mirror of
https://github.com/unicode-org/icu.git
synced 2025-04-05 05:25:34 +00:00
ICU-22698 Clean up CalendarAstronomer
This commit is contained in:
parent
cce162bf4d
commit
0b77215040
12 changed files with 110 additions and 2280 deletions
|
@ -242,7 +242,7 @@ inline static double normPI(double angle) {
|
|||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
CalendarAstronomer::CalendarAstronomer():
|
||||
fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(false) {
|
||||
fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(false) {
|
||||
clearCache();
|
||||
}
|
||||
|
||||
|
@ -252,30 +252,7 @@ CalendarAstronomer::CalendarAstronomer():
|
|||
* @internal
|
||||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(false) {
|
||||
clearCache();
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct a new <code>CalendarAstronomer</code> object with the given
|
||||
* latitude and longitude. The object's time is set to the current
|
||||
* date and time.
|
||||
* <p>
|
||||
* @param longitude The desired longitude, in <em>degrees</em> east of
|
||||
* the Greenwich meridian.
|
||||
*
|
||||
* @param latitude The desired latitude, in <em>degrees</em>. Positive
|
||||
* values signify North, negative South.
|
||||
*
|
||||
* @see java.util.Date#getTime()
|
||||
* @internal
|
||||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) :
|
||||
fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(false) {
|
||||
fLongitude = normPI(longitude * (double)DEG_RAD);
|
||||
fLatitude = normPI(latitude * (double)DEG_RAD);
|
||||
fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAstronomer_PI2);
|
||||
CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), moonPosition(0,0), moonPositionSet(false) {
|
||||
clearCache();
|
||||
}
|
||||
|
||||
|
@ -301,31 +278,9 @@ CalendarAstronomer::~CalendarAstronomer()
|
|||
*/
|
||||
void CalendarAstronomer::setTime(UDate aTime) {
|
||||
fTime = aTime;
|
||||
U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fGmtOffset)));
|
||||
clearCache();
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the current date and time of this <code>CalendarAstronomer</code> object. All
|
||||
* astronomical calculations are performed based on this time setting.
|
||||
*
|
||||
* @param jdn the desired time, expressed as a "julian day number",
|
||||
* which is the number of elapsed days since
|
||||
* 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day
|
||||
* numbers start at <em>noon</em>. To get the jdn for
|
||||
* the corresponding midnight, subtract 0.5.
|
||||
*
|
||||
* @see #getJulianDay
|
||||
* @see #JULIAN_EPOCH_MS
|
||||
* @internal
|
||||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
void CalendarAstronomer::setJulianDay(double jdn) {
|
||||
fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS;
|
||||
clearCache();
|
||||
julianDay = jdn;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the current time of this <code>CalendarAstronomer</code> object,
|
||||
* represented as the number of milliseconds since
|
||||
|
@ -357,97 +312,10 @@ double CalendarAstronomer::getJulianDay() {
|
|||
return julianDay;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return this object's time expressed in julian centuries:
|
||||
* the number of centuries after 1/1/1900 AD, 12:00 GMT
|
||||
*
|
||||
* @see #getJulianDay
|
||||
* @internal
|
||||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
double CalendarAstronomer::getJulianCentury() {
|
||||
if (isINVALID(julianCentury)) {
|
||||
julianCentury = (getJulianDay() - 2415020.0) / 36525.0;
|
||||
}
|
||||
return julianCentury;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the current Greenwich sidereal time, measured in hours
|
||||
* @internal
|
||||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
double CalendarAstronomer::getGreenwichSidereal() {
|
||||
if (isINVALID(siderealTime)) {
|
||||
// See page 86 of "Practical Astronomy with your Calculator",
|
||||
// by Peter Duffet-Smith, for details on the algorithm.
|
||||
|
||||
double UT = normalize(fTime/(double)HOUR_MS, 24.);
|
||||
|
||||
siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.);
|
||||
}
|
||||
return siderealTime;
|
||||
}
|
||||
|
||||
double CalendarAstronomer::getSiderealOffset() {
|
||||
if (isINVALID(siderealT0)) {
|
||||
double JD = uprv_floor(getJulianDay() - 0.5) + 0.5;
|
||||
double S = JD - 2451545.0;
|
||||
double T = S / 36525.0;
|
||||
siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24);
|
||||
}
|
||||
return siderealT0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the current local sidereal time, measured in hours
|
||||
* @internal
|
||||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
double CalendarAstronomer::getLocalSidereal() {
|
||||
return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.);
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts local sidereal time to Universal Time.
|
||||
*
|
||||
* @param lst The Local Sidereal Time, in hours since sidereal midnight
|
||||
* on this object's current date.
|
||||
*
|
||||
* @return The corresponding Universal Time, in milliseconds since
|
||||
* 1 Jan 1970, GMT.
|
||||
*/
|
||||
double CalendarAstronomer::lstToUT(double lst) {
|
||||
// Convert to local mean time
|
||||
double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24);
|
||||
|
||||
// Then find local midnight on this day
|
||||
double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DAY_MS)) - fGmtOffset;
|
||||
|
||||
//out(" lt =" + lt + " hours");
|
||||
//out(" base=" + new Date(base));
|
||||
|
||||
return base + (long)(lt * HOUR_MS);
|
||||
}
|
||||
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// Coordinate transformations, all based on the current time of this object
|
||||
//-------------------------------------------------------------------------
|
||||
|
||||
/**
|
||||
* Convert from ecliptic to equatorial coordinates.
|
||||
*
|
||||
* @param ecliptic A point in the sky in ecliptic coordinates.
|
||||
* @return The corresponding point in equatorial coordinates.
|
||||
* @internal
|
||||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic)
|
||||
{
|
||||
return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude);
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert from ecliptic to equatorial coordinates.
|
||||
*
|
||||
|
@ -479,46 +347,6 @@ CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(Calenda
|
|||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert from ecliptic longitude to equatorial coordinates.
|
||||
*
|
||||
* @param eclipLong The ecliptic longitude
|
||||
*
|
||||
* @return The corresponding point in equatorial coordinates.
|
||||
* @internal
|
||||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong)
|
||||
{
|
||||
return eclipticToEquatorial(result, eclipLong, 0); // TODO: optimize
|
||||
}
|
||||
|
||||
/**
|
||||
* @internal
|
||||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon& result, double eclipLong)
|
||||
{
|
||||
Equatorial equatorial;
|
||||
eclipticToEquatorial(equatorial, eclipLong);
|
||||
|
||||
double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascension; // Hour-angle
|
||||
|
||||
double sinH = ::sin(H);
|
||||
double cosH = cos(H);
|
||||
double sinD = ::sin(equatorial.declination);
|
||||
double cosD = cos(equatorial.declination);
|
||||
double sinL = ::sin(fLatitude);
|
||||
double cosL = cos(fLatitude);
|
||||
|
||||
double altitude = asin(sinD*sinL + cosD*cosL*cosH);
|
||||
double azimuth = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude));
|
||||
|
||||
result.set(azimuth, altitude);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// The Sun
|
||||
//-------------------------------------------------------------------------
|
||||
|
@ -657,50 +485,6 @@ double CalendarAstronomer::getSunLongitude()
|
|||
longitude = norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G);
|
||||
}
|
||||
|
||||
/**
|
||||
* The position of the sun at this object's current date and time,
|
||||
* in equatorial coordinates.
|
||||
* @internal
|
||||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial& result) {
|
||||
return eclipticToEquatorial(result, getSunLongitude(), 0);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Constant representing the vernal equinox.
|
||||
* For use with {@link #getSunTime getSunTime}.
|
||||
* Note: In this case, "vernal" refers to the northern hemisphere's seasons.
|
||||
* @internal
|
||||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
/*double CalendarAstronomer::VERNAL_EQUINOX() {
|
||||
return 0;
|
||||
}*/
|
||||
|
||||
/**
|
||||
* Constant representing the summer solstice.
|
||||
* For use with {@link #getSunTime getSunTime}.
|
||||
* Note: In this case, "summer" refers to the northern hemisphere's seasons.
|
||||
* @internal
|
||||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
double CalendarAstronomer::SUMMER_SOLSTICE() {
|
||||
return (CalendarAstronomer::PI/2);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constant representing the autumnal equinox.
|
||||
* For use with {@link #getSunTime getSunTime}.
|
||||
* Note: In this case, "autumn" refers to the northern hemisphere's seasons.
|
||||
* @internal
|
||||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
/*double CalendarAstronomer::AUTUMN_EQUINOX() {
|
||||
return (CalendarAstronomer::PI);
|
||||
}*/
|
||||
|
||||
/**
|
||||
* Constant representing the winter solstice.
|
||||
* For use with {@link #getSunTime getSunTime}.
|
||||
|
@ -738,310 +522,6 @@ UDate CalendarAstronomer::getSunTime(double desired, UBool next)
|
|||
next);
|
||||
}
|
||||
|
||||
CalendarAstronomer::CoordFunc::~CoordFunc() {}
|
||||
|
||||
class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
|
||||
public:
|
||||
virtual ~RiseSetCoordFunc();
|
||||
virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer& a) override { a.getSunPosition(result); }
|
||||
};
|
||||
|
||||
RiseSetCoordFunc::~RiseSetCoordFunc() {}
|
||||
|
||||
UDate CalendarAstronomer::getSunRiseSet(UBool rise)
|
||||
{
|
||||
UDate t0 = fTime;
|
||||
|
||||
// Make a rough guess: 6am or 6pm local time on the current day
|
||||
double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY_MS - fGmtOffset + (12*HOUR_MS);
|
||||
|
||||
U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date(noon+fGmtOffset), fGmtOffset));
|
||||
setTime(noon + ((rise ? -6 : 6) * HOUR_MS));
|
||||
U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR_MS)));
|
||||
|
||||
RiseSetCoordFunc func;
|
||||
double t = riseOrSet(func,
|
||||
rise,
|
||||
.533 * DEG_RAD, // Angular Diameter
|
||||
34. /60.0 * DEG_RAD, // Refraction correction
|
||||
MINUTE_MS / 12.); // Desired accuracy
|
||||
|
||||
setTime(t0);
|
||||
return t;
|
||||
}
|
||||
|
||||
// Commented out - currently unused. ICU 2.6, Alan
|
||||
// //-------------------------------------------------------------------------
|
||||
// // Alternate Sun Rise/Set
|
||||
// // See Duffett-Smith p.93
|
||||
// //-------------------------------------------------------------------------
|
||||
//
|
||||
// // This yields worse results (as compared to USNO data) than getSunRiseSet().
|
||||
// /**
|
||||
// * TODO Make this when the entire class is package-private.
|
||||
// */
|
||||
// /*public*/ long getSunRiseSet2(boolean rise) {
|
||||
// // 1. Calculate coordinates of the sun's center for midnight
|
||||
// double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
|
||||
// double[] sl = getSunLongitude(jd);// double lambda1 = sl[0];
|
||||
// Equatorial pos1 = eclipticToEquatorial(lambda1, 0);
|
||||
//
|
||||
// // 2. Add ... to lambda to get position 24 hours later
|
||||
// double lambda2 = lambda1 + 0.985647*DEG_RAD;
|
||||
// Equatorial pos2 = eclipticToEquatorial(lambda2, 0);
|
||||
//
|
||||
// // 3. Calculate LSTs of rising and setting for these two positions
|
||||
// double tanL = ::tan(fLatitude);
|
||||
// double H = ::acos(-tanL * ::tan(pos1.declination));
|
||||
// double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2;
|
||||
// double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2;
|
||||
// H = ::acos(-tanL * ::tan(pos2.declination));
|
||||
// double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
|
||||
// double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
|
||||
// if (lst1r > 24) lst1r -= 24;
|
||||
// if (lst1s > 24) lst1s -= 24;
|
||||
// if (lst2r > 24) lst2r -= 24;
|
||||
// if (lst2s > 24) lst2s -= 24;
|
||||
//
|
||||
// // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2.
|
||||
// double gst1r = lstToGst(lst1r);
|
||||
// double gst1s = lstToGst(lst1s);
|
||||
// double gst2r = lstToGst(lst2r);
|
||||
// double gst2s = lstToGst(lst2s);
|
||||
// if (gst1r > gst2r) gst2r += 24;
|
||||
// if (gst1s > gst2s) gst2s += 24;
|
||||
//
|
||||
// // 5. Calculate GST at 0h UT of this date
|
||||
// double t00 = utToGst(0);
|
||||
//
|
||||
// // 6. Calculate GST at 0h on the observer's longitude
|
||||
// double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.
