_t julianDay, UErrorCode &status)
int32_t startDate = (int32_t)uprv_floor(month * CalendarAstronomer::SYNODIC_MONTH);
double age = moonAge(internalGetTime(), status);
if (U_FAILURE(status)) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
double age = moonAge(internalGetTime());
if ( days - startDate >= 25 && age > 0) {
// If we're near the end of the month, assume next month and search backwards
month++;

View file

@ -211,28 +211,7 @@ class U_I18N_API IslamicCalendar : public Calendar {
* @param year The hijri month, 0-based
*/
virtual int64_t monthStart(int32_t year, int32_t month, UErrorCode& status) const;
/**
* Find the day number on which a particular month of the true/lunar
* Islamic calendar starts.
*
* @param month The month in question, origin 0 from the Hijri epoch
*
* @return The day number on which the given month starts.
*/
int32_t trueMonthStart(int32_t month) const;
private:
/**
* Return the "age" of the moon at the given time; this is the difference
* in ecliptic latitude between the moon and the sun. This method simply
* calls CalendarAstronomer.moonAge, converts to degrees,
* and adjusts the resultto be in the range [-180, 180].
*
* @param time The time at which the moon's age is desired,
* in millis since 1/1/1970.
*/
static double moonAge(UDate time, UErrorCode &status);
//----------------------------------------------------------------------
// Calendar framework

View file

@ -23,7 +23,7 @@
#define CASE(id,test) case id: name = #test; if (exec) { logln(#test "---"); logln((UnicodeString)""); test(); } break
AstroTest::AstroTest(): astro(nullptr), gc(nullptr) {
AstroTest::AstroTest(): gc(nullptr) {
}
void AstroTest::runIndexedTest( int32_t index, UBool exec, const char* &name, char* /*par*/ )
@ -35,9 +35,8 @@ void AstroTest::runIndexedTest( int32_t index, UBool exec, const char* &name, ch
CASE(1,TestLunarPosition);
CASE(2,TestCoordinates);
CASE(3,TestCoverage);
CASE(4,TestSunriseTimes);
CASE(5,TestBasics);
CASE(6,TestMoonAge);
CASE(4,TestBasics);
CASE(5,TestMoonAge);
default: name = ""; break;
}
}
@ -52,12 +51,12 @@ void AstroTest::runIndexedTest( int32_t index, UBool exec, const char* &name, ch
} UPRV_BLOCK_MACRO_END
void AstroTest::initAstro(UErrorCode &status) {
void AstroTest::init(UErrorCode &status) {
if(U_FAILURE(status)) return;
if((astro != nullptr) || (gc != nullptr)) {
dataerrln("Err: initAstro() called twice!");
closeAstro(status);
if(gc != nullptr) {
dataerrln("Err: init() called twice!");
close(status);
if(U_SUCCESS(status)) {
status = U_INTERNAL_PROGRAM_ERROR;
}
@ -65,15 +64,10 @@ void AstroTest::initAstro(UErrorCode &status) {
if(U_FAILURE(status)) return;
astro = new CalendarAstronomer();
gc = Calendar::createInstance(TimeZone::getGMT()->clone(), status);
}
void AstroTest::closeAstro(UErrorCode &/*status*/) {
if(astro != nullptr) {
delete astro;
astro = nullptr;
}
void AstroTest::close(UErrorCode &/*status*/) {
if(gc != nullptr) {
delete gc;
gc = nullptr;
@ -82,7 +76,7 @@ void AstroTest::closeAstro(UErrorCode &/*status*/) {
void AstroTest::TestSolarLongitude() {
UErrorCode status = U_ZERO_ERROR;
initAstro(status);
init(status);
ASSERT_OK(status);
struct {
@ -97,15 +91,11 @@ void AstroTest::TestSolarLongitude() {
gc->clear();
gc->set(tests[i].d[0], tests[i].d[1]-1, tests[i].d[2], tests[i].d[3], tests[i].d[4]);
astro->setDate(gc->getTime(status));
CalendarAstronomer astro(gc->getTime(status));
double longitude = astro->getSunLongitude();
//longitude = 0;
CalendarAstronomer::Equatorial result;
astro->getSunPosition(result);
logln((UnicodeString)"Sun position is " + result.toString() + (UnicodeString)"; " /* + result.toHmsString()*/ + " Sun longitude is " + longitude );
astro.getSunLongitude();
}
closeAstro(status);
close(status);
ASSERT_OK(status);
}
@ -113,7 +103,7 @@ void AstroTest::TestSolarLongitude() {
void AstroTest::TestLunarPosition() {
UErrorCode status = U_ZERO_ERROR;
initAstro(status);
init(status);
ASSERT_OK(status);
static const double tests[][7] = {
@ -124,13 +114,13 @@ void AstroTest::TestLunarPosition() {
for (int32_t i = 0; i < UPRV_LENGTHOF(tests); i++) {
gc->clear();
gc->set((int32_t)tests[i][0], (int32_t)tests[i][1]-1, (int32_t)tests[i][2], (int32_t)tests[i][3], (int32_t)tests[i][4]);
astro->setDate(gc->getTime(status));
CalendarAstronomer astro(gc->getTime(status));
const CalendarAstronomer::Equatorial& result = astro->getMoonPosition();
const CalendarAstronomer::Equatorial& result = astro.getMoonPosition();
logln((UnicodeString)"Moon position is " + result.toString() + (UnicodeString)"; " /* + result->toHmsString()*/);
}
closeAstro(status);
close(status);
ASSERT_OK(status);
}
@ -138,13 +128,14 @@ void AstroTest::TestLunarPosition() {
void AstroTest::TestCoordinates() {
UErrorCode status = U_ZERO_ERROR;
initAstro(status);
init(status);
ASSERT_OK(status);
CalendarAstronomer::Equatorial result;
astro->eclipticToEquatorial(result, 139.686111 * CalendarAstronomer::PI / 180.0, 4.875278* CalendarAstronomer::PI / 180.0);
CalendarAstronomer astro;
astro.eclipticToEquatorial(result, 139.686111 * CalendarAstronomer::PI / 180.0, 4.875278* CalendarAstronomer::PI / 180.0);
logln((UnicodeString)"result is " + result.toString() + (UnicodeString)"; " /* + result.toHmsString()*/ );
closeAstro(status);
close(status);
ASSERT_OK(status);
}
@ -152,7 +143,7 @@ void AstroTest::TestCoordinates() {
void AstroTest::TestCoverage() {
UErrorCode status = U_ZERO_ERROR;
initAstro(status);
init(status);
ASSERT_OK(status);
GregorianCalendar *cal = new GregorianCalendar(1958, UCAL_AUGUST, 15,status);
UDate then = cal->getTime(status);
@ -162,21 +153,14 @@ void AstroTest::TestCoverage() {
//Latitude: 34 degrees 05' North
//Longitude: 118 degrees 22' West
double laLat = 34 + 5./60, laLong = 360 - (118 + 22./60);
CalendarAstronomer *myastro2 = new CalendarAstronomer(laLong, laLat);
double eclLat = laLat * CalendarAstronomer::PI / 360;
double eclLong = laLong * CalendarAstronomer::PI / 360;
CalendarAstronomer::Ecliptic ecl(eclLat, eclLong);
CalendarAstronomer::Equatorial eq;
CalendarAstronomer::Horizon hor;
logln("ecliptic: " + ecl.toString());
CalendarAstronomer *myastro3 = new CalendarAstronomer();
myastro3->setJulianDay((4713 + 2000) * 365.25);
CalendarAstronomer *astronomers[] = {
myastro, myastro2, myastro3, myastro2 // check cache
myastro, myastro, myastro // check cache
};
for (uint32_t i = 0; i < UPRV_LENGTHOF(astronomers); ++i) {
@ -184,195 +168,19 @@ void AstroTest::TestCoverage() {
//logln("astro: " + astro);
logln((UnicodeString)" date: " + anAstro->getTime());
logln((UnicodeString)" cent: " + anAstro->getJulianCentury());
logln((UnicodeString)" gw sidereal: " + anAstro->getGreenwichSidereal());
logln((UnicodeString)" loc sidereal: " + anAstro->getLocalSidereal());
logln((UnicodeString)" equ ecl: " + (anAstro->eclipticToEquatorial(eq,ecl)).toString());
logln((UnicodeString)" equ long: " + (anAstro->eclipticToEquatorial(eq, eclLong)).toString());
logln((UnicodeString)" horiz: " + (anAstro->eclipticToHorizon(hor, eclLong)).toString());
logln((UnicodeString)" sunrise: " + (anAstro->getSunRiseSet(true)));
logln((UnicodeString)" sunset: " + (anAstro->getSunRiseSet(false)));
logln((UnicodeString)" moon phase: " + anAstro->getMoonPhase());
logln((UnicodeString)" moonrise: " + (anAstro->getMoonRiseSet(true)));
logln((UnicodeString)" moonset: " + (anAstro->getMoonRiseSet(false)));
logln((UnicodeString)" prev summer solstice: " + (anAstro->getSunTime(CalendarAstronomer::SUMMER_SOLSTICE(), false)));
logln((UnicodeString)" next summer solstice: " + (anAstro->getSunTime(CalendarAstronomer::SUMMER_SOLSTICE(), true)));
logln((UnicodeString)" prev full moon: " + (anAstro->getMoonTime(CalendarAstronomer::FULL_MOON(), false)));
logln((UnicodeString)" next full moon: " + (anAstro->getMoonTime(CalendarAstronomer::FULL_MOON(), true)));
logln((UnicodeString)" equ ecl: " + (anAstro->eclipticToEquatorial(eq,eclLat,eclLong)).toString());
}
delete myastro2;
delete myastro3;
delete myastro;
delete cal;
closeAstro(status);
close(status);
ASSERT_OK(status);
}
void AstroTest::TestSunriseTimes() {
UErrorCode status = U_ZERO_ERROR;
initAstro(status);
ASSERT_OK(status);