|
||||
// double t00p = t00 - offset*1.002737909;
|
||||
// if (t00p < 0) t00p += 24; // do NOT normalize
|
||||
//
|
||||
// // 7. Adjust
|
||||
// if (gst1r < t00p) {
|
||||
// gst1r += 24;
|
||||
// gst2r += 24;
|
||||
// }
|
||||
// if (gst1s < t00p) {
|
||||
// gst1s += 24;
|
||||
// gst2s += 24;
|
||||
// }
|
||||
//
|
||||
// // 8.
|
||||
// double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r);
|
||||
// double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s);
|
||||
//
|
||||
// // 9. Correct for parallax, refraction, and sun's diameter
|
||||
// double dec = (pos1.declination + pos2.declination) / 2;
|
||||
// double psi = ::acos(sin(fLatitude) / cos(dec));
|
||||
// double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter
|
||||
// double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG;
|
||||
// double delta_t = 240 * y / cos(dec) / 3600; // hours
|
||||
//
|
||||
// // 10. Add correction to GSTs, subtract from GSTr
|
||||
// gstr -= delta_t;
|
||||
// gsts += delta_t;
|
||||
//
|
||||
// // 11. Convert GST to UT and then to local civil time
|
||||
// double ut = gstToUt(rise ? gstr : gsts);
|
||||
// //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t);
|
||||
// long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day
|
||||
// return midnight + (long) (ut * 3600000);
|
||||
// }
|
||||
|
||||
// Commented out - currently unused. ICU 2.6, Alan
|
||||
// /**
|
||||
// * Convert local sidereal time to Greenwich sidereal time.
|
||||
// * Section 15. Duffett-Smith p.21
|
||||
// * @param lst in hours (0..24)
|
||||
// * @return GST in hours (0..24)
|
||||
// */
|
||||
// double lstToGst(double lst) {
|
||||
// double delta = fLongitude * 24 / CalendarAstronomer_PI2;
|
||||
// return normalize(lst - delta, 24);
|
||||
// }
|
||||
|
||||
// Commented out - currently unused. ICU 2.6, Alan
|
||||
// /**
|
||||
// * Convert UT to GST on this date.
|
||||
// * Section 12. Duffett-Smith p.17
|
||||
// * @param ut in hours
|
||||
// * @return GST in hours
|
||||
// */
|
||||
// double utToGst(double ut) {
|
||||
// return normalize(getT0() + ut*1.002737909, 24);
|
||||
// }
|
||||
|
||||
// Commented out - currently unused. ICU 2.6, Alan
|
||||
// /**
|
||||
// * Convert GST to UT on this date.
|
||||
// * Section 13. Duffett-Smith p.18
|
||||
// * @param gst in hours
|
||||
// * @return UT in hours
|
||||
// */
|
||||
// double gstToUt(double gst) {
|
||||
// return normalize(gst - getT0(), 24) * 0.9972695663;
|
||||
// }
|
||||
|
||||
// Commented out - currently unused. ICU 2.6, Alan
|
||||
// double getT0() {
|
||||
// // Common computation for UT <=> GST
|
||||
//
|
||||
// // Find JD for 0h UT
|
||||
// double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
|
||||
//
|
||||
// double s = jd - 2451545.0;
|
||||
// double t = s / 36525.0;
|
||||
// double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t;
|
||||
// return t0;
|
||||
// }
|
||||
|
||||
// Commented out - currently unused. ICU 2.6, Alan
|
||||
// //-------------------------------------------------------------------------
|
||||
// // Alternate Sun Rise/Set
|
||||
// // See sci.astro FAQ
|
||||
// // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html
|
||||
// //-------------------------------------------------------------------------
|
||||
//
|
||||
// // Note: This method appears to produce inferior accuracy as
|
||||
// // compared to getSunRiseSet().
|
||||
//
|
||||
// /**
|
||||
// * TODO Make this when the entire class is package-private.
|
||||
// */
|
||||
// /*public*/ long getSunRiseSet3(boolean rise) {
|
||||
//
|
||||
// // Compute day number for 0.0 Jan 2000 epoch
|
||||
// double d = (double)(time - EPOCH_2000_MS) / DAY_MS;
|
||||
//
|
||||
// // Now compute the Local Sidereal Time, LST:
|
||||
// //
|
||||
// double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/
|
||||
// fLongitude*RAD_DEG;
|
||||
// //
|
||||
// // (east long. positive). Note that LST is here expressed in degrees,
|
||||
// // where 15 degrees corresponds to one hour. Since LST really is an angle,
|
||||
// // it's convenient to use one unit---degrees---throughout.
|
||||
//
|
||||
// // COMPUTING THE SUN'S POSITION
|
||||
// // ----------------------------
|
||||
// //
|
||||
// // To be able to compute the Sun's rise/set times, you need to be able to
|
||||
// // compute the Sun's position at any time. First compute the "day
|
||||
// // number" d as outlined above, for the desired moment. Next compute:
|
||||
// //
|
||||
// double oblecl = 23.4393 - 3.563E-7 * d;
|
||||
// //
|
||||
// double w = 282.9404 + 4.70935E-5 * d;
|
||||
// double M = 356.0470 + 0.9856002585 * d;
|
||||
// double e = 0.016709 - 1.151E-9 * d;
|
||||
// //
|
||||
// // This is the obliquity of the ecliptic, plus some of the elements of
|
||||
// // the Sun's apparent orbit (i.e., really the Earth's orbit): w =
|
||||
// // argument of perihelion, M = mean anomaly, e = eccentricity.
|
||||
// // Semi-major axis is here assumed to be exactly 1.0 (while not strictly
|
||||
// // true, this is still an accurate approximation). Next compute E, the
|
||||
// // eccentric anomaly:
|
||||
// //
|
||||
// double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) );
|
||||
// //
|
||||
// // where E and M are in degrees. This is it---no further iterations are
|
||||
// // needed because we know e has a sufficiently small value. Next compute
|
||||
// // the true anomaly, v, and the distance, r:
|
||||
// //
|
||||
// /* r * cos(v) = */ double A = cos(E*DEG_RAD) - e;
|
||||
// /* r * ::sin(v) = */ double B = ::sqrt(1 - e*e) * ::sin(E*DEG_RAD);
|
||||
// //
|
||||
// // and
|
||||
// //
|
||||
// // r = sqrt( A*A + B*B )
|
||||
// double v = ::atan2( B, A )*RAD_DEG;
|
||||
// //
|
||||
// // The Sun's true longitude, slon, can now be computed:
|
||||
// //
|
||||
// double slon = v + w;
|
||||
// //
|
||||
// // Since the Sun is always at the ecliptic (or at least very very close to
|
||||
// // it), we can use simplified formulae to convert slon (the Sun's ecliptic
|
||||
// // longitude) to sRA and sDec (the Sun's RA and Dec):
|
||||
// //
|
||||
// // ::sin(slon) * cos(oblecl)
|
||||
// // tan(sRA) = -------------------------
|
||||
// // cos(slon)
|
||||
// //
|
||||
// // ::sin(sDec) = ::sin(oblecl) * ::sin(slon)
|
||||
// //
|
||||
// // As was the case when computing az, the Azimuth, if possible use an
|
||||
// // atan2() function to compute sRA.
|
||||
//
|
||||
// double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG;
|
||||
//
|
||||
// double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD);
|
||||
// double sDec = ::asin(sin_sDec)*RAD_DEG;
|
||||
//
|
||||
// // COMPUTING RISE AND SET TIMES
|
||||
// // ----------------------------
|
||||
// //
|
||||
// // To compute when an object rises or sets, you must compute when it
|
||||
// // passes the meridian and the HA of rise/set. Then the rise time is
|
||||
// // the meridian time minus HA for rise/set, and the set time is the
|
||||
// // meridian time plus the HA for rise/set.
|
||||
// //
|
||||
// // To find the meridian time, compute the Local Sidereal Time at 0h local
|
||||
// // time (or 0h UT if you prefer to work in UT) as outlined above---name
|
||||
// // that quantity LST0. The Meridian Time, MT, will now be:
|
||||
// //
|
||||
// // MT = RA - LST0
|
||||
// double MT = normalize(sRA - LST, 360);
|
||||
// //
|
||||
// // where "RA" is the object's Right Ascension (in degrees!). If negative,
|
||||
// // add 360 deg to MT. If the object is the Sun, leave the time as it is,
|
||||
// // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from
|
||||
// // sidereal to solar time. Now, compute HA for rise/set, name that
|
||||
// // quantity HA0:
|
||||
// //
|
||||
// // ::sin(h0) - ::sin(lat) * ::sin(Dec)
|
||||
// // cos(HA0) = ---------------------------------
|
||||
// // cos(lat) * cos(Dec)
|
||||
// //
|
||||
// // where h0 is the altitude selected to represent rise/set. For a purely
|
||||
// // mathematical horizon, set h0 = 0 and simplify to:
|
||||
// //
|
||||
// // cos(HA0) = - tan(lat) * tan(Dec)
|
||||
// //
|
||||
// // If you want to account for refraction on the atmosphere, set h0 = -35/60
|
||||
// // degrees (-35 arc minutes), and if you want to compute the rise/set times
|
||||
// // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes).
|
||||
// //
|
||||
// double h0 = -50/60 * DEG_RAD;
|
||||
//
|
||||
// double HA0 = ::acos(
|
||||
// (sin(h0) - ::sin(fLatitude) * sin_sDec) /
|
||||
// (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG;
|
||||
//
|
||||
// // When HA0 has been computed, leave it as it is for the Sun but multiply
|
||||
// // by 365.2422/366.2422 for stellar objects, to convert from sidereal to
|
||||
// // solar time. Finally compute:
|
||||
// //
|
||||
// // Rise time = MT - HA0
|
||||
// // Set time = MT + HA0
|
||||
// //
|
||||
// // convert the times from degrees to hours by dividing by 15.
|
||||
// //
|
||||
// // If you'd like to check that your calculations are accurate or just
|
||||
// // need a quick result, check the USNO's Sun or Moon Rise/Set Table,
|
||||
// // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>.
|
||||
//
|
||||
// double result = MT + (rise ? -HA0 : HA0); // in degrees
|
||||
//
|
||||
// // Find UT midnight on this day
|
||||
// long midnight = DAY_MS * (time / DAY_MS);
|
||||
//
|
||||
// return midnight + (long) (result * 3600000 / 15);
|
||||
// }
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// The Moon
|
||||
//-------------------------------------------------------------------------
|
||||
|
@ -1083,7 +563,7 @@ const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()
|
|||
// Calculate the mean longitude and anomaly of the moon, based on
|
||||
// a circular orbit. Similar to the corresponding solar calculation.
|
||||
double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0);
|
||||
meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);
|
||||
double meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);
|
||||
|
||||
//
|
||||
// Calculate the following corrections:
|
||||
|
@ -1109,7 +589,7 @@ const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()
|
|||
double a4 = 0.2140*PI/180 * ::sin(2 * meanAnomalyMoon);
|
||||
|
||||
// Now find the moon's corrected longitude
|
||||
moonLongitude = meanLongitude + evection + center - annual + a4;
|
||||
double moonLongitude = meanLongitude + evection + center - annual + a4;
|
||||
|
||||
//
|
||||
// And finally, find the variation, caused by the fact that the sun's
|
||||
|
@ -1149,7 +629,6 @@ const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()
|
|||
* current ecliptic longitudes of the sun and the moon,
|
||||
* measured in radians.
|
||||
*
|
||||
* @see #getMoonPhase
|
||||
* @internal
|
||||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
|
@ -1165,27 +644,6 @@ double CalendarAstronomer::getMoonAge() {
|
|||
return norm2PI(moonEclipLong - sunLongitude);
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the phase of the moon at the time set in this object.