// logln("Sunrise/Sunset times for San Jose, California, USA");
// CalendarAstronomer *astro2 = new CalendarAstronomer(-121.55, 37.20);
// TimeZone *tz = TimeZone::createTimeZone("America/Los_Angeles");
// We'll use a table generated by the UNSO website as our reference
// From: http://aa.usno.navy.mil/
//-Location: W079 25, N43 40
//-Rise and Set for the Sun for 2001
//-Zone: 4h West of Greenwich
int32_t USNO[] = {
6,59, 19,45,
6,57, 19,46,
6,56, 19,47,
6,54, 19,48,
6,52, 19,49,
6,50, 19,51,
6,48, 19,52,
6,47, 19,53,
6,45, 19,54,
6,43, 19,55,
6,42, 19,57,
6,40, 19,58,
6,38, 19,59,
6,36, 20, 0,
6,35, 20, 1,
6,33, 20, 3,
6,31, 20, 4,
6,30, 20, 5,
6,28, 20, 6,
6,27, 20, 7,
6,25, 20, 8,
6,23, 20,10,
6,22, 20,11,
6,20, 20,12,
6,19, 20,13,
6,17, 20,14,
6,16, 20,16,
6,14, 20,17,
6,13, 20,18,
6,11, 20,19,
};
logln("Sunrise/Sunset times for Toronto, Canada");
// long = 79 25", lat = 43 40"
CalendarAstronomer astro3(-(79+25/60), 43+40/60);
// As of ICU4J 2.8 the ICU4J time zones implement pass-through
// to the underlying JDK. Because of variation in the
// underlying JDKs, we have to use a fixed-offset
// SimpleTimeZone to get consistent behavior between JDKs.
// The offset we want is [-18000000, 3600000] (raw, dst).
// [aliu 10/15/03]
// TimeZone tz = TimeZone.getTimeZone("America/Montreal");
SimpleTimeZone tz(-18000000 + 3600000, "Montreal(FIXED)");
GregorianCalendar cal(tz.clone(), Locale::getUS(), status);
GregorianCalendar cal2(tz.clone(), Locale::getUS(), status);
cal.clear();
cal.set(UCAL_YEAR, 2001);
cal.set(UCAL_MONTH, UCAL_APRIL);
cal.set(UCAL_DAY_OF_MONTH, 1);
cal.set(UCAL_HOUR_OF_DAY, 12); // must be near local noon for getSunRiseSet to work
LocalPointer<DateFormat> df_t(DateFormat::createTimeInstance(DateFormat::MEDIUM,Locale::getUS()));
LocalPointer<DateFormat> df_d(DateFormat::createDateInstance(DateFormat::MEDIUM,Locale::getUS()));
LocalPointer<DateFormat> df_dt(DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS()));
if(!df_t.isValid() || !df_d.isValid() || !df_dt.isValid()) {
dataerrln("couldn't create dateformats.");
closeAstro(status);
return;
}
df_t->adoptTimeZone(tz.clone());
df_d->adoptTimeZone(tz.clone());
df_dt->adoptTimeZone(tz.clone());
for (int32_t i=0; i < 30; i++) {
logln("setDate\n");
astro3.setDate(cal.getTime(status));
logln("getRiseSet(true)\n");
UDate sunrise = astro3.getSunRiseSet(true);
logln("getRiseSet(false)\n");
UDate sunset = astro3.getSunRiseSet(false);
logln("end of getRiseSet\n");
cal2.setTime(cal.getTime(status), status);
cal2.set(UCAL_SECOND, 0);
cal2.set(UCAL_MILLISECOND, 0);
cal2.set(UCAL_HOUR_OF_DAY, USNO[4*i+0]);
cal2.set(UCAL_MINUTE, USNO[4*i+1]);
UDate exprise = cal2.getTime(status);
cal2.set(UCAL_HOUR_OF_DAY, USNO[4*i+2]);
cal2.set(UCAL_MINUTE, USNO[4*i+3]);
UDate expset = cal2.getTime(status);
// Compute delta of what we got to the USNO data, in seconds
int32_t deltarise = (int32_t)uprv_fabs((sunrise - exprise) / 1000);
int32_t deltaset = (int32_t)uprv_fabs((sunset - expset) / 1000);
// Allow a deviation of 0..MAX_DEV seconds
// It would be nice to get down to 60 seconds, but at this
// point that appears to be impossible without a redo of the
// algorithm using something more advanced than Duffett-Smith.
int32_t MAX_DEV = 180;
UnicodeString s1, s2, s3, s4, s5;
if (deltarise > MAX_DEV || deltaset > MAX_DEV) {
if (deltarise > MAX_DEV) {
errln("FAIL: (rise) " + df_d->format(cal.getTime(status),s1) +
", Sunrise: " + df_dt->format(sunrise, s2) +
" (USNO " + df_t->format(exprise,s3) +
" d=" + deltarise + "s)");
} else {
logln(df_d->format(cal.getTime(status),s1) +
", Sunrise: " + df_dt->format(sunrise,s2) +
" (USNO " + df_t->format(exprise,s3) + ")");
}
s1.remove(); s2.remove(); s3.remove(); s4.remove(); s5.remove();
if (deltaset > MAX_DEV) {
errln("FAIL: (set) " + df_d->format(cal.getTime(status),s1) +
", Sunset: " + df_dt->format(sunset,s2) +
" (USNO " + df_t->format(expset,s3) +
" d=" + deltaset + "s)");
} else {
logln(df_d->format(cal.getTime(status),s1) +
", Sunset: " + df_dt->format(sunset,s2) +
" (USNO " + df_t->format(expset,s3) + ")");
}
} else {
logln(df_d->format(cal.getTime(status),s1) +
", Sunrise: " + df_dt->format(sunrise,s2) +
" (USNO " + df_t->format(exprise,s3) + ")" +
", Sunset: " + df_dt->format(sunset,s4) +
" (USNO " + df_t->format(expset,s5) + ")");
}
cal.add(UCAL_DATE, 1, status);
}
// CalendarAstronomer a = new CalendarAstronomer(-(71+5/60), 42+37/60);
// cal.clear();
// cal.set(cal.YEAR, 1986);
// cal.set(cal.MONTH, cal.MARCH);
// cal.set(cal.DATE, 10);
// cal.set(cal.YEAR, 1988);
// cal.set(cal.MONTH, cal.JULY);
// cal.set(cal.DATE, 27);
// a.setDate(cal.getTime());
// long r = a.getSunRiseSet2(true);
closeAstro(status);
ASSERT_OK(status);
}
void AstroTest::TestBasics() {
UErrorCode status = U_ZERO_ERROR;
initAstro(status);
init(status);
if (U_FAILURE(status)) {
dataerrln("Got error: %s", u_errorName(status));
return;
@ -383,7 +191,7 @@ void AstroTest::TestBasics() {
LocalPointer<DateFormat> d3(DateFormat::createDateTimeInstance(DateFormat::MEDIUM,DateFormat::MEDIUM,Locale::getUS()));
if (d3.isNull()) {
dataerrln("Got error: %s", u_errorName(status));
closeAstro(status);
close(status);
return;
}
d3->setTimeZone(*TimeZone::getGMT());
@ -407,8 +215,8 @@ void AstroTest::TestBasics() {
UnicodeString s;
logln(UnicodeString("cal3 = ") + d3->format(cal3.getTime(status),s));
}
astro->setTime(cal3.getTime(status));
double jd = astro->getJulianDay() - 2447891.5;
CalendarAstronomer astro(cal3.getTime(status));
double jd = astro.getJulianDay() - 2447891.5;
double exp = -3444.;
if (jd == exp) {
UnicodeString s;
@ -428,14 +236,14 @@ void AstroTest::TestBasics() {
// astro.foo();
ASSERT_OK(status);
closeAstro(status);
close(status);
ASSERT_OK(status);
}
void AstroTest::TestMoonAge(){
UErrorCode status = U_ZERO_ERROR;
initAstro(status);
init(status);
ASSERT_OK(status);
// more testcases are around the date 05/20/2012
@ -461,9 +269,9 @@ void AstroTest::TestMoonAge(){
(int32_t)testcase[i][2]+" Hour "+(int32_t)testcase[i][3]+" Minutes "+(int32_t)testcase[i][4]+
" Seconds "+(int32_t)testcase[i][5]);
gc->set((int32_t)testcase[i][0], (int32_t)testcase[i][1]-1, (int32_t)testcase[i][2], (int32_t)testcase[i][3], (int32_t)testcase[i][4], (int32_t)testcase[i][5]);
astro->setDate(gc->getTime(status));
CalendarAstronomer astro(gc->getTime(status));
double expectedAge = (angle[i]*CalendarAstronomer::PI)/180;
double got = astro->getMoonAge();
double got = astro.getMoonAge();
//logln(testString);
if(!(got>expectedAge-precision && got<expectedAge+precision)){
errln((UnicodeString)"FAIL: expected " + expectedAge +
@ -473,7 +281,7 @@ void AstroTest::TestMoonAge(){
" got " + got);
}
}
closeAstro(status);
close(status);
ASSERT_OK(status);
}