|
||||
* The returned phase is a <code>double</code> in the range
|
||||
* <code>0 <= phase < 1</code>, interpreted as follows:
|
||||
* <ul>
|
||||
* <li>0.00: New moon
|
||||
* <li>0.25: First quarter
|
||||
* <li>0.50: Full moon
|
||||
* <li>0.75: Last quarter
|
||||
* </ul>
|
||||
*
|
||||
* @see #getMoonAge
|
||||
* @internal
|
||||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
double CalendarAstronomer::getMoonPhase() {
|
||||
// See page 147 of "Practical Astronomy with your Calculator",
|
||||
// by Peter Duffet-Smith, for details on the algorithm.
|
||||
return 0.5 * (1 - cos(getMoonAge()));
|
||||
}
|
||||
|
||||
/**
|
||||
* Constant representing a new moon.
|
||||
* For use with {@link #getMoonTime getMoonTime}
|
||||
|
@ -1196,25 +654,6 @@ CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() {
|
|||
return CalendarAstronomer::MoonAge(0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constant representing the moon's first quarter.
|
||||
* For use with {@link #getMoonTime getMoonTime}
|
||||
* @internal
|
||||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
/*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() {
|
||||
return CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2);
|
||||
}*/
|
||||
|
||||
/**
|
||||
* Constant representing a full moon.
|
||||
* For use with {@link #getMoonTime getMoonTime}
|
||||
* @internal
|
||||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() {
|
||||
return CalendarAstronomer::MoonAge(CalendarAstronomer::PI);
|
||||
}
|
||||
/**
|
||||
* Constant representing the moon's last quarter.
|
||||
* For use with {@link #getMoonTime getMoonTime}
|
||||
|
@ -1234,26 +673,6 @@ MoonTimeAngleFunc::~MoonTimeAngleFunc() {}
|
|||
return CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);
|
||||
}*/
|
||||
|
||||
/**
|
||||
* Find the next or previous time at which the Moon's ecliptic
|
||||
* longitude will have the desired value.
|
||||
* <p>
|
||||
* @param desired The desired longitude.
|
||||
* @param next <tt>true</tt> if the next occurrence of the phase
|
||||
* is desired, <tt>false</tt> for the previous occurrence.
|
||||
* @internal
|
||||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
UDate CalendarAstronomer::getMoonTime(double desired, UBool next)
|
||||
{
|
||||
MoonTimeAngleFunc func;
|
||||
return timeOfAngle( func,
|
||||
desired,
|
||||
SYNODIC_MONTH,
|
||||
MINUTE_MS,
|
||||
next);
|
||||
}
|
||||
|
||||
/**
|
||||
* Find the next or previous time at which the moon will be in the
|
||||
* desired phase.
|
||||
|
@ -1265,31 +684,12 @@ UDate CalendarAstronomer::getMoonTime(double desired, UBool next)
|
|||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) {
|
||||
return getMoonTime(desired.value, next);
|
||||
}
|
||||
|
||||
class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc {
|
||||
public:
|
||||
virtual ~MoonRiseSetCoordFunc();
|
||||
virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer& a) override { result = a.getMoonPosition(); }
|
||||
};
|
||||
|
||||
MoonRiseSetCoordFunc::~MoonRiseSetCoordFunc() {}
|
||||
|
||||
/**
|
||||
* Returns the time (GMT) of sunrise or sunset on the local date to which
|
||||
* this calendar is currently set.
|
||||
* @internal
|
||||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
UDate CalendarAstronomer::getMoonRiseSet(UBool rise)
|
||||
{
|
||||
MoonRiseSetCoordFunc func;
|
||||
return riseOrSet(func,
|
||||
rise,
|
||||
.533 * DEG_RAD, // Angular Diameter
|
||||
34 /60.0 * DEG_RAD, // Refraction correction
|
||||
MINUTE_MS); // Desired accuracy
|
||||
MoonTimeAngleFunc func;
|
||||
return timeOfAngle( func,
|
||||
desired.value,
|
||||
SYNODIC_MONTH,
|
||||
MINUTE_MS,
|
||||
next);
|
||||
}
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
|
@ -1364,48 +764,7 @@ UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired,
|
|||
return fTime;
|
||||
}
|
||||
|
||||
UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise,
|
||||
double diameter, double refraction,
|
||||
double epsilon)
|
||||
{
|
||||
Equatorial pos;
|
||||
double tanL = ::tan(fLatitude);
|
||||
double deltaT = 0;
|
||||
int32_t count = 0;
|
||||
|
||||
//
|
||||
// Calculate the object's position at the current time, then use that
|
||||
// position to calculate the time of rising or setting. The position
|
||||
// will be different at that time, so iterate until the error is allowable.
|
||||
//
|
||||
U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n",
|
||||
rise?"T":"F", diameter, refraction, epsilon));
|
||||
do {
|
||||
// See "Practical Astronomy With Your Calculator, section 33.
|
||||
func.eval(pos, *this);
|
||||
double angle = ::acos(-tanL * ::tan(pos.declination));
|
||||
double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascension ) * 24 / CalendarAstronomer_PI2;
|
||||
|
||||
// Convert from LST to Universal Time.
|
||||
UDate newTime = lstToUT( lst );
|
||||
|
||||
deltaT = newTime - fTime;
|
||||
setTime(newTime);
|
||||
U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf, A=%.3lf/D=%.3lf\n",
|
||||
count, deltaT, angle, lst, pos.ascension, pos.declination));
|
||||
}
|
||||
while (++ count < 5 && uprv_fabs(deltaT) > epsilon);
|
||||
|
||||
// Calculate the correction due to refraction and the object's angular diameter
|
||||
double cosD = ::cos(pos.declination);
|
||||
double psi = ::acos(sin(fLatitude) / cosD);
|
||||
double x = diameter / 2 + refraction;
|
||||
double y = ::asin(sin(x) / ::sin(psi));
|
||||
long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS);
|
||||
|
||||
return fTime + (rise ? -delta : delta);
|
||||
}
|
||||
/**
|
||||
/**
|
||||
* Return the obliquity of the ecliptic (the angle between the ecliptic
|
||||
* and the earth's equator) at the current time. This varies due to
|
||||
* the precession of the earth's axis.
|
||||
|
@ -1414,19 +773,16 @@ UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise,
|
|||
* measured in radians.
|
||||
*/
|
||||
double CalendarAstronomer::eclipticObliquity() {
|
||||
if (isINVALID(eclipObliquity)) {
|
||||
const double epoch = 2451545.0; // 2000 AD, January 1.5
|
||||
const double epoch = 2451545.0; // 2000 AD, January 1.5
|
||||
|
||||
double T = (getJulianDay() - epoch) / 36525;
|
||||
double T = (getJulianDay() - epoch) / 36525;
|
||||
|
||||
eclipObliquity = 23.439292
|
||||
- 46.815/3600 * T
|
||||
- 0.0006/3600 * T*T
|
||||
+ 0.00181/3600 * T*T*T;
|
||||
double eclipObliquity = 23.439292
|
||||
- 46.815/3600 * T
|
||||
- 0.0006/3600 * T*T
|
||||
+ 0.00181/3600 * T*T*T;
|
||||
|
||||
eclipObliquity *= DEG_RAD;
|
||||
}
|
||||
return eclipObliquity;
|
||||
return eclipObliquity * DEG_RAD;
|
||||
}
|
||||
|
||||
|
||||
|
@ -1437,45 +793,13 @@ void CalendarAstronomer::clearCache() {
|
|||
const double INVALID = uprv_getNaN();
|
||||
|
||||
julianDay = INVALID;
|
||||
julianCentury = INVALID;
|
||||
sunLongitude = INVALID;
|
||||
meanAnomalySun = INVALID;
|
||||
moonLongitude = INVALID;
|
||||
moonEclipLong = INVALID;
|
||||
meanAnomalyMoon = INVALID;
|
||||
eclipObliquity = INVALID;
|
||||
siderealTime = INVALID;
|
||||
siderealT0 = INVALID;
|
||||
|
||||
moonPositionSet = false;
|
||||
}
|
||||
|
||||
//private static void out(String s) {
|
||||
// System.out.println(s);
|
||||
//}
|
||||
|
||||
//private static String deg(double rad) {
|
||||
// return Double.toString(rad * RAD_DEG);
|
||||
//}
|
||||
|
||||
//private static String hours(long ms) {
|
||||
// return Double.toString((double)ms / HOUR_MS) + " hours";
|
||||
//}
|
||||
|
||||
/**
|
||||
* @internal
|
||||
* @deprecated ICU 2.4. This class may be removed or modified.
|
||||
*/
|
||||
/*UDate CalendarAstronomer::local(UDate localMillis) {
|
||||
// TODO - srl ?
|
||||
TimeZone *tz = TimeZone::createDefault();
|
||||
int32_t rawOffset;
|
||||
int32_t dstOffset;
|
||||
UErrorCode status = U_ZERO_ERROR;
|
||||
tz->getOffset(localMillis, true, rawOffset, dstOffset, status);
|
||||
delete tz;
|
||||
return localMillis - rawOffset;
|
||||
}*/
|
||||
|
||||
// Debugging functions
|
||||
UnicodeString CalendarAstronomer::Ecliptic::toString() const
|
||||
{
|
||||
|
@ -1500,34 +824,6 @@ UnicodeString CalendarAstronomer::Equatorial::toString() const
|
|||
#endif
|
||||
}
|
||||
|
||||
UnicodeString CalendarAstronomer::Horizon::toString() const
|
||||
{
|
||||
#ifdef U_DEBUG_ASTRO
|
||||
char tmp[800];
|
||||
snprintf(tmp, sizeof(tmp), "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG);
|
||||
return UnicodeString(tmp, "");
|
||||
#else
|
||||
return UnicodeString();
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
// static private String radToHms(double angle) {
|
||||
// int hrs = (int) (angle*RAD_HOUR);
|
||||
// int min = (int)((angle*RAD_HOUR - hrs) * 60);
|
||||
// int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600);
|
||||
|
||||
// return Integer.toString(hrs) + "h" + min + "m" + sec + "s";
|
||||
// }
|
||||
|
||||
// static private String radToDms(double angle) {
|
||||
// int deg = (int) (angle*RAD_DEG);
|
||||
// int min = (int)((angle*RAD_DEG - deg) * 60);
|
||||
// int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600);
|
||||
|
||||
// return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\"";
|
||||
// }
|
||||
|
||||
// =============== Calendar Cache ================
|
||||
|
||||
void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) {
|
||||
|
|
|
@ -31,7 +31,7 @@ U_NAMESPACE_BEGIN
|
|||
* at a given moment in time. Accordingly, each <code>CalendarAstronomer</code>
|
||||
* object has a <code>time</code> property that determines the date
|
||||
* and time for which its calculations are performed. You can set and
|
||||
* retrieve this property with {@link #setDate setDate}, {@link #getDate getDate}
|
||||
* retrieve this property with {@link #setTime setTime}, {@link #getTime getTime}
|
||||
* and related methods.
|
||||
* <p>
|
||||
* Almost all of the calculations performed by this class, or by any
|
||||
|
@ -72,7 +72,6 @@ public:
|
|||
* value without worrying about whether other code will modify them.
|
||||
*
|
||||
* @see CalendarAstronomer.Equatorial
|
||||
* @see CalendarAstronomer.Horizon
|
||||
* @internal
|
||||
*/
|
||||
class U_I18N_API Ecliptic : public UMemory {
|
||||
|
@ -141,7 +140,6 @@ public:
|
|||
* value without worrying about whether other code will modify them.
|
||||
*
|
||||
* @see CalendarAstronomer.Ecliptic
|
||||
* @see CalendarAstronomer.Horizon
|
||||
* @internal
|
||||
*/
|
||||
class U_I18N_API Equatorial : public UMemory {
|
||||
|
@ -201,66 +199,6 @@ public:
|
|||
double declination;
|
||||
};
|
||||
|
||||
/**
|
||||
* Represents the position of an object in the sky relative to
|
||||
* the local horizon.
|
||||
* The <i>Altitude</i> represents the object's elevation above the horizon,
|
||||
* with objects below the horizon having a negative altitude.
|
||||
* The <i>Azimuth</i> is the geographic direction of the object from the
|
||||
* observer's position, with 0 representing north. The azimuth increases
|
||||
* clockwise from north.
|
||||
* <p>
|
||||
* Note that Horizon objects are immutable and cannot be modified
|
||||
* once they are constructed. This allows them to be passed and returned by
|
||||
* value without worrying about whether other code will modify them.
|
||||
*
|
||||
* @see CalendarAstronomer.Ecliptic
|
||||
* @see CalendarAstronomer.Equatorial
|
||||
* @internal
|
||||
*/
|
||||
class U_I18N_API Horizon : public UMemory {
|
||||
public:
|
||||
/**
|
||||
* Constructs a Horizon coordinate object.
|
||||
* <p>
|
||||
* @param alt The altitude, measured in radians above the horizon.
|
||||
* @param azim The azimuth, measured in radians clockwise from north.
|
||||
* @internal
|
||||
*/
|
||||
Horizon(double alt=0, double azim=0)
|
||||
: altitude(alt), azimuth(azim) { }
|
||||
|
||||
/**
|
||||
* Setter for Ecliptic Coordinate object
|
||||
* @param alt The altitude, measured in radians above the horizon.
|
||||
* @param azim The azimuth, measured in radians clockwise from north.
|
||||
* @internal
|
||||
*/
|
||||
void set(double alt, double azim) {
|
||||
altitude = alt;
|
||||
azimuth = azim;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return a string representation of this object, with the
|
||||
* angles measured in degrees.
|
||||
* @internal
|
||||
*/
|
||||
UnicodeString toString() const;
|
||||
|
||||
/**
|
||||
* The object's altitude above the horizon, in radians.
|
||||
* @internal
|
||||
*/
|
||||
double altitude;
|
||||
|
||||
/**
|
||||
* The object's direction, in radians clockwise from north.
|
||||
* @internal
|
||||
*/
|
||||
double azimuth;
|
||||
};
|
||||
|
||||
public:
|
||||
//-------------------------------------------------------------------------
|
||||
// Assorted private data used for conversions
|
||||
|
@ -300,22 +238,6 @@ public:
|
|||
*/
|
||||
CalendarAstronomer(UDate d);
|
||||
|
||||
/**
|
||||
* Construct a new <code>CalendarAstronomer</code> object with the given
|
||||
* latitude and longitude. The object's time is set to the current
|
||||
* date and time.
|
||||
* <p>
|
||||
* @param longitude The desired longitude, in <em>degrees</em> east of
|
||||
* the Greenwich meridian.
|
||||
*
|
||||
* @param latitude The desired latitude, in <em>degrees</em>. Positive
|
||||
* values signify North, negative South.
|
||||
*
|
||||
* @see java.util.Date#getTime()
|
||||
* @internal
|
||||
*/
|
||||
CalendarAstronomer(double longitude, double latitude);
|
||||
|
||||
/**
|
||||
* Destructor
|
||||
* @internal
|
||||
|
@ -333,48 +255,17 @@ public:
|
|||
* @param aTime the date and time, expressed as the number of milliseconds since
|
||||
* 1/1/1970 0:00 GMT (Gregorian).
|
||||
*
|
||||
* @see #setDate
|
||||
* @see #getTime
|
||||
* @internal
|
||||
*/
|
||||
void setTime(UDate aTime);
|
||||
|
||||
|
||||
/**
|
||||
* Set the current date and time of this <code>CalendarAstronomer</code> object. All
|
||||
* astronomical calculations are performed based on this time setting.
|
||||
*
|
||||
* @param aTime the date and time, expressed as the number of milliseconds since
|
||||
* 1/1/1970 0:00 GMT (Gregorian).
|
||||
*
|
||||
* @see #getTime
|
||||
* @internal
|
||||
*/
|
||||
void setDate(UDate aDate) { setTime(aDate); }
|
||||
|
||||
/**
|
||||
* Set the current date and time of this <code>CalendarAstronomer</code> object. All
|
||||
* astronomical calculations are performed based on this time setting.
|
||||
*
|
||||
* @param jdn the desired time, expressed as a "julian day number",
|
||||
* which is the number of elapsed days since
|
||||
* 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day
|
||||
* numbers start at <em>noon</em>. To get the jdn for
|
||||
* the corresponding midnight, subtract 0.5.
|
||||
*
|
||||
* @see #getJulianDay
|
||||
* @see #JULIAN_EPOCH_MS
|
||||
* @internal
|
||||
*/
|
||||
void setJulianDay(double jdn);
|
||||
|
||||
/**
|
||||
* Get the current time of this <code>CalendarAstronomer</code> object,
|
||||
* represented as the number of milliseconds since
|
||||
* 1/1/1970 AD 0:00 GMT (Gregorian).
|
||||
*
|
||||
* @see #setTime
|
||||
* @see #getDate
|
||||
* @internal
|
||||
*/
|
||||
UDate getTime();
|
||||
|
@ -384,58 +275,12 @@ public:
|
|||
* expressed as a "julian day number", which is the number of elapsed
|
||||
* days since 1/1/4713 BC (Julian), 12:00 GMT.
|
||||
*
|
||||
* @see #setJulianDay
|
||||
* @see #JULIAN_EPOCH_MS
|
||||
* @internal
|
||||
*/
|
||||
double getJulianDay();
|
||||
|
||||
/**
|
||||
* Return this object's time expressed in julian centuries:
|
||||
* the number of centuries after 1/1/1900 AD, 12:00 GMT
|
||||
*
|
||||
* @see #getJulianDay
|
||||
* @internal
|
||||
*/
|
||||
double getJulianCentury();
|
||||
|
||||
/**
|
||||
* Returns the current Greenwich sidereal time, measured in hours
|
||||
* @internal
|
||||
*/
|
||||
double getGreenwichSidereal();
|
||||
|
||||
private:
|
||||
double getSiderealOffset();
|
||||
public:
|
||||
/**
|
||||
* Returns the current local sidereal time, measured in hours
|
||||
* @internal
|
||||
*/
|
||||
double getLocalSidereal();
|
||||
|
||||
/**
|
||||
* Converts local sidereal time to Universal Time.
|
||||
*
|
||||
* @param lst The Local Sidereal Time, in hours since sidereal midnight
|
||||
* on this object's current date.
|
||||
*
|
||||
* @return The corresponding Universal Time, in milliseconds since
|
||||
* 1 Jan 1970, GMT.
|
||||
*/
|
||||
//private:
|
||||
double lstToUT(double lst);
|
||||
|
||||
/**
|
||||
*
|
||||
* Convert from ecliptic to equatorial coordinates.
|
||||
*
|
||||
* @param ecliptic The ecliptic
|
||||
* @param result Fillin result
|
||||
* @return reference to result
|
||||
*/
|
||||
Equatorial& eclipticToEquatorial(Equatorial& result, const Ecliptic& ecliptic);
|
||||
|
||||
/**
|
||||
* Convert from ecliptic to equatorial coordinates.
|
||||
*
|
||||
|
@ -447,21 +292,6 @@ public:
|
|||
*/
|
||||
Equatorial& eclipticToEquatorial(Equatorial& result, double eclipLong, double eclipLat);
|
||||
|
||||
/**
|
||||
* Convert from ecliptic longitude to equatorial coordinates.
|
||||
*
|
||||
* @param eclipLong The ecliptic longitude
|
||||
*
|
||||
* @return The corresponding point in equatorial coordinates.
|
||||
* @internal
|
||||
*/
|
||||
Equatorial& eclipticToEquatorial(Equatorial& result, double eclipLong) ;
|
||||
|
||||
/**
|
||||
* @internal
|
||||
*/
|
||||
Horizon& eclipticToHorizon(Horizon& result, double eclipLong) ;
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// The Sun
|
||||
//-------------------------------------------------------------------------
|
||||
|
@ -484,39 +314,7 @@ public:
|
|||
*/
|
||||
/*public*/ void getSunLongitude(double julianDay, double &longitude, double &meanAnomaly);
|
||||
|
||||
/**
|
||||
* The position of the sun at this object's current date and time,
|
||||
* in equatorial coordinates.
|
||||
* @param result fillin for the result
|
||||
* @internal
|
||||
*/
|
||||
Equatorial& getSunPosition(Equatorial& result);
|
||||
|
||||
public:
|
||||
/**
|
||||
* Constant representing the vernal equinox.
|
||||
* For use with {@link #getSunTime getSunTime}.
|
||||
* Note: In this case, "vernal" refers to the northern hemisphere's seasons.
|
||||
* @internal
|
||||
*/
|
||||
// static double VERNAL_EQUINOX();
|
||||
|
||||
/**
|
||||
* Constant representing the summer solstice.
|
||||
* For use with {@link #getSunTime getSunTime}.
|
||||
* Note: In this case, "summer" refers to the northern hemisphere's seasons.
|
||||
* @internal
|
||||
*/
|
||||
static double SUMMER_SOLSTICE();
|
||||
|
||||
/**
|
||||
* Constant representing the autumnal equinox.
|
||||
* For use with {@link #getSunTime getSunTime}.
|
||||
* Note: In this case, "autumn" refers to the northern hemisphere's seasons.
|
||||
* @internal
|
||||
*/
|
||||
// static double AUTUMN_EQUINOX();
|
||||
|
||||
/**
|
||||
* Constant representing the winter solstice.
|
||||
* For use with {@link #getSunTime getSunTime}.
|
||||
|
@ -532,20 +330,6 @@ public:
|
|||
*/
|
||||
UDate getSunTime(double desired, UBool next);
|
||||
|
||||
/**
|
||||
* Returns the time (GMT) of sunrise or sunset on the local date to which
|
||||
* this calendar is currently set.
|
||||
*
|
||||
* NOTE: This method only works well if this object is set to a
|
||||
* time near local noon. Because of variations between the local
|
||||
* official time zone and the geographic longitude, the
|
||||
* computation can flop over into an adjacent day if this object
|
||||
* is set to a time near local midnight.
|
||||
*
|
||||
* @internal
|
||||
*/
|
||||
UDate getSunRiseSet(UBool rise);
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// The Moon
|
||||
//-------------------------------------------------------------------------
|
||||
|
@ -569,22 +353,6 @@ public:
|
|||
*/
|
||||
double getMoonAge();
|
||||
|
||||
/**
|
||||
* Calculate the phase of the moon at the time set in this object.
|
||||
* The returned phase is a <code>double</code> in the range
|
||||
* <code>0 <= phase < 1</code>, interpreted as follows:
|
||||
* <ul>
|
||||
* <li>0.00: New moon
|
||||
* <li>0.25: First quarter
|
||||
* <li>0.50: Full moon
|
||||
* <li>0.75: Last quarter
|
||||
* </ul>
|
||||
*
|
||||
* @see #getMoonAge
|
||||
* @internal
|
||||
*/
|
||||
double getMoonPhase();
|
||||
|
||||
class U_I18N_API MoonAge : public UMemory {
|
||||
public:
|
||||
MoonAge(double l)
|
||||
|
@ -600,27 +368,6 @@ public:
|
|||
*/
|
||||
static MoonAge NEW_MOON();
|
||||
|
||||
/**
|
||||
* Constant representing the moon's first quarter.
|
||||
* For use with {@link #getMoonTime getMoonTime}
|
||||
* @internal
|
||||
*/
|
||||
// static const MoonAge FIRST_QUARTER();
|
||||
|
||||
/**
|
||||
* Constant representing a full moon.
|
||||
* For use with {@link #getMoonTime getMoonTime}
|
||||
* @internal
|
||||
*/
|
||||
static MoonAge FULL_MOON();
|
||||
|
||||
/**
|
||||
* Constant representing the moon's last quarter.
|
||||
* For use with {@link #getMoonTime getMoonTime}
|
||||
* @internal
|
||||
*/
|
||||
// static const MoonAge LAST_QUARTER();
|
||||
|
||||
/**
|
||||
* Find the next or previous time at which the Moon's ecliptic
|
||||
* longitude will have the desired value.
|
||||
|
@ -630,21 +377,13 @@ public:
|
|||
* is desired, <tt>false</tt> for the previous occurrence.
|
||||
* @internal
|
||||
*/
|
||||
UDate getMoonTime(double desired, UBool next);
|
||||
UDate getMoonTime(const MoonAge& desired, UBool next);
|
||||
|
||||
/**
|
||||
* Returns the time (GMT) of sunrise or sunset on the local date to which
|
||||
* this calendar is currently set.