View file

@ -34,16 +34,13 @@ public:
void TestCoverage();
void TestSunriseTimes();
void TestBasics();
void TestMoonAge();
private:
void initAstro(UErrorCode&);
void closeAstro(UErrorCode&);
void init(UErrorCode&);
void close(UErrorCode&);
CalendarAstronomer *astro;
Calendar *gc;
};

View file

@ -203,15 +203,6 @@ public class CalendarAstronomer {
this(System.currentTimeMillis());
}
/**
* Construct a new <code>CalendarAstronomer</code> object that is initialized to
* the specified date and time.
* @internal
*/
public CalendarAstronomer(Date d) {
this(d.getTime());
}
/**
* Construct a new <code>CalendarAstronomer</code> object that is initialized to
* the specified time. The time is expressed as a number of milliseconds since
@ -224,32 +215,9 @@ public class CalendarAstronomer {
time = aTime;
}
/**
* Construct a new <code>CalendarAstronomer</code> object with the given
* latitude and longitude. The object's time is set to the current
* date and time.
* <p>
* @param longitude The desired longitude, in <em>degrees</em> east of
* the Greenwich meridian.
*
* @param latitude The desired latitude, in <em>degrees</em>. Positive
* values signify North, negative South.
*
* @see java.util.Date#getTime()
* @internal
*/
public CalendarAstronomer(double longitude, double latitude) {
this();
fLongitude = normPI(longitude * DEG_RAD);
fLatitude = normPI(latitude * DEG_RAD);
fGmtOffset = (long)(fLongitude * 24 * HOUR_MS / PI2);
}
//-------------------------------------------------------------------------
// Time and date getters and setters
//-------------------------------------------------------------------------
/**
* Set the current date and time of this <code>CalendarAstronomer</code> object. All
* astronomical calculations are performed based on this time setting.
@ -266,19 +234,6 @@ public class CalendarAstronomer {
clearCache();
}
/**
* Set the current date and time of this <code>CalendarAstronomer</code> object. All
* astronomical calculations are performed based on this time setting.
*
* @param date the time and date, expressed as a <code>Date</code> object.
*
* @see #setTime
* @see #getDate
* @internal
*/
public void setDate(Date date) {
setTime(date.getTime());
}
/**
* Set the current date and time of this <code>CalendarAstronomer</code> object. All
@ -341,93 +296,10 @@ public class CalendarAstronomer {
return julianDay;
}
/**
* Return this object's time expressed in julian centuries:
* the number of centuries after 1/1/1900 AD, 12:00 GMT
*
* @see #getJulianDay
* @internal
*/
public double getJulianCentury() {
if (julianCentury == INVALID) {
julianCentury = (getJulianDay() - 2415020.0) / 36525;
}
return julianCentury;
}
/**
* Returns the current Greenwich sidereal time, measured in hours
* @internal
*/
public double getGreenwichSidereal() {
if (siderealTime == INVALID) {
// See page 86 of "Practical Astronomy with your Calculator",
// by Peter Duffet-Smith, for details on the algorithm.
double UT = normalize((double)time/HOUR_MS, 24);
siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24);
}
return siderealTime;
}
private double getSiderealOffset() {
if (siderealT0 == INVALID) {
double JD = Math.floor(getJulianDay() - 0.5) + 0.5;
double S = JD - 2451545.0;
double T = S / 36525.0;
siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24);
}
return siderealT0;
}
/**
* Returns the current local sidereal time, measured in hours
* @internal
*/
public double getLocalSidereal() {
return normalize(getGreenwichSidereal() + (double)fGmtOffset/HOUR_MS, 24);
}
/**
* Converts local sidereal time to Universal Time.
*
* @param lst The Local Sidereal Time, in hours since sidereal midnight
* on this object's current date.
*
* @return The corresponding Universal Time, in milliseconds since
* 1 Jan 1970, GMT.
*/
private long lstToUT(double lst) {
// Convert to local mean time
double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24);
// Then find local midnight on this day
long base = DAY_MS * ((time + fGmtOffset)/DAY_MS) - fGmtOffset;
//out(" lt =" + lt + " hours");
//out(" base=" + new Date(base));
return base + (long)(lt * HOUR_MS);
}
//-------------------------------------------------------------------------
// Coordinate transformations, all based on the current time of this object
//-------------------------------------------------------------------------
/**
* Convert from ecliptic to equatorial coordinates.
*
* @param ecliptic A point in the sky in ecliptic coordinates.
* @return The corresponding point in equatorial coordinates.
* @internal
*/
public final Equatorial eclipticToEquatorial(Ecliptic ecliptic)
{
return eclipticToEquatorial(ecliptic.longitude, ecliptic.latitude);
}
/**
* Convert from ecliptic to equatorial coordinates.
*
@ -457,42 +329,6 @@ public class CalendarAstronomer {
Math.asin(sinB*cosE + cosB*sinE*sinL) );
}
/**
* Convert from ecliptic longitude to equatorial coordinates.
*
* @param eclipLong The ecliptic longitude
*
* @return The corresponding point in equatorial coordinates.
* @internal
*/
public final Equatorial eclipticToEquatorial(double eclipLong)
{
return eclipticToEquatorial(eclipLong, 0); // TODO: optimize
}
/**
* @internal
*/
public Horizon eclipticToHorizon(double eclipLong)
{
Equatorial equatorial = eclipticToEquatorial(eclipLong);
double H = getLocalSidereal()*PI/12 - equatorial.ascension; // Hour-angle
double sinH = Math.sin(H);
double cosH = Math.cos(H);
double sinD = Math.sin(equatorial.declination);
double cosD = Math.cos(equatorial.declination);
double sinL = Math.sin(fLatitude);
double cosL = Math.cos(fLatitude);
double altitude = Math.asin(sinD*sinL + cosD*cosL*cosH);
double azimuth = Math.atan2(-cosD*cosL*sinH, sinD - sinL * Math.sin(altitude));
return new Horizon(azimuth, altitude);
}
//-------------------------------------------------------------------------
// The Sun
//-------------------------------------------------------------------------
@ -606,44 +442,11 @@ public class CalendarAstronomer {
};
}
/**
* The position of the sun at this object's current date and time,
* in equatorial coordinates.
* @internal
*/
public Equatorial getSunPosition() {
return eclipticToEquatorial(getSunLongitude(), 0);
}
private static class SolarLongitude {
double value;
SolarLongitude(double val) { value = val; }
}
/**
* Constant representing the vernal equinox.
* For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}.
* Note: In this case, "vernal" refers to the northern hemisphere's seasons.
* @internal
*/
public static final SolarLongitude VERNAL_EQUINOX = new SolarLongitude(0);
/**
* Constant representing the summer solstice.
* For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}.
* Note: In this case, "summer" refers to the northern hemisphere's seasons.
* @internal
*/
public static final SolarLongitude SUMMER_SOLSTICE = new SolarLongitude(PI/2);
/**
* Constant representing the autumnal equinox.
* For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}.
* Note: In this case, "autumn" refers to the northern hemisphere's seasons.
* @internal
*/
public static final SolarLongitude AUTUMN_EQUINOX = new SolarLongitude(PI);
/**
* Constant representing the winter solstice.
* For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}.
@ -676,312 +479,6 @@ public class CalendarAstronomer {
return getSunTime(desired.value, next);
}
/**
* Returns the time (GMT) of sunrise or sunset on the local date to which
* this calendar is currently set.
*
* NOTE: This method only works well if this object is set to a
* time near local noon. Because of variations between the local
* official time zone and the geographic longitude, the
* computation can flop over into an adjacent day if this object
* is set to a time near local midnight.
*
* @internal
*/
public long getSunRiseSet(boolean rise) {
long t0 = time;
// Make a rough guess: 6am or 6pm local time on the current day
long noon = ((time + fGmtOffset)/DAY_MS)*DAY_MS - fGmtOffset + 12*HOUR_MS;
setTime(noon + (rise ? -6L : 6L) * HOUR_MS);
long t = riseOrSet(new CoordFunc() {
@Override
public Equatorial eval() { return getSunPosition(); }
},
rise,
.533 * DEG_RAD, // Angular Diameter
34 /60.0 * DEG_RAD, // Refraction correction
MINUTE_MS / 12); // Desired accuracy
setTime(t0);
return t;
}
// Commented out - currently unused. ICU 2.6, Alan
// //-------------------------------------------------------------------------
// // Alternate Sun Rise/Set
// // See Duffett-Smith p.93
// //-------------------------------------------------------------------------
//
// // This yields worse results (as compared to USNO data) than getSunRiseSet().
// /**
// * TODO Make this public when the entire class is package-private.
// */
// /*public*/ long getSunRiseSet2(boolean rise) {
// // 1. Calculate coordinates of the sun's center for midnight
// double jd = Math.floor(getJulianDay() - 0.5) + 0.5;
// double[] sl = getSunLongitude(jd);
// double lambda1 = sl[0];
// Equatorial pos1 = eclipticToEquatorial(lambda1, 0);
//
// // 2. Add ... to lambda to get position 24 hours later