|
||||
* @internal
|
||||
*/
|
||||
UDate getMoonRiseSet(UBool rise);
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// Interpolation methods for finding the time at which a given event occurs
|
||||
//-------------------------------------------------------------------------
|
||||
|
||||
// private
|
||||
public:
|
||||
class AngleFunc : public UMemory {
|
||||
public:
|
||||
virtual double eval(CalendarAstronomer&) = 0;
|
||||
|
@ -652,20 +391,10 @@ public:
|
|||
};
|
||||
friend class AngleFunc;
|
||||
|
||||
private:
|
||||
UDate timeOfAngle(AngleFunc& func, double desired,
|
||||
double periodDays, double epsilon, UBool next);
|
||||
|
||||
class CoordFunc : public UMemory {
|
||||
public:
|
||||
virtual void eval(Equatorial& result, CalendarAstronomer&) = 0;
|
||||
virtual ~CoordFunc();
|
||||
};
|
||||
friend class CoordFunc;
|
||||
|
||||
double riseOrSet(CoordFunc& func, UBool rise,
|
||||
double diameter, double refraction,
|
||||
double epsilon);
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// Other utility methods
|
||||
//-------------------------------------------------------------------------
|
||||
|
@ -691,29 +420,13 @@ private:
|
|||
*/
|
||||
UDate fTime;
|
||||
|
||||
/* These aren't used yet, but they'll be needed for sunset calculations
|
||||
* and equatorial to horizon coordinate conversions
|
||||
*/
|
||||
double fLongitude;
|
||||
double fLatitude;
|
||||
double fGmtOffset;
|
||||
|
||||
//
|
||||
// The following fields are used to cache calculated results for improved
|
||||
// performance. These values all depend on the current time setting
|
||||
// of this object, so the clearCache method is provided.
|
||||
//
|
||||
|
||||
double julianDay;
|
||||
double julianCentury;
|
||||
double sunLongitude;
|
||||
double meanAnomalySun;
|
||||
double moonLongitude;
|
||||
double moonEclipLong;
|
||||
double meanAnomalyMoon;
|
||||
double eclipObliquity;
|
||||
double siderealT0;
|
||||
double siderealTime;
|
||||
|
||||
void clearCache();
|
||||
|
||||
|
|
|
@ -53,11 +53,6 @@ static void debug_chnsecal_msg(const char *pat, ...)
|
|||
#endif
|
||||
|
||||
|
||||
// --- The cache --
|
||||
static icu::UMutex astroLock;
|
||||
static icu::CalendarAstronomer *gAstronomer = nullptr;
|
||||
static icu::UInitOnce gAstronomerInitOnce {};
|
||||
|
||||
// Lazy Creation & Access synchronized by class CalendarCache with a mutex.
|
||||
static icu::CalendarCache *gWinterSolsticeCache = nullptr;
|
||||
static icu::CalendarCache *gNewYearCache = nullptr;
|
||||
|
@ -90,10 +85,6 @@ static const int32_t SYNODIC_GAP = 25;
|
|||
|
||||
U_CDECL_BEGIN
|
||||
static UBool calendar_chinese_cleanup() {
|
||||
if (gAstronomer) {
|
||||
delete gAstronomer;
|
||||
gAstronomer = nullptr;
|
||||
}
|
||||
if (gWinterSolsticeCache) {
|
||||
delete gWinterSolsticeCache;
|
||||
gWinterSolsticeCache = nullptr;
|
||||
|
@ -180,18 +171,8 @@ const TimeZone* getAstronomerTimeZone() {
|
|||
return gAstronomerTimeZone;
|
||||
}
|
||||
|
||||
static void U_CALLCONV initAstronomer() {
|
||||
gAstronomer = new CalendarAstronomer();
|
||||
ucln_i18n_registerCleanup(UCLN_I18N_CHINESE_CALENDAR, calendar_chinese_cleanup);
|
||||
}
|
||||
|
||||
} // namespace anonymous
|
||||
|
||||
icu::CalendarAstronomer* getAstronomer() {
|
||||
umtx_initOnce(gAstronomerInitOnce, &initAstronomer);
|
||||
return gAstronomer;
|
||||
}
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// Minimum / Maximum access functions
|
||||
//-------------------------------------------------------------------------
|
||||
|
@ -602,13 +583,10 @@ int32_t winterSolstice(const TimeZone* timeZone, int32_t gyear) {
|
|||
// PST 1298 with a final result of Dec 14 10:31:59 PST 1299.
|
||||
double ms = daysToMillis(timeZone, Grego::fieldsToDay(gyear, UCAL_DECEMBER, 1));
|
||||
|
||||
umtx_lock(&astroLock);
|
||||
getAstronomer()->setTime(ms);
|
||||
UDate solarLong = getAstronomer()->getSunTime(CalendarAstronomer::WINTER_SOLSTICE(), true);
|
||||
umtx_unlock(&astroLock);
|
||||
|
||||
// Winter solstice is 270 degrees solar longitude aka Dongzhi
|
||||
double days = millisToDays(timeZone, solarLong);
|
||||
double days = millisToDays(timeZone,
|
||||
CalendarAstronomer(ms)
|
||||
.getSunTime(CalendarAstronomer::WINTER_SOLSTICE(), true));
|
||||
if (days < INT32_MIN || days > INT32_MAX) {
|
||||
status = U_ILLEGAL_ARGUMENT_ERROR;
|
||||
return 0;
|
||||
|
@ -633,11 +611,10 @@ int32_t winterSolstice(const TimeZone* timeZone, int32_t gyear) {
|
|||
* new moon after or before <code>days</code>
|
||||
*/
|
||||
int32_t newMoonNear(const TimeZone* timeZone, double days, UBool after) {
|
||||
umtx_lock(&astroLock);
|
||||
getAstronomer()->setTime(daysToMillis(timeZone, days));
|
||||
UDate newMoon = getAstronomer()->getMoonTime(CalendarAstronomer::NEW_MOON(), after);
|
||||
umtx_unlock(&astroLock);
|
||||
return (int32_t) millisToDays(timeZone, newMoon);
|
||||
return (int32_t) millisToDays(
|
||||
timeZone,
|
||||
CalendarAstronomer(daysToMillis(timeZone, days))
|
||||
.getMoonTime(CalendarAstronomer::NEW_MOON(), after));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -660,13 +637,9 @@ int32_t synodicMonthsBetween(int32_t day1, int32_t day2) {
|
|||
* @param days days after January 1, 1970 0:00 Asia/Shanghai
|
||||
*/
|
||||
int32_t majorSolarTerm(const TimeZone* timeZone, int32_t days) {
|
||||
umtx_lock(&astroLock);
|
||||
getAstronomer()->setTime(daysToMillis(timeZone, days));
|
||||
UDate solarLongitude = getAstronomer()->getSunLongitude();
|
||||
umtx_unlock(&astroLock);
|
||||
|
||||
// Compute (floor(solarLongitude / (pi/6)) + 2) % 12
|
||||
int32_t term = ( ((int32_t)(6 * solarLongitude / CalendarAstronomer::PI)) + 2 ) % 12;
|
||||
int32_t term = ( ((int32_t)(6 * CalendarAstronomer(daysToMillis(timeZone, days))
|
||||
.getSunLongitude() / CalendarAstronomer::PI)) + 2 ) % 12;
|
||||
if (term < 1) {
|
||||
term += 12;
|
||||
}
|
||||
|
|
|
@ -55,7 +55,6 @@ static void debug_islamcal_msg(const char *pat, ...)
|
|||
// --- The cache --
|
||||
// cache of months
|
||||
static icu::CalendarCache *gMonthCache = nullptr;
|
||||
static icu::CalendarAstronomer *gIslamicCalendarAstro = nullptr;
|
||||
|
||||
U_CDECL_BEGIN
|
||||
static UBool calendar_islamic_cleanup() {
|
||||
|
@ -63,10 +62,6 @@ static UBool calendar_islamic_cleanup() {
|
|||
delete gMonthCache;
|
||||
gMonthCache = nullptr;
|
||||
}
|
||||
if (gIslamicCalendarAstro) {
|
||||
delete gIslamicCalendarAstro;
|
||||
gIslamicCalendarAstro = nullptr;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
U_CDECL_END
|
||||
|
@ -264,6 +259,8 @@ int32_t IslamicCalendar::handleGetLimit(UCalendarDateFields field, ELimitType li
|
|||
// Assorted calculation utilities
|
||||
//
|
||||
|
||||
namespace {
|
||||
|
||||
// we could compress this down more if we need to
|
||||
static const int8_t umAlQuraYrStartEstimateFix[] = {
|
||||
0, 0, -1, 0, -1, 0, 0, 0, 0, 0, // 1300..
|
||||
|
@ -306,6 +303,10 @@ inline bool civilLeapYear(int32_t year) {
|
|||
return (14 + 11 * year) % 30 < 11;
|
||||
}
|
||||
|
||||
int32_t trueMonthStart(int32_t month);
|
||||
|
||||
} // namespace
|
||||
|
||||
/**
|
||||
* Return the day # on which the given year starts. Days are counted
|
||||
* from the Hijri epoch, origin 0.
|
||||
|
@ -336,6 +337,18 @@ int64_t IslamicCalendar::monthStart(int32_t year, int32_t month, UErrorCode& sta
|
|||
return trueMonthStart(month);
|
||||
}
|
||||
|
||||
namespace {
|
||||
/**
|
||||
* Return the "age" of the moon at the given time; this is the difference
|
||||
* in ecliptic latitude between the moon and the sun. This method simply
|
||||
* calls CalendarAstronomer.moonAge, converts to degrees,
|
||||
* and adjusts the resultto be in the range [-180, 180].
|
||||
*
|
||||
* @param time The time at which the moon's age is desired,
|
||||
* in millis since 1/1/1970.
|
||||
*/
|
||||
double moonAge(UDate time);
|
||||
|
||||
/**
|
||||
* Find the day number on which a particular month of the true/lunar
|
||||
* Islamic calendar starts.
|
||||
|
@ -344,82 +357,46 @@ int64_t IslamicCalendar::monthStart(int32_t year, int32_t month, UErrorCode& sta
|
|||
*
|
||||
* @return The day number on which the given month starts.
|
||||
*/
|
||||
int32_t IslamicCalendar::trueMonthStart(int32_t month) const
|
||||
{
|
||||
int32_t trueMonthStart(int32_t month) {
|
||||
ucln_i18n_registerCleanup(UCLN_I18N_ISLAMIC_CALENDAR, calendar_islamic_cleanup);
|
||||
UErrorCode status = U_ZERO_ERROR;
|
||||
int64_t start = CalendarCache::get(&gMonthCache, month, status);
|
||||
|
||||
if (start==0) {
|
||||
if (U_SUCCESS(status) && start==0) {
|
||||
// Make a guess at when the month started, using the average length
|
||||
UDate origin = HIJRA_MILLIS
|
||||
+ uprv_floor(month * CalendarAstronomer::SYNODIC_MONTH) * kOneDay;
|
||||
|
||||
// moonAge will fail due to memory allocation error
|
||||
double age = moonAge(origin, status);
|
||||
if (U_FAILURE(status)) {
|
||||
goto trueMonthStartEnd;
|
||||
}
|
||||
double age = moonAge(origin);
|
||||
|
||||
if (age >= 0) {
|
||||
// The month has already started
|
||||
do {
|
||||
origin -= kOneDay;
|
||||
age = moonAge(origin, status);
|
||||
if (U_FAILURE(status)) {
|
||||
goto trueMonthStartEnd;
|
||||
}
|
||||
age = moonAge(origin);
|
||||
} while (age >= 0);
|
||||
}
|
||||
else {
|
||||
// Preceding month has not ended yet.
|
||||
do {
|
||||
origin += kOneDay;
|
||||
age = moonAge(origin, status);
|
||||
if (U_FAILURE(status)) {
|
||||
goto trueMonthStartEnd;
|
||||
}
|
||||
age = moonAge(origin);
|
||||
} while (age < 0);
|
||||
}
|
||||
start = ClockMath::floorDivideInt64(
|
||||
(int64_t)((int64_t)origin - HIJRA_MILLIS), (int64_t)kOneDay) + 1;
|
||||
CalendarCache::put(&gMonthCache, month, start, status);
|
||||
}
|
||||
trueMonthStartEnd :
|
||||
if(U_FAILURE(status)) {
|
||||
start = 0;
|
||||
}
|
||||
return start;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the "age" of the moon at the given time; this is the difference
|
||||
* in ecliptic latitude between the moon and the sun. This method simply
|
||||
* calls CalendarAstronomer.moonAge, converts to degrees,
|
||||
* and adjusts the result to be in the range [-180, 180].
|
||||
*
|
||||
* @param time The time at which the moon's age is desired,
|
||||
* in millis since 1/1/1970.
|
||||
*/
|
||||
double IslamicCalendar::moonAge(UDate time, UErrorCode &status)
|
||||
{
|
||||
double age = 0;
|
||||
|
||||
static UMutex astroLock; // pod bay door lock
|
||||
umtx_lock(&astroLock);
|
||||
if(gIslamicCalendarAstro == nullptr) {
|
||||
gIslamicCalendarAstro = new CalendarAstronomer();
|
||||
if (gIslamicCalendarAstro == nullptr) {
|
||||
status = U_MEMORY_ALLOCATION_ERROR;
|
||||
return age;
|
||||
}
|
||||
ucln_i18n_registerCleanup(UCLN_I18N_ISLAMIC_CALENDAR, calendar_islamic_cleanup);
|
||||
}
|
||||
gIslamicCalendarAstro->setTime(time);
|
||||
age = gIslamicCalendarAstro->getMoonAge();
|
||||
umtx_unlock(&astroLock);
|
||||
|
||||
double moonAge(UDate time) {
|
||||
// Convert to degrees and normalize...
|
||||
age = age * 180 / CalendarAstronomer::PI;
|
||||
double age = CalendarAstronomer(time).getMoonAge() * 180 / CalendarAstronomer::PI;
|
||||
if (age > 180) {
|
||||
age = age - 360;
|
||||
}
|
||||
|
@ -427,6 +404,7 @@ double IslamicCalendar::moonAge(UDate time, UErrorCode &status)
|
|||
return age;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
//----------------------------------------------------------------------
|
||||
// Calendar framework
|
||||
//----------------------------------------------------------------------
|
||||
|
@ -536,11 +514,7 @@ void IslamicCalendar::handleComputeFields(int32_t julianDay, UErrorCode &status)
|
|||
|
||||
int32_t startDate = (int32_t)uprv_floor(month * CalendarAstronomer::SYNODIC_MONTH);
|
||||
|
||||
double age = moonAge(internalGetTime(), status);
|
||||
if (U_FAILURE(status)) {
|
||||
status = U_MEMORY_ALLOCATION_ERROR;
|
||||
return;
|
||||
}
|
||||
double age = moonAge(internalGetTime());
|
||||
if ( days - startDate >= 25 && age > 0) {
|
||||
// If we're near the end of the month, assume next month and search backwards
|
||||
month++;
|
||||
|
|
|
@ -211,28 +211,7 @@ class U_I18N_API IslamicCalendar : public Calendar {
|
|||
* @param year The hijri month, 0-based
|
||||
*/
|
||||
virtual int64_t monthStart(int32_t year, int32_t month, UErrorCode& status) const;
|
||||
|
||||
/**
|
||||
* Find the day number on which a particular month of the true/lunar
|
||||
* Islamic calendar starts.
|
||||
*
|
||||
* @param month The month in question, origin 0 from the Hijri epoch
|
||||
*
|
||||
* @return The day number on which the given month starts.
|
||||
*/
|
||||
int32_t trueMonthStart(int32_t month) const;
|
||||
|
||||
private:
|
||||
/**
|
||||
* Return the "age" of the moon at the given time; this is the difference
|
||||
* in ecliptic latitude between the moon and the sun. This method simply
|
||||
* calls CalendarAstronomer.moonAge, converts to degrees,
|
||||
* and adjusts the resultto be in the range [-180, 180].
|
||||
*
|
||||
* @param time The time at which the moon's age is desired,
|
||||
* in millis since 1/1/1970.
|
||||
*/
|
||||
static double moonAge(UDate time, UErrorCode &status);
|
||||
|
||||
//----------------------------------------------------------------------
|
||||
// Calendar framework
|
||||
|
|
|
@ -23,7 +23,7 @@
|
|||
|
||||
#define CASE(id,test) case id: name = #test; if (exec) { logln(#test "---"); logln((UnicodeString)""); test(); } break
|
||||
|
||||
AstroTest::AstroTest(): astro(nullptr), gc(nullptr) {
|
||||
AstroTest::AstroTest(): gc(nullptr) {
|
||||
}
|
||||
|
||||
void AstroTest::runIndexedTest( int32_t index, UBool exec, const char* &name, char* /*par*/ )
|
||||
|
@ -35,9 +35,8 @@ void AstroTest::runIndexedTest( int32_t index, UBool exec, const char* &name, ch
|
|||
CASE(1,TestLunarPosition);
|
||||
CASE(2,TestCoordinates);
|
||||
CASE(3,TestCoverage);
|
||||
CASE(4,TestSunriseTimes);
|
||||
CASE(5,TestBasics);
|
||||
CASE(6,TestMoonAge);
|
||||
CASE(4,TestBasics);
|
||||
CASE(5,TestMoonAge);
|
||||
default: name = ""; break;
|
||||
}
|
||||
}
|
||||
|
@ -52,12 +51,12 @@ void AstroTest::runIndexedTest( int32_t index, UBool exec, const char* &name, ch
|
|||
} UPRV_BLOCK_MACRO_END
|
||||
|
||||
|
||||
void AstroTest::initAstro(UErrorCode &status) {
|
||||
void AstroTest::init(UErrorCode &status) {
|
||||
if(U_FAILURE(status)) return;
|
||||
|
||||
if((astro != nullptr) || (gc != nullptr)) {
|
||||
dataerrln("Err: initAstro() called twice!");
|
||||
closeAstro(status);
|
||||
if(gc != nullptr) {
|
||||
dataerrln("Err: init() called twice!");
|
||||
close(status);
|
||||
if(U_SUCCESS(status)) {
|
||||
status = U_INTERNAL_PROGRAM_ERROR;
|
||||
}
|
||||
|
@ -65,15 +64,10 @@ void AstroTest::initAstro(UErrorCode &status) {
|
|||
|
||||
if(U_FAILURE(status)) return;
|
||||
|
||||
astro = new CalendarAstronomer();
|
||||
gc = Calendar::createInstance(TimeZone::getGMT()->clone(), status);
|
||||
}
|
||||
|
||||
void AstroTest::closeAstro(UErrorCode &/*status*/) {
|
||||
if(astro != nullptr) {
|
||||
delete astro;
|
||||
astro = nullptr;
|
||||
}
|
||||
void AstroTest::close(UErrorCode &/*status*/) {
|
||||
if(gc != nullptr) {
|
||||
delete gc;
|
||||
gc = nullptr;
|
||||
|
@ -82,7 +76,7 @@ void AstroTest::closeAstro(UErrorCode &/*status*/) {
|
|||
|
||||
void AstroTest::TestSolarLongitude() {
|
||||
UErrorCode status = U_ZERO_ERROR;
|
||||
initAstro(status);
|
||||
init(status);
|
||||
ASSERT_OK(status);
|
||||
|
||||
struct {
|
||||
|
@ -97,15 +91,11 @@ void AstroTest::TestSolarLongitude() {
|
|||
gc->clear();
|
||||
gc->set(tests[i].d[0], tests[i].d[1]-1, tests[i].d[2], tests[i].d[3], tests[i].d[4]);
|
||||
|
||||
astro->setDate(gc->getTime(status));
|
||||
CalendarAstronomer astro(gc->getTime(status));
|
||||
|
||||
double longitude = astro->getSunLongitude();
|
||||
//longitude = 0;
|
||||
CalendarAstronomer::Equatorial result;
|
||||
astro->getSunPosition(result);
|
||||
logln((UnicodeString)"Sun position is " + result.toString() + (UnicodeString)"; " /* + result.toHmsString()*/ + " Sun longitude is " + longitude );
|
||||
astro.getSunLongitude();
|
||||
}
|
||||
closeAstro(status);
|
||||
close(status);
|
||||
ASSERT_OK(status);
|
||||
}
|
||||
|
||||
|
@ -113,7 +103,7 @@ void AstroTest::TestSolarLongitude() {
|
|||
|
||||
void AstroTest::TestLunarPosition() {
|
||||
UErrorCode status = U_ZERO_ERROR;
|
||||
initAstro(status);
|
||||
init(status);
|
||||
ASSERT_OK(status);
|
||||
|
||||
static const double tests[][7] = {
|
||||
|
@ -124,13 +114,13 @@ void AstroTest::TestLunarPosition() {
|
|||
for (int32_t i = 0; i < UPRV_LENGTHOF(tests); i++) {
|
||||
gc->clear();
|
||||
gc->set((int32_t)tests[i][0], (int32_t)tests[i][1]-1, (int32_t)tests[i][2], (int32_t)tests[i][3], (int32_t)tests[i][4]);
|
||||
astro->setDate(gc->getTime(status));
|
||||
CalendarAstronomer astro(gc->getTime(status));
|
||||
|
||||
const CalendarAstronomer::Equatorial& result = astro->getMoonPosition();
|
||||
const CalendarAstronomer::Equatorial& result = astro.getMoonPosition();
|
||||
logln((UnicodeString)"Moon position is " + result.toString() + (UnicodeString)"; " /* + result->toHmsString()*/);
|
||||
}
|
||||
|
||||
closeAstro(status);
|
||||
close(status);
|
||||
ASSERT_OK(status);
|
||||
}
|
||||
|
||||
|
@ -138,13 +128,14 @@ void AstroTest::TestLunarPosition() {
|
|||
|
||||
void AstroTest::TestCoordinates() {
|
||||
UErrorCode status = U_ZERO_ERROR;
|
||||
initAstro(status);
|
||||
init(status);
|
||||
ASSERT_OK(status);
|
||||
|
||||
CalendarAstronomer::Equatorial result;
|
||||
astro->eclipticToEquatorial(result, 139.686111 * CalendarAstronomer::PI / 180.0, 4.875278* CalendarAstronomer::PI / 180.0);
|
||||
CalendarAstronomer astro;
|
||||
astro.eclipticToEquatorial(result, 139.686111 * CalendarAstronomer::PI / 180.0, 4.875278* CalendarAstronomer::PI / 180.0);
|
||||
logln((UnicodeString)"result is " + result.toString() + (UnicodeString)"; " /* + result.toHmsString()*/ );
|
||||
closeAstro(status);
|
||||
close(status);
|
||||
ASSERT_OK(status);
|
||||
}
|
||||
|
||||
|
@ -152,7 +143,7 @@ void AstroTest::TestCoordinates() {
|
|||
|
||||
void AstroTest::TestCoverage() {
|
||||
UErrorCode status = U_ZERO_ERROR;
|
||||
initAstro(status);
|
||||
init(status);
|
||||
ASSERT_OK(status);
|
||||
GregorianCalendar *cal = new GregorianCalendar(1958, UCAL_AUGUST, 15,status);
|
||||
UDate then = cal->getTime(status);
|
||||
|
@ -162,21 +153,14 @@ void AstroTest::TestCoverage() {
|
|||
//Latitude: 34 degrees 05' North
|
||||
//Longitude: 118 degrees 22' West
|
||||
double laLat = 34 + 5./60, laLong = 360 - (118 + 22./60);
|
||||
CalendarAstronomer *myastro2 = new CalendarAstronomer(laLong, laLat);
|
||||
|
||||
double eclLat = laLat * CalendarAstronomer::PI / 360;
|
||||
double eclLong = laLong * CalendarAstronomer::PI / 360;
|
||||
|
||||
CalendarAstronomer::Ecliptic ecl(eclLat, eclLong);
|
||||
CalendarAstronomer::Equatorial eq;
|
||||
CalendarAstronomer::Horizon hor;
|
||||
|
||||
logln("ecliptic: " + ecl.toString());
|
||||
CalendarAstronomer *myastro3 = new CalendarAstronomer();
|
||||
myastro3->setJulianDay((4713 + 2000) * 365.25);
|
||||
|
||||
CalendarAstronomer *astronomers[] = {
|
||||
myastro, myastro2, myastro3, myastro2 // check cache
|
||||
myastro, myastro, myastro // check cache
|
||||
};
|
||||
|
||||
for (uint32_t i = 0; i < UPRV_LENGTHOF(astronomers); ++i) {
|
||||
|
@ -184,195 +168,19 @@ void AstroTest::TestCoverage() {
|
|||
|
||||
//logln("astro: " + astro);
|
||||
logln((UnicodeString)" date: " + anAstro->getTime());
|
||||
logln((UnicodeString)" cent: " + anAstro->getJulianCentury());
|
||||
logln((UnicodeString)" gw sidereal: " + anAstro->getGreenwichSidereal());
|
||||
logln((UnicodeString)" loc sidereal: " + anAstro->getLocalSidereal());
|
||||
logln((UnicodeString)" equ ecl: " + (anAstro->eclipticToEquatorial(eq,ecl)).toString());
|
||||
logln((UnicodeString)" equ long: " + (anAstro->eclipticToEquatorial(eq, eclLong)).toString());
|
||||
logln((UnicodeString)" horiz: " + (anAstro->eclipticToHorizon(hor, eclLong)).toString());
|
||||
logln((UnicodeString)" sunrise: " + (anAstro->getSunRiseSet(true)));
|
||||
logln((UnicodeString)" sunset: " + (anAstro->getSunRiseSet(false)));
|
||||