// double lambda2 = lambda1 + 0.985647*DEG_RAD;
// Equatorial pos2 = eclipticToEquatorial(lambda2, 0);
//
// // 3. Calculate LSTs of rising and setting for these two positions
// double tanL = Math.tan(fLatitude);
// double H = Math.acos(-tanL * Math.tan(pos1.declination));
// double lst1r = (PI2 + pos1.ascension - H) * 24 / PI2;
// double lst1s = (pos1.ascension + H) * 24 / PI2;
// H = Math.acos(-tanL * Math.tan(pos2.declination));
// double lst2r = (PI2-H + pos2.ascension ) * 24 / PI2;
// double lst2s = (H + pos2.ascension ) * 24 / PI2;
// if (lst1r > 24) lst1r -= 24;
// if (lst1s > 24) lst1s -= 24;
// if (lst2r > 24) lst2r -= 24;
// if (lst2s > 24) lst2s -= 24;
//
// // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2.
// double gst1r = lstToGst(lst1r);
// double gst1s = lstToGst(lst1s);
// double gst2r = lstToGst(lst2r);
// double gst2s = lstToGst(lst2s);
// if (gst1r > gst2r) gst2r += 24;
// if (gst1s > gst2s) gst2s += 24;
//
// // 5. Calculate GST at 0h UT of this date
// double t00 = utToGst(0);
//
// // 6. Calculate GST at 0h on the observer's longitude
// double offset = Math.round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.
// double t00p = t00 - offset*1.002737909;
// if (t00p < 0) t00p += 24; // do NOT normalize
//
// // 7. Adjust
// if (gst1r < t00p) {
// gst1r += 24;
// gst2r += 24;
// }
// if (gst1s < t00p) {
// gst1s += 24;
// gst2s += 24;
// }
//
// // 8.
// double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r);
// double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s);
//
// // 9. Correct for parallax, refraction, and sun's diameter
// double dec = (pos1.declination + pos2.declination) / 2;
// double psi = Math.acos(Math.sin(fLatitude) / Math.cos(dec));
// double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter
// double y = Math.asin(Math.sin(x) / Math.sin(psi)) * RAD_DEG;
// double delta_t = 240 * y / Math.cos(dec) / 3600; // hours
//
// // 10. Add correction to GSTs, subtract from GSTr
// gstr -= delta_t;
// gsts += delta_t;
//
// // 11. Convert GST to UT and then to local civil time
// double ut = gstToUt(rise ? gstr : gsts);
// //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t);
// long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day
// return midnight + (long) (ut * 3600000);
// }
// Commented out - currently unused. ICU 2.6, Alan
// /**
// * Convert local sidereal time to Greenwich sidereal time.
// * Section 15. Duffett-Smith p.21
// * @param lst in hours (0..24)
// * @return GST in hours (0..24)
// */
// double lstToGst(double lst) {
// double delta = fLongitude * 24 / PI2;
// return normalize(lst - delta, 24);
// }
// Commented out - currently unused. ICU 2.6, Alan
// /**
// * Convert UT to GST on this date.
// * Section 12. Duffett-Smith p.17
// * @param ut in hours
// * @return GST in hours
// */
// double utToGst(double ut) {
// return normalize(getT0() + ut*1.002737909, 24);
// }
// Commented out - currently unused. ICU 2.6, Alan
// /**
// * Convert GST to UT on this date.
// * Section 13. Duffett-Smith p.18
// * @param gst in hours
// * @return UT in hours
// */
// double gstToUt(double gst) {
// return normalize(gst - getT0(), 24) * 0.9972695663;
// }
// Commented out - currently unused. ICU 2.6, Alan
// double getT0() {
// // Common computation for UT <=> GST
//
// // Find JD for 0h UT
// double jd = Math.floor(getJulianDay() - 0.5) + 0.5;
//
// double s = jd - 2451545.0;
// double t = s / 36525.0;
// double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t;
// return t0;
// }
// Commented out - currently unused. ICU 2.6, Alan
// //-------------------------------------------------------------------------
// // Alternate Sun Rise/Set
// // See sci.astro FAQ
// // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html
// //-------------------------------------------------------------------------
//
// // Note: This method appears to produce inferior accuracy as
// // compared to getSunRiseSet().
//
// /**
// * TODO Make this public when the entire class is package-private.
// */
// /*public*/ long getSunRiseSet3(boolean rise) {
//
// // Compute day number for 0.0 Jan 2000 epoch
// double d = (double)(time - EPOCH_2000_MS) / DAY_MS;
//
// // Now compute the Local Sidereal Time, LST:
// //
// double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/
// fLongitude*RAD_DEG;
// //
// // (east long. positive). Note that LST is here expressed in degrees,
// // where 15 degrees corresponds to one hour. Since LST really is an angle,
// // it's convenient to use one unit---degrees---throughout.
//
// // COMPUTING THE SUN'S POSITION
// // ----------------------------
// //
// // To be able to compute the Sun's rise/set times, you need to be able to
// // compute the Sun's position at any time. First compute the "day
// // number" d as outlined above, for the desired moment. Next compute:
// //
// double oblecl = 23.4393 - 3.563E-7 * d;
// //
// double w = 282.9404 + 4.70935E-5 * d;
// double M = 356.0470 + 0.9856002585 * d;
// double e = 0.016709 - 1.151E-9 * d;
// //
// // This is the obliquity of the ecliptic, plus some of the elements of
// // the Sun's apparent orbit (i.e., really the Earth's orbit): w =
// // argument of perihelion, M = mean anomaly, e = eccentricity.
// // Semi-major axis is here assumed to be exactly 1.0 (while not strictly
// // true, this is still an accurate approximation). Next compute E, the
// // eccentric anomaly:
// //
// double E = M + e*(180/PI) * Math.sin(M*DEG_RAD) * ( 1.0 + e*Math.cos(M*DEG_RAD) );
// //
// // where E and M are in degrees. This is it---no further iterations are
// // needed because we know e has a sufficiently small value. Next compute
// // the true anomaly, v, and the distance, r:
// //
// /* r * cos(v) = */ double A = Math.cos(E*DEG_RAD) - e;
// /* r * sin(v) = */ double B = Math.sqrt(1 - e*e) * Math.sin(E*DEG_RAD);
// //
// // and
// //
// // r = sqrt( A*A + B*B )
// double v = Math.atan2( B, A )*RAD_DEG;
// //
// // The Sun's true longitude, slon, can now be computed:
// //
// double slon = v + w;
// //
// // Since the Sun is always at the ecliptic (or at least very very close to
// // it), we can use simplified formulae to convert slon (the Sun's ecliptic
// // longitude) to sRA and sDec (the Sun's RA and Dec):
// //
// // sin(slon) * cos(oblecl)
// // tan(sRA) = -------------------------
// // cos(slon)
// //
// // sin(sDec) = sin(oblecl) * sin(slon)
// //
// // As was the case when computing az, the Azimuth, if possible use an
// // atan2() function to compute sRA.
//
// double sRA = Math.atan2(Math.sin(slon*DEG_RAD) * Math.cos(oblecl*DEG_RAD), Math.cos(slon*DEG_RAD))*RAD_DEG;
//
// double sin_sDec = Math.sin(oblecl*DEG_RAD) * Math.sin(slon*DEG_RAD);
// double sDec = Math.asin(sin_sDec)*RAD_DEG;
//
// // COMPUTING RISE AND SET TIMES
// // ----------------------------
// //
// // To compute when an object rises or sets, you must compute when it
// // passes the meridian and the HA of rise/set. Then the rise time is
// // the meridian time minus HA for rise/set, and the set time is the
// // meridian time plus the HA for rise/set.
// //
// // To find the meridian time, compute the Local Sidereal Time at 0h local
// // time (or 0h UT if you prefer to work in UT) as outlined above---name
// // that quantity LST0. The Meridian Time, MT, will now be:
// //
// // MT = RA - LST0
// double MT = normalize(sRA - LST, 360);
// //
// // where "RA" is the object's Right Ascension (in degrees!). If negative,
// // add 360 deg to MT. If the object is the Sun, leave the time as it is,
// // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from
// // sidereal to solar time. Now, compute HA for rise/set, name that
// // quantity HA0:
// //
// // sin(h0) - sin(lat) * sin(Dec)
// // cos(HA0) = ---------------------------------
// // cos(lat) * cos(Dec)
// //
// // where h0 is the altitude selected to represent rise/set. For a purely
// // mathematical horizon, set h0 = 0 and simplify to:
// //
// // cos(HA0) = - tan(lat) * tan(Dec)
// //
// // If you want to account for refraction on the atmosphere, set h0 = -35/60
// // degrees (-35 arc minutes), and if you want to compute the rise/set times
// // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes).
// //
// double h0 = -50/60 * DEG_RAD;
//
// double HA0 = Math.acos(
// (Math.sin(h0) - Math.sin(fLatitude) * sin_sDec) /
// (Math.cos(fLatitude) * Math.cos(sDec*DEG_RAD)))*RAD_DEG;
//
// // When HA0 has been computed, leave it as it is for the Sun but multiply
// // by 365.2422/366.2422 for stellar objects, to convert from sidereal to
// // solar time. Finally compute:
// //
// // Rise time = MT - HA0
// // Set time = MT + HA0
// //
// // convert the times from degrees to hours by dividing by 15.
// //
// // If you'd like to check that your calculations are accurate or just
// // need a quick result, check the USNO's Sun or Moon Rise/Set Table,
// // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>.
//
// double result = MT + (rise ? -HA0 : HA0); // in degrees
//