logln((UnicodeString)" moon phase: " + anAstro->getMoonPhase());
|
||||
logln((UnicodeString)" moonrise: " + (anAstro->getMoonRiseSet(true)));
|
||||
logln((UnicodeString)" moonset: " + (anAstro->getMoonRiseSet(false)));
|
||||
logln((UnicodeString)" prev summer solstice: " + (anAstro->getSunTime(CalendarAstronomer::SUMMER_SOLSTICE(), false)));
|
||||
logln((UnicodeString)" next summer solstice: " + (anAstro->getSunTime(CalendarAstronomer::SUMMER_SOLSTICE(), true)));
|
||||
logln((UnicodeString)" prev full moon: " + (anAstro->getMoonTime(CalendarAstronomer::FULL_MOON(), false)));
|
||||
logln((UnicodeString)" next full moon: " + (anAstro->getMoonTime(CalendarAstronomer::FULL_MOON(), true)));
|
||||
logln((UnicodeString)" equ ecl: " + (anAstro->eclipticToEquatorial(eq,eclLat,eclLong)).toString());
|
||||
}
|
||||
|
||||
delete myastro2;
|
||||
delete myastro3;
|
||||
delete myastro;
|
||||
delete cal;
|
||||
|
||||
closeAstro(status);
|
||||
close(status);
|
||||
ASSERT_OK(status);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void AstroTest::TestSunriseTimes() {
|
||||
UErrorCode status = U_ZERO_ERROR;
|
||||
initAstro(status);
|
||||
ASSERT_OK(status);
|
||||
|
||||
// logln("Sunrise/Sunset times for San Jose, California, USA");
|
||||
// CalendarAstronomer *astro2 = new CalendarAstronomer(-121.55, 37.20);
|
||||
// TimeZone *tz = TimeZone::createTimeZone("America/Los_Angeles");
|
||||
|
||||
// We'll use a table generated by the UNSO website as our reference
|
||||
// From: http://aa.usno.navy.mil/
|
||||
//-Location: W079 25, N43 40
|
||||
//-Rise and Set for the Sun for 2001
|
||||
//-Zone: 4h West of Greenwich
|
||||
int32_t USNO[] = {
|
||||
6,59, 19,45,
|
||||
6,57, 19,46,
|
||||
6,56, 19,47,
|
||||
6,54, 19,48,
|
||||
6,52, 19,49,
|
||||
6,50, 19,51,
|
||||
6,48, 19,52,
|
||||
6,47, 19,53,
|
||||
6,45, 19,54,
|
||||
6,43, 19,55,
|
||||
6,42, 19,57,
|
||||
6,40, 19,58,
|
||||
6,38, 19,59,
|
||||
6,36, 20, 0,
|
||||
6,35, 20, 1,
|
||||
6,33, 20, 3,
|
||||
6,31, 20, 4,
|
||||
6,30, 20, 5,
|
||||
6,28, 20, 6,
|
||||
6,27, 20, 7,
|
||||
6,25, 20, 8,
|
||||
6,23, 20,10,
|
||||
6,22, 20,11,
|
||||
6,20, 20,12,
|
||||
6,19, 20,13,
|
||||
6,17, 20,14,
|
||||
6,16, 20,16,
|
||||
6,14, 20,17,
|
||||
6,13, 20,18,
|
||||
6,11, 20,19,
|
||||
};
|
||||
|
||||
logln("Sunrise/Sunset times for Toronto, Canada");
|
||||
// long = 79 25", lat = 43 40"
|
||||
CalendarAstronomer astro3(-(79+25/60), 43+40/60);
|
||||
|
||||
// As of ICU4J 2.8 the ICU4J time zones implement pass-through
|
||||
// to the underlying JDK. Because of variation in the
|
||||
// underlying JDKs, we have to use a fixed-offset
|
||||
// SimpleTimeZone to get consistent behavior between JDKs.
|
||||
// The offset we want is [-18000000, 3600000] (raw, dst).
|
||||
// [aliu 10/15/03]
|
||||
|
||||
// TimeZone tz = TimeZone.getTimeZone("America/Montreal");
|
||||
SimpleTimeZone tz(-18000000 + 3600000, "Montreal(FIXED)");
|
||||
|
||||
GregorianCalendar cal(tz.clone(), Locale::getUS(), status);
|
||||
GregorianCalendar cal2(tz.clone(), Locale::getUS(), status);
|
||||
cal.clear();
|
||||
cal.set(UCAL_YEAR, 2001);
|
||||
cal.set(UCAL_MONTH, UCAL_APRIL);
|
||||
cal.set(UCAL_DAY_OF_MONTH, 1);
|
||||
cal.set(UCAL_HOUR_OF_DAY, 12); // must be near local noon for getSunRiseSet to work
|
||||
|
||||
LocalPointer<DateFormat> df_t(DateFormat::createTimeInstance(DateFormat::MEDIUM,Locale::getUS()));
|
||||
LocalPointer<DateFormat> df_d(DateFormat::createDateInstance(DateFormat::MEDIUM,Locale::getUS()));
|
||||
LocalPointer<DateFormat> df_dt(DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS()));
|
||||
if(!df_t.isValid() || !df_d.isValid() || !df_dt.isValid()) {
|
||||
dataerrln("couldn't create dateformats.");
|
||||
closeAstro(status);
|
||||
return;
|
||||
}
|
||||
df_t->adoptTimeZone(tz.clone());
|
||||
df_d->adoptTimeZone(tz.clone());
|
||||
df_dt->adoptTimeZone(tz.clone());
|
||||
|
||||
for (int32_t i=0; i < 30; i++) {
|
||||
logln("setDate\n");
|
||||
astro3.setDate(cal.getTime(status));
|
||||
logln("getRiseSet(true)\n");
|
||||
UDate sunrise = astro3.getSunRiseSet(true);
|
||||
logln("getRiseSet(false)\n");
|
||||
UDate sunset = astro3.getSunRiseSet(false);
|
||||
logln("end of getRiseSet\n");
|
||||
|
||||
cal2.setTime(cal.getTime(status), status);
|
||||
cal2.set(UCAL_SECOND, 0);
|
||||
cal2.set(UCAL_MILLISECOND, 0);
|
||||
|
||||
cal2.set(UCAL_HOUR_OF_DAY, USNO[4*i+0]);
|
||||
cal2.set(UCAL_MINUTE, USNO[4*i+1]);
|
||||
UDate exprise = cal2.getTime(status);
|
||||
cal2.set(UCAL_HOUR_OF_DAY, USNO[4*i+2]);
|
||||
cal2.set(UCAL_MINUTE, USNO[4*i+3]);
|
||||
UDate expset = cal2.getTime(status);
|
||||
// Compute delta of what we got to the USNO data, in seconds
|
||||
int32_t deltarise = (int32_t)uprv_fabs((sunrise - exprise) / 1000);
|
||||
int32_t deltaset = (int32_t)uprv_fabs((sunset - expset) / 1000);
|
||||
|
||||
// Allow a deviation of 0..MAX_DEV seconds
|
||||
// It would be nice to get down to 60 seconds, but at this
|
||||
// point that appears to be impossible without a redo of the
|
||||
// algorithm using something more advanced than Duffett-Smith.
|
||||
int32_t MAX_DEV = 180;
|
||||
UnicodeString s1, s2, s3, s4, s5;
|
||||
if (deltarise > MAX_DEV || deltaset > MAX_DEV) {
|
||||
if (deltarise > MAX_DEV) {
|
||||
errln("FAIL: (rise) " + df_d->format(cal.getTime(status),s1) +
|
||||
", Sunrise: " + df_dt->format(sunrise, s2) +
|
||||
" (USNO " + df_t->format(exprise,s3) +
|
||||
" d=" + deltarise + "s)");
|
||||
} else {
|
||||
logln(df_d->format(cal.getTime(status),s1) +
|
||||
", Sunrise: " + df_dt->format(sunrise,s2) +
|
||||
" (USNO " + df_t->format(exprise,s3) + ")");
|
||||
}
|
||||
s1.remove(); s2.remove(); s3.remove(); s4.remove(); s5.remove();
|
||||
if (deltaset > MAX_DEV) {
|
||||
errln("FAIL: (set) " + df_d->format(cal.getTime(status),s1) +
|
||||
", Sunset: " + df_dt->format(sunset,s2) +
|
||||
" (USNO " + df_t->format(expset,s3) +
|
||||
" d=" + deltaset + "s)");
|
||||
} else {
|
||||
logln(df_d->format(cal.getTime(status),s1) +
|
||||
", Sunset: " + df_dt->format(sunset,s2) +
|
||||
" (USNO " + df_t->format(expset,s3) + ")");
|
||||
}
|
||||
} else {
|
||||
logln(df_d->format(cal.getTime(status),s1) +
|
||||
", Sunrise: " + df_dt->format(sunrise,s2) +
|
||||
" (USNO " + df_t->format(exprise,s3) + ")" +
|
||||
", Sunset: " + df_dt->format(sunset,s4) +
|
||||
" (USNO " + df_t->format(expset,s5) + ")");
|
||||
}
|
||||
cal.add(UCAL_DATE, 1, status);
|
||||
}
|
||||
|
||||
// CalendarAstronomer a = new CalendarAstronomer(-(71+5/60), 42+37/60);
|
||||
// cal.clear();
|
||||
// cal.set(cal.YEAR, 1986);
|
||||
// cal.set(cal.MONTH, cal.MARCH);
|
||||
// cal.set(cal.DATE, 10);
|
||||
// cal.set(cal.YEAR, 1988);
|
||||
// cal.set(cal.MONTH, cal.JULY);
|
||||
// cal.set(cal.DATE, 27);
|
||||
// a.setDate(cal.getTime());
|
||||
// long r = a.getSunRiseSet2(true);
|
||||
closeAstro(status);
|
||||
ASSERT_OK(status);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void AstroTest::TestBasics() {
|
||||
UErrorCode status = U_ZERO_ERROR;
|
||||
initAstro(status);
|
||||
init(status);
|
||||
if (U_FAILURE(status)) {
|
||||
dataerrln("Got error: %s", u_errorName(status));
|
||||
return;
|
||||
|
@ -383,7 +191,7 @@ void AstroTest::TestBasics() {
|
|||
LocalPointer<DateFormat> d3(DateFormat::createDateTimeInstance(DateFormat::MEDIUM,DateFormat::MEDIUM,Locale::getUS()));
|
||||
if (d3.isNull()) {
|
||||
dataerrln("Got error: %s", u_errorName(status));
|
||||
closeAstro(status);
|
||||
close(status);
|
||||
return;
|
||||
}
|
||||
d3->setTimeZone(*TimeZone::getGMT());
|
||||
|
@ -407,8 +215,8 @@ void AstroTest::TestBasics() {
|
|||
UnicodeString s;
|
||||
logln(UnicodeString("cal3 = ") + d3->format(cal3.getTime(status),s));
|
||||
}
|
||||
astro->setTime(cal3.getTime(status));
|
||||
double jd = astro->getJulianDay() - 2447891.5;
|
||||
CalendarAstronomer astro(cal3.getTime(status));
|
||||
double jd = astro.getJulianDay() - 2447891.5;
|
||||
double exp = -3444.;
|
||||
if (jd == exp) {
|
||||
UnicodeString s;
|
||||
|
@ -428,14 +236,14 @@ void AstroTest::TestBasics() {
|
|||
// astro.foo();
|
||||
|
||||
ASSERT_OK(status);
|
||||
closeAstro(status);
|
||||
close(status);
|
||||
ASSERT_OK(status);
|
||||
|
||||
}
|
||||
|
||||
void AstroTest::TestMoonAge(){
|
||||
UErrorCode status = U_ZERO_ERROR;
|
||||
initAstro(status);
|
||||
init(status);
|
||||
ASSERT_OK(status);
|
||||
|
||||
// more testcases are around the date 05/20/2012
|
||||
|
@ -461,9 +269,9 @@ void AstroTest::TestMoonAge(){
|
|||
(int32_t)testcase[i][2]+" Hour "+(int32_t)testcase[i][3]+" Minutes "+(int32_t)testcase[i][4]+
|
||||
" Seconds "+(int32_t)testcase[i][5]);
|
||||
gc->set((int32_t)testcase[i][0], (int32_t)testcase[i][1]-1, (int32_t)testcase[i][2], (int32_t)testcase[i][3], (int32_t)testcase[i][4], (int32_t)testcase[i][5]);
|
||||
astro->setDate(gc->getTime(status));
|
||||
CalendarAstronomer astro(gc->getTime(status));
|
||||
double expectedAge = (angle[i]*CalendarAstronomer::PI)/180;
|
||||
double got = astro->getMoonAge();
|
||||
double got = astro.getMoonAge();
|
||||
//logln(testString);
|
||||
if(!(got>expectedAge-precision && got<expectedAge+precision)){
|
||||
errln((UnicodeString)"FAIL: expected " + expectedAge +
|
||||
|
@ -473,7 +281,7 @@ void AstroTest::TestMoonAge(){
|
|||
" got " + got);
|
||||
}
|
||||
}
|
||||
closeAstro(status);
|
||||
close(status);
|
||||
ASSERT_OK(status);
|
||||
}
|
||||
|
||||
|
|
|
@ -34,16 +34,13 @@ public:
|
|||
|
||||
void TestCoverage();
|
||||
|
||||
void TestSunriseTimes();
|
||||
|
||||
void TestBasics();
|
||||
|
||||
void TestMoonAge();
|
||||
private:
|
||||
void initAstro(UErrorCode&);
|
||||
void closeAstro(UErrorCode&);
|
||||
void init(UErrorCode&);
|
||||
void close(UErrorCode&);
|
||||
|
||||
CalendarAstronomer *astro;
|
||||
Calendar *gc;
|
||||
|
||||
};
|
||||
|
|
|
@ -203,15 +203,6 @@ public class CalendarAstronomer {
|
|||
this(System.currentTimeMillis());
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct a new <code>CalendarAstronomer</code> object that is initialized to
|
||||
* the specified date and time.