// // Find UT midnight on this day
// long midnight = DAY_MS * (time / DAY_MS);
//
// return midnight + (long) (result * 3600000 / 15);
// }
//-------------------------------------------------------------------------
// The Moon
//-------------------------------------------------------------------------
@ -1048,7 +545,7 @@ public class CalendarAstronomer {
double a4 = 0.2140*PI/180 * Math.sin(2 * meanAnomalyMoon);
// Now find the moon's corrected longitude
moonLongitude = meanLongitude + evection + center - annual + a4;
double moonLongitude = meanLongitude + evection + center - annual + a4;
//
// And finally, find the variation, caused by the fact that the sun's
@ -1102,26 +599,6 @@ public class CalendarAstronomer {
return norm2PI(moonEclipLong - sunLongitude);
}
/**
* Calculate the phase of the moon at the time set in this object.
* The returned phase is a <code>double</code> in the range
* <code>0 <= phase < 1</code>, interpreted as follows:
* <ul>
* <li>0.00: New moon
* <li>0.25: First quarter
* <li>0.50: Full moon
* <li>0.75: Last quarter
* </ul>
*
* @see #getMoonAge
* @internal
*/
public double getMoonPhase() {
// See page 147 of "Practical Astronomy with your Calculator",
// by Peter Duffet-Smith, for details on the algorithm.
return 0.5 * (1 - Math.cos(getMoonAge()));
}
private static class MoonAge {
double value;
MoonAge(double val) { value = val; }
@ -1134,27 +611,6 @@ public class CalendarAstronomer {
*/
public static final MoonAge NEW_MOON = new MoonAge(0);
/**
* Constant representing the moon's first quarter.
* For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime}
* @internal
*/
public static final MoonAge FIRST_QUARTER = new MoonAge(PI/2);
/**
* Constant representing a full moon.
* For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime}
* @internal
*/
public static final MoonAge FULL_MOON = new MoonAge(PI);
/**
* Constant representing the moon's last quarter.
* For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime}
* @internal
*/
public static final MoonAge LAST_QUARTER = new MoonAge((PI*3)/2);
/**
* Find the next or previous time at which the Moon's ecliptic
* longitude will have the desired value.
@ -1188,23 +644,6 @@ public class CalendarAstronomer {
return getMoonTime(desired.value, next);
}
/**
* Returns the time (GMT) of sunrise or sunset on the local date to which
* this calendar is currently set.
* @internal
*/
public long getMoonRiseSet(boolean rise)
{
return riseOrSet(new CoordFunc() {
@Override
public Equatorial eval() { return getMoonPosition(); }
},
rise,
.533 * DEG_RAD, // Angular Diameter
34 /60.0 * DEG_RAD, // Refraction correction
MINUTE_MS); // Desired accuracy
}
//-------------------------------------------------------------------------
// Interpolation methods for finding the time at which a given event occurs
//-------------------------------------------------------------------------
@ -1281,48 +720,6 @@ public class CalendarAstronomer {
return time;
}
private interface CoordFunc {
public Equatorial eval();
}
private long riseOrSet(CoordFunc func, boolean rise,
double diameter, double refraction,
long epsilon)
{
Equatorial pos = null;
double tanL = Math.tan(fLatitude);
long deltaT = Long.MAX_VALUE;
int count = 0;
//
// Calculate the object's position at the current time, then use that
// position to calculate the time of rising or setting. The position
// will be different at that time, so iterate until the error is allowable.
//
do {
// See "Practical Astronomy With Your Calculator, section 33.
pos = func.eval();
double angle = Math.acos(-tanL * Math.tan(pos.declination));
double lst = ((rise ? PI2-angle : angle) + pos.ascension ) * 24 / PI2;
// Convert from LST to Universal Time.
long newTime = lstToUT( lst );
deltaT = newTime - time;
setTime(newTime);
}
while (++ count < 5 && Math.abs(deltaT) > epsilon);
// Calculate the correction due to refraction and the object's angular diameter
double cosD = Math.cos(pos.declination);
double psi = Math.acos(Math.sin(fLatitude) / cosD);
double x = diameter / 2 + refraction;
double y = Math.asin(Math.sin(x) / Math.sin(psi));
long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS);
return time + (rise ? -delta : delta);
}
//-------------------------------------------------------------------------
// Other utility methods
//-------------------------------------------------------------------------
@ -1389,19 +786,16 @@ public class CalendarAstronomer {
* measured in radians.
*/
private double eclipticObliquity() {
if (eclipObliquity == INVALID) {
final double epoch = 2451545.0; // 2000 AD, January 1.5
final double epoch = 2451545.0; // 2000 AD, January 1.5
double T = (getJulianDay() - epoch) / 36525;
double T = (getJulianDay() - epoch) / 36525;
eclipObliquity = 23.439292
double eclipObliquity = 23.439292
- 46.815/3600 * T
- 0.0006/3600 * T*T
+ 0.00181/3600 * T*T*T;
eclipObliquity *= DEG_RAD;
}
return eclipObliquity;
return eclipObliquity * DEG_RAD;
}
@ -1415,13 +809,6 @@ public class CalendarAstronomer {
*/
private long time;
/* These aren't used yet, but they'll be needed for sunset calculations
* and equatorial to horizon coordinate conversions
*/
private double fLongitude = 0.0;
private double fLatitude = 0.0;
private long fGmtOffset = 0;
//
// The following fields are used to cache calculated results for improved
// performance. These values all depend on the current time setting
@ -1430,52 +817,20 @@ public class CalendarAstronomer {
static final private double INVALID = Double.MIN_VALUE;
private transient double julianDay = INVALID;
private transient double julianCentury = INVALID;
private transient double sunLongitude = INVALID;
private transient double meanAnomalySun = INVALID;
private transient double moonLongitude = INVALID;
private transient double moonEclipLong = INVALID;
//private transient double meanAnomalyMoon = INVALID;
private transient double eclipObliquity = INVALID;
private transient double siderealT0 = INVALID;
private transient double siderealTime = INVALID;
private transient Equatorial moonPosition = null;
private void clearCache() {
julianDay = INVALID;
julianCentury = INVALID;
sunLongitude = INVALID;
meanAnomalySun = INVALID;
moonLongitude = INVALID;
moonEclipLong = INVALID;
//meanAnomalyMoon = INVALID;
eclipObliquity = INVALID;
siderealTime = INVALID;
siderealT0 = INVALID;
moonPosition = null;
}
//private static void out(String s) {
// System.out.println(s);
//}
//private static String deg(double rad) {
// return Double.toString(rad * RAD_DEG);
//}
//private static String hours(long ms) {
// return Double.toString((double)ms / HOUR_MS) + " hours";
//}
/**
* @internal
*/
public String local(long localMillis) {
return new Date(localMillis - TimeZone.getDefault().getRawOffset()).toString();
}
/**
* Represents the position of an object in the sky relative to the ecliptic,
* the plane of the earth's orbit around the Sun.
@ -1490,7 +845,6 @@ public class CalendarAstronomer {
* value without worrying about whether other code will modify them.
*
* @see CalendarAstronomer.Equatorial
* @see CalendarAstronomer.Horizon
* @internal
*/
public static final class Ecliptic {
@ -1550,7 +904,6 @@ public class CalendarAstronomer {
* value without worrying about whether other code will modify them.
*
* @see CalendarAstronomer.Ecliptic
* @see CalendarAstronomer.Horizon
* @internal
*/
public static final class Equatorial {
@ -1603,59 +956,6 @@ public class CalendarAstronomer {
public final double declination;
}
/**
* Represents the position of an object in the sky relative to
* the local horizon.
* The <i>Altitude</i> represents the object's elevation above the horizon,
* with objects below the horizon having a negative altitude.
* The <i>Azimuth</i> is the geographic direction of the object from the
* observer's position, with 0 representing north. The azimuth increases
* clockwise from north.
* <p>
* Note that Horizon objects are immutable and cannot be modified
* once they are constructed. This allows them to be passed and returned by
* value without worrying about whether other code will modify them.
*
* @see CalendarAstronomer.Ecliptic
* @see CalendarAstronomer.Equatorial
* @internal
*/
public static final class Horizon {
/**
* Constructs a Horizon coordinate object.
* <p>
* @param alt The altitude, measured in radians above the horizon.
* @param azim The azimuth, measured in radians clockwise from north.
* @internal
*/
public Horizon(double alt, double azim) {
altitude = alt;
azimuth = azim;
}
/**
* Return a string representation of this object, with the
* angles measured in degrees.
* @internal
*/
@Override
public String toString() {
return Double.toString(altitude*RAD_DEG) + "," + (azimuth*RAD_DEG);
}
/**
* The object's altitude above the horizon, in radians.
* @internal
*/
public final double altitude;
/**
* The object's direction, in radians clockwise from north.
* @internal
*/
public final double azimuth;
}
static private String radToHms(double angle) {
int hrs = (int) (angle*RAD_HOUR);
int min = (int)((angle*RAD_HOUR - hrs) * 60);