|
||||
* @internal
|
||||
*/
|
||||
public CalendarAstronomer(Date d) {
|
||||
this(d.getTime());
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct a new <code>CalendarAstronomer</code> object that is initialized to
|
||||
* the specified time. The time is expressed as a number of milliseconds since
|
||||
|
@ -224,32 +215,9 @@ public class CalendarAstronomer {
|
|||
time = aTime;
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct a new <code>CalendarAstronomer</code> object with the given
|
||||
* latitude and longitude. The object's time is set to the current
|
||||
* date and time.
|
||||
* <p>
|
||||
* @param longitude The desired longitude, in <em>degrees</em> east of
|
||||
* the Greenwich meridian.
|
||||
*
|
||||
* @param latitude The desired latitude, in <em>degrees</em>. Positive
|
||||
* values signify North, negative South.
|
||||
*
|
||||
* @see java.util.Date#getTime()
|
||||
* @internal
|
||||
*/
|
||||
public CalendarAstronomer(double longitude, double latitude) {
|
||||
this();
|
||||
fLongitude = normPI(longitude * DEG_RAD);
|
||||
fLatitude = normPI(latitude * DEG_RAD);
|
||||
fGmtOffset = (long)(fLongitude * 24 * HOUR_MS / PI2);
|
||||
}
|
||||
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// Time and date getters and setters
|
||||
//-------------------------------------------------------------------------
|
||||
|
||||
/**
|
||||
* Set the current date and time of this <code>CalendarAstronomer</code> object. All
|
||||
* astronomical calculations are performed based on this time setting.
|
||||
|
@ -266,19 +234,6 @@ public class CalendarAstronomer {
|
|||
clearCache();
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the current date and time of this <code>CalendarAstronomer</code> object. All
|
||||
* astronomical calculations are performed based on this time setting.
|
||||
*
|
||||
* @param date the time and date, expressed as a <code>Date</code> object.
|
||||
*
|
||||
* @see #setTime
|
||||
* @see #getDate
|
||||
* @internal
|
||||
*/
|
||||
public void setDate(Date date) {
|
||||
setTime(date.getTime());
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the current date and time of this <code>CalendarAstronomer</code> object. All
|
||||
|
@ -341,93 +296,10 @@ public class CalendarAstronomer {
|
|||
return julianDay;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return this object's time expressed in julian centuries:
|
||||
* the number of centuries after 1/1/1900 AD, 12:00 GMT
|
||||
*
|
||||
* @see #getJulianDay
|
||||
* @internal
|
||||
*/
|
||||
public double getJulianCentury() {
|
||||
if (julianCentury == INVALID) {
|
||||
julianCentury = (getJulianDay() - 2415020.0) / 36525;
|
||||
}
|
||||
return julianCentury;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the current Greenwich sidereal time, measured in hours
|
||||
* @internal
|
||||
*/
|
||||
public double getGreenwichSidereal() {
|
||||
if (siderealTime == INVALID) {
|
||||
// See page 86 of "Practical Astronomy with your Calculator",
|
||||
// by Peter Duffet-Smith, for details on the algorithm.
|
||||
|
||||
double UT = normalize((double)time/HOUR_MS, 24);
|
||||
|
||||
siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24);
|
||||
}
|
||||
return siderealTime;
|
||||
}
|
||||
|
||||
private double getSiderealOffset() {
|
||||
if (siderealT0 == INVALID) {
|
||||
double JD = Math.floor(getJulianDay() - 0.5) + 0.5;
|
||||
double S = JD - 2451545.0;
|
||||
double T = S / 36525.0;
|
||||
siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24);
|
||||
}
|
||||
return siderealT0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the current local sidereal time, measured in hours
|
||||
* @internal
|
||||
*/
|
||||
public double getLocalSidereal() {
|
||||
return normalize(getGreenwichSidereal() + (double)fGmtOffset/HOUR_MS, 24);
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts local sidereal time to Universal Time.
|
||||
*
|
||||
* @param lst The Local Sidereal Time, in hours since sidereal midnight
|
||||
* on this object's current date.
|
||||
*
|
||||
* @return The corresponding Universal Time, in milliseconds since
|
||||
* 1 Jan 1970, GMT.
|
||||
*/
|
||||
private long lstToUT(double lst) {
|
||||
// Convert to local mean time
|
||||
double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24);
|
||||
|
||||
// Then find local midnight on this day
|
||||
long base = DAY_MS * ((time + fGmtOffset)/DAY_MS) - fGmtOffset;
|
||||
|
||||
//out(" lt =" + lt + " hours");
|
||||
//out(" base=" + new Date(base));
|
||||
|
||||
return base + (long)(lt * HOUR_MS);
|
||||
}
|
||||
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// Coordinate transformations, all based on the current time of this object
|
||||
//-------------------------------------------------------------------------
|
||||
|
||||
/**
|
||||
* Convert from ecliptic to equatorial coordinates.
|
||||
*
|
||||
* @param ecliptic A point in the sky in ecliptic coordinates.
|
||||
* @return The corresponding point in equatorial coordinates.
|
||||
* @internal
|
||||
*/
|
||||
public final Equatorial eclipticToEquatorial(Ecliptic ecliptic)
|
||||
{
|
||||
return eclipticToEquatorial(ecliptic.longitude, ecliptic.latitude);
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert from ecliptic to equatorial coordinates.
|
||||
*
|
||||
|
@ -457,42 +329,6 @@ public class CalendarAstronomer {
|
|||
Math.asin(sinB*cosE + cosB*sinE*sinL) );
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert from ecliptic longitude to equatorial coordinates.
|
||||
*
|
||||
* @param eclipLong The ecliptic longitude
|
||||
*
|
||||
* @return The corresponding point in equatorial coordinates.
|
||||
* @internal
|
||||
*/
|
||||
public final Equatorial eclipticToEquatorial(double eclipLong)
|
||||
{
|
||||
return eclipticToEquatorial(eclipLong, 0); // TODO: optimize
|
||||
}
|
||||
|
||||
/**
|
||||
* @internal
|
||||
*/
|
||||
public Horizon eclipticToHorizon(double eclipLong)
|
||||
{
|
||||
Equatorial equatorial = eclipticToEquatorial(eclipLong);
|
||||
|
||||
double H = getLocalSidereal()*PI/12 - equatorial.ascension; // Hour-angle
|
||||
|
||||
double sinH = Math.sin(H);
|
||||
double cosH = Math.cos(H);
|
||||
double sinD = Math.sin(equatorial.declination);
|
||||
double cosD = Math.cos(equatorial.declination);
|
||||
double sinL = Math.sin(fLatitude);
|
||||
double cosL = Math.cos(fLatitude);
|
||||
|
||||
double altitude = Math.asin(sinD*sinL + cosD*cosL*cosH);
|
||||
double azimuth = Math.atan2(-cosD*cosL*sinH, sinD - sinL * Math.sin(altitude));
|
||||
|
||||
return new Horizon(azimuth, altitude);
|
||||
}
|
||||
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// The Sun
|
||||
//-------------------------------------------------------------------------
|
||||
|
@ -606,44 +442,11 @@ public class CalendarAstronomer {
|
|||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* The position of the sun at this object's current date and time,
|
||||
* in equatorial coordinates.
|
||||
* @internal
|
||||
*/
|
||||
public Equatorial getSunPosition() {
|
||||
return eclipticToEquatorial(getSunLongitude(), 0);
|
||||
}
|
||||
|
||||
private static class SolarLongitude {
|
||||
double value;
|
||||
SolarLongitude(double val) { value = val; }
|
||||
}
|
||||
|
||||
/**
|
||||
* Constant representing the vernal equinox.
|
||||
* For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}.
|
||||
* Note: In this case, "vernal" refers to the northern hemisphere's seasons.
|
||||
* @internal
|
||||
*/
|
||||
public static final SolarLongitude VERNAL_EQUINOX = new SolarLongitude(0);
|
||||
|
||||
/**
|
||||
* Constant representing the summer solstice.
|
||||
* For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}.
|
||||
* Note: In this case, "summer" refers to the northern hemisphere's seasons.
|
||||
* @internal
|
||||
*/
|
||||
public static final SolarLongitude SUMMER_SOLSTICE = new SolarLongitude(PI/2);
|
||||
|
||||
/**
|
||||
* Constant representing the autumnal equinox.
|
||||
* For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}.
|
||||
* Note: In this case, "autumn" refers to the northern hemisphere's seasons.
|
||||
* @internal
|
||||
*/
|
||||
public static final SolarLongitude AUTUMN_EQUINOX = new SolarLongitude(PI);
|
||||
|
||||
/**
|
||||
* Constant representing the winter solstice.
|
||||
* For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}.
|
||||
|
@ -676,312 +479,6 @@ public class CalendarAstronomer {
|
|||
return getSunTime(desired.value, next);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the time (GMT) of sunrise or sunset on the local date to which
|
||||
* this calendar is currently set.
|
||||
*
|
||||
* NOTE: This method only works well if this object is set to a
|
||||
* time near local noon. Because of variations between the local
|
||||
* official time zone and the geographic longitude, the
|
||||
* computation can flop over into an adjacent day if this object
|
||||
* is set to a time near local midnight.
|
||||
*
|
||||
* @internal
|
||||
*/
|
||||
public long getSunRiseSet(boolean rise) {
|
||||
long t0 = time;
|
||||
|
||||
// Make a rough guess: 6am or 6pm local time on the current day
|
||||
long noon = ((time + fGmtOffset)/DAY_MS)*DAY_MS - fGmtOffset + 