View file

@ -110,12 +110,6 @@ public class ChineseCalendar extends Calendar {
*/
private TimeZone zoneAstro;
/**
* We have one instance per object, and we don't synchronize it because
* Calendar doesn't support multithreaded execution in the first place.
*/
private transient CalendarAstronomer astro = new CalendarAstronomer();
/**
* Cache that maps Gregorian year to local days of winter solstice.
* @see #winterSolstice
@ -709,10 +703,9 @@ public class ChineseCalendar extends Calendar {
// PST 1298 with a final result of Dec 14 10:31:59 PST 1299.
long ms = daysToMillis(computeGregorianMonthStart(gyear, DECEMBER) +
1 - EPOCH_JULIAN_DAY);
astro.setTime(ms);
// Winter solstice is 270 degrees solar longitude aka Dongzhi
long solarLong = astro.getSunTime(CalendarAstronomer.WINTER_SOLSTICE,
long solarLong = (new CalendarAstronomer(ms)).getSunTime(CalendarAstronomer.WINTER_SOLSTICE,
true);
cacheValue = millisToDays(solarLong);
winterSolsticeCache.put(gyear, cacheValue);
@ -730,9 +723,7 @@ public class ChineseCalendar extends Calendar {
* new moon after or before <code>days</code>
*/
private int newMoonNear(int days, boolean after) {
astro.setTime(daysToMillis(days));
long newMoon = astro.getMoonTime(CalendarAstronomer.NEW_MOON, after);
long newMoon = (new CalendarAstronomer(daysToMillis(days))).getMoonTime(CalendarAstronomer.NEW_MOON, after);
return millisToDays(newMoon);
}
@ -755,11 +746,8 @@ public class ChineseCalendar extends Calendar {
* @param days days after January 1, 1970 0:00 Asia/Shanghai
*/
private int majorSolarTerm(int days) {
astro.setTime(daysToMillis(days));
// Compute (floor(solarLongitude / (pi/6)) + 2) % 12
int term = ((int) Math.floor(6 * astro.getSunLongitude() / Math.PI) + 2) % 12;
int term = ((int) Math.floor(6 * (new CalendarAstronomer(daysToMillis(days))).getSunLongitude() / Math.PI) + 2) % 12;
if (term < 1) {
term += 12;
}
@ -1055,7 +1043,6 @@ public class ChineseCalendar extends Calendar {
stream.defaultReadObject();
/* set up the transient caches... */
astro = new CalendarAstronomer();
winterSolsticeCache = new CalendarCache();
newYearCache = new CalendarCache();
}

View file

@ -938,12 +938,7 @@ public class IslamicCalendar extends Calendar {
*/
static final double moonAge(long time)
{
double age = 0;
synchronized(astro) {
astro.setTime(time);
age = astro.getMoonAge();
}
double age = (new CalendarAstronomer(time)).getMoonAge();
// Convert to degrees and normalize...
age = age * 180 / Math.PI;
if (age > 180) {
@ -957,9 +952,6 @@ public class IslamicCalendar extends Calendar {
// Internal data....
//
// And an Astronomer object for the moon age calculations
private static CalendarAstronomer astro = new CalendarAstronomer();
private static CalendarCache cache = new CalendarCache();
/**

View file

@ -36,7 +36,6 @@ public class AstroTest extends CoreTestFmwk {
@Test
public void TestSolarLongitude() {
GregorianCalendar gc = new GregorianCalendar(new SimpleTimeZone(0, "UTC"));
CalendarAstronomer astro = new CalendarAstronomer();
// year, month, day, hour, minute, longitude (radians), ascension(radians), declination(radians)
final double tests[][] = {
{ 1980, 7, 27, 00, 00, 2.166442986535465, 2.2070499713207730, 0.3355704075759270 },
@ -47,7 +46,7 @@ public class AstroTest extends CoreTestFmwk {
gc.clear();
gc.set((int)tests[i][0], (int)tests[i][1]-1, (int)tests[i][2], (int)tests[i][3], (int) tests[i][4]);
astro.setDate(gc.getTime());
CalendarAstronomer astro = new CalendarAstronomer(gc.getTimeInMillis());
double longitude = astro.getSunLongitude();
if (longitude != tests[i][5]) {
@ -61,36 +60,12 @@ public class AstroTest extends CoreTestFmwk {
") for test " + i);
}
}
Equatorial result = astro.getSunPosition();
if (result.ascension != tests[i][6]) {
if ((float)result.ascension == (float)tests[i][6]) {
logln("result.ascension(" + result.ascension +
") != tests[i][6](" + tests[i][6] +
") in double for test " + i);
} else {
errln("FAIL: result.ascension(" + result.ascension +
") != tests[i][6](" + tests[i][6] +
") for test " + i);
}
}
if (result.declination != tests[i][7]) {
if ((float)result.declination == (float)tests[i][7]) {
logln("result.declination(" + result.declination +
") != tests[i][7](" + tests[i][7] +
") in double for test " + i);
} else {
errln("FAIL: result.declination(" + result.declination +
") != tests[i][7](" + tests[i][7] +
") for test " + i);
}
}
}
}
@Test
public void TestLunarPosition() {
GregorianCalendar gc = new GregorianCalendar(new SimpleTimeZone(0, "UTC"));
CalendarAstronomer astro = new CalendarAstronomer();
// year, month, day, hour, minute, ascension(radians), declination(radians)
final double tests[][] = {
{ 1979, 2, 26, 16, 00, -0.3778379118188744, -0.1399698825594198 },
@ -100,7 +75,7 @@ public class AstroTest extends CoreTestFmwk {
for (int i = 0; i < tests.length; i++) {
gc.clear();
gc.set((int)tests[i][0], (int)tests[i][1]-1, (int)tests[i][2], (int)tests[i][3], (int) tests[i][4]);
astro.setDate(gc.getTime());
CalendarAstronomer astro = new CalendarAstronomer(gc.getTimeInMillis());
Equatorial result = astro.getMoonPosition();
if (result.ascension != tests[i][5]) {
@ -138,24 +113,17 @@ public class AstroTest extends CoreTestFmwk {
@Test
public void TestCoverage() {
GregorianCalendar cal = new GregorianCalendar(1958, Calendar.AUGUST, 15);
Date then = cal.getTime();
CalendarAstronomer myastro = new CalendarAstronomer(then);
CalendarAstronomer myastro = new CalendarAstronomer(cal.getTimeInMillis());
//Latitude: 34 degrees 05' North
//Longitude: 118 degrees 22' West
double laLat = 34 + 5d/60, laLong = 360 - (118 + 22d/60);
CalendarAstronomer myastro2 = new CalendarAstronomer(laLong, laLat);
double eclLat = laLat * Math.PI / 360;
double eclLong = laLong * Math.PI / 360;
Ecliptic ecl = new Ecliptic(eclLat, eclLong);
logln("ecliptic: " + ecl);
CalendarAstronomer myastro3 = new CalendarAstronomer();
myastro3.setJulianDay((4713 + 2000) * 365.25);
CalendarAstronomer[] astronomers = {
myastro, myastro2, myastro3, myastro2 // check cache
myastro, myastro, myastro // check cache
};
@ -165,176 +133,21 @@ public class AstroTest extends CoreTestFmwk {
logln("astro: " + astro);
logln(" time: " + astro.getTime());
logln(" date: " + astro.getDate());
logln(" cent: " + astro.getJulianCentury());
logln(" gw sidereal: " + astro.getGreenwichSidereal());
logln(" loc sidereal: " + astro.getLocalSidereal());
logln(" equ ecl: " + astro.eclipticToEquatorial(ecl));
logln(" equ long: " + astro.eclipticToEquatorial(eclLong));
logln(" horiz: " + astro.eclipticToHorizon(eclLong));
logln(" sunrise: " + new Date(astro.getSunRiseSet(true)));
logln(" sunset: " + new Date(astro.getSunRiseSet(false)));
logln(" moon phase: " + astro.getMoonPhase());
logln(" moonrise: " + new Date(astro.getMoonRiseSet(true)));
logln(" moonset: " + new Date(astro.getMoonRiseSet(false)));
logln(" prev summer solstice: " + new Date(astro.getSunTime(CalendarAstronomer.SUMMER_SOLSTICE, false)));
logln(" next summer solstice: " + new Date(astro.getSunTime(CalendarAstronomer.SUMMER_SOLSTICE, true)));
logln(" prev full moon: " + new Date(astro.getMoonTime(CalendarAstronomer.FULL_MOON, false)));
logln(" next full moon: " + new Date(astro.getMoonTime(CalendarAstronomer.FULL_MOON, true)));
logln(" equ long: " + astro.eclipticToEquatorial(eclLat, eclLong));
}
}
static final long DAY_MS = 24*60*60*1000L;
@Test
public void TestSunriseTimes() {
// logln("Sunrise/Sunset times for San Jose, California, USA");
// CalendarAstronomer astro = new CalendarAstronomer(-121.55, 37.20);
// TimeZone tz = TimeZone.getTimeZone("America/Los_Angeles");
// We'll use a table generated by the UNSO website as our reference
// From: http://aa.usno.navy.mil/
//-Location: W079 25, N43 40
//-Rise and Set for the Sun for 2001
//-Zone: 4h West of Greenwich
int[] USNO = {
6,59, 19,45,
6,57, 19,46,
6,56, 19,47,
6,54, 19,48,
6,52, 19,49,
6,50, 19,51,
6,48, 19,52,
6,47, 19,53,
6,45, 19,54,
6,43, 19,55,
6,42, 19,57,
6,40, 19,58,
6,38, 19,59,
6,36, 20, 0,
6,35, 20, 1,
6,33, 20, 3,
6,31, 20, 4,
6,30, 20, 5,
6,28, 20, 6,
6,27, 20, 7,
6,25, 20, 8,
6,23, 20,10,
6,22, 20,11,
6,20, 20,12,
6,19, 20,13,
6,17, 20,14,
6,16, 20,16,
6,14, 20,17,
6,13, 20,18,
6,11, 20,19,
};
logln("Sunrise/Sunset times for Toronto, Canada");
CalendarAstronomer astro = new CalendarAstronomer(-(79+25/60), 43+40/60);
// As of ICU4J 2.8 the ICU4J time zones implement pass-through
// to the underlying JDK. Because of variation in the
// underlying JDKs, we have to use a fixed-offset
// SimpleTimeZone to get consistent behavior between JDKs.
// The offset we want is [-18000000, 3600000] (raw, dst).
// [aliu 10/15/03]
// TimeZone tz = TimeZone.getTimeZone("America/Montreal");
TimeZone tz = new SimpleTimeZone(-18000000 + 3600000, "Montreal(FIXED)");
GregorianCalendar cal = new GregorianCalendar(tz, Locale.US);
GregorianCalendar cal2 = new GregorianCalendar(tz, Locale.US);
cal.clear();
cal.set(Calendar.YEAR, 2001);
cal.set(Calendar.MONTH, Calendar.APRIL);
cal.set(Calendar.DAY_OF_MONTH, 1);
cal.set(Calendar.HOUR_OF_DAY, 12); // must be near local noon for getSunRiseSet to work
DateFormat df = DateFormat.getTimeInstance(cal, DateFormat.MEDIUM, Locale.US);
DateFormat df2 = DateFormat.getDateTimeInstance(cal, DateFormat.MEDIUM, DateFormat.MEDIUM, Locale.US);
DateFormat day = DateFormat.getDateInstance(cal, DateFormat.MEDIUM, Locale.US);
for (int i=0; i < 30; i++) {
astro.setDate(cal.getTime());
Date sunrise = new Date(astro.getSunRiseSet(true));
Date sunset = new Date(astro.getSunRiseSet(false));
cal2.setTime(cal.getTime());
cal2.set(Calendar.SECOND, 0);
cal2.set(Calendar.MILLISECOND, 0);
cal2.set(Calendar.HOUR_OF_DAY, USNO[4*i+0]);
cal2.set(Calendar.MINUTE, USNO[4*i+1]);
Date exprise = cal2.getTime();
cal2.set(Calendar.HOUR_OF_DAY, USNO[4*i+2]);
cal2.set(Calendar.MINUTE, USNO[4*i+3]);
Date expset = cal2.getTime();
// Compute delta of what we got to the USNO data, in seconds
int deltarise = Math.abs((int)(sunrise.getTime() - exprise.getTime()) / 1000);
int deltaset = Math.abs((int)(sunset.getTime() - expset.getTime()) / 1000);
// Allow a deviation of 0..MAX_DEV seconds
// It would be nice to get down to 60 seconds, but at this
// point that appears to be impossible without a redo of the
// algorithm using something more advanced than Duffett-Smith.
final int MAX_DEV = 180;
if (deltarise > MAX_DEV || deltaset > MAX_DEV) {
if (deltarise > MAX_DEV) {
errln("FAIL: " + day.format(cal.getTime()) +
", Sunrise: " + df2.format(sunrise) +
" (USNO " + df.format(exprise) +
" d=" + deltarise + "s)");
} else {
logln(day.format(cal.getTime()) +
", Sunrise: " + df.format(sunrise) +
" (USNO " + df.format(exprise) + ")");
}
if (deltaset > MAX_DEV) {
errln("FAIL: " + day.format(cal.getTime()) +
", Sunset: " + df2.format(sunset) +
" (USNO " + df.format(expset) +
" d=" + deltaset + "s)");
} else {
logln(day.format(cal.getTime()) +
", Sunset: " + df.format(sunset) +
" (USNO " + df.format(expset) + ")");
}
} else {
logln(day.format(cal.getTime()) +
", Sunrise: " + df.format(sunrise) +
" (USNO " + df.format(exprise) + ")" +
", Sunset: " + df.format(sunset) +
" (USNO " + df.format(expset) + ")");
}
cal.add(Calendar.DATE, 1);
}
// CalendarAstronomer a = new CalendarAstronomer(-(71+5/60), 42+37/60);
// cal.clear();
// cal.set(cal.YEAR, 1986);
// cal.set(cal.MONTH, cal.MARCH);
// cal.set(cal.DATE, 10);
// cal.set(cal.YEAR, 1988);
// cal.set(cal.MONTH, cal.JULY);
// cal.set(cal.DATE, 27);
// a.setDate(cal.getTime());
// long r = a.getSunRiseSet2(true);
}
@Test
public void TestBasics() {
// Check that our JD computation is the same as the book's (p. 88)
CalendarAstronomer astro = new CalendarAstronomer();
GregorianCalendar cal3 = new GregorianCalendar(TimeZone.getTimeZone("GMT"), Locale.US);
DateFormat d3 = DateFormat.getDateTimeInstance(cal3, DateFormat.MEDIUM,DateFormat.MEDIUM,Locale.US);
cal3.clear();
cal3.set(Calendar.YEAR, 1980);
cal3.set(Calendar.MONTH, Calendar.JULY);
cal3.set(Calendar.DATE, 27);
astro.setDate(cal3.getTime());
CalendarAstronomer astro = new CalendarAstronomer(cal3.getTimeInMillis());
double jd = astro.getJulianDay() - 2447891.5;
double exp = -3444;
if (jd == exp) {
@ -357,7 +170,6 @@ public class AstroTest extends CoreTestFmwk {
@Test
public void TestMoonAge(){
GregorianCalendar gc = new GregorianCalendar(new SimpleTimeZone(0,"GMT"));
CalendarAstronomer calastro = new CalendarAstronomer();
// more testcases are around the date 05/20/2012
//ticket#3785 UDate ud0 = 1337557623000.0;
double testcase[][] = {{2012, 5, 20 , 16 , 48, 59},
@ -380,7 +192,7 @@ public class AstroTest extends CoreTestFmwk {
(int)testcase[i][2]+" Hour "+(int)testcase[i][3]+" Minutes "+(int)testcase[i][4]+
" Seconds "+(int)testcase[i][5];
gc.set((int)testcase[i][0],(int)testcase[i][1]-1,(int)testcase[i][2],(int)testcase[i][3],(int)testcase[i][4], (int)testcase[i][5]);
calastro.setDate(gc.getTime());
CalendarAstronomer calastro = new CalendarAstronomer(gc.getTimeInMillis());
double expectedAge = (angle[i]*PI)/180;
double got = calastro.getMoonAge();
logln(testString);

View file

@ -975,7 +975,6 @@ public class IBMCalendarTest extends CalendarTestFmwk {
// CalendarAstronomer
// (This class should probably be made package-private.)
CalendarAstronomer astro = new CalendarAstronomer();
/*String s = */astro.local(0);
// ChineseCalendar
ChineseCalendar ccal = new ChineseCalendar(TimeZone.getDefault(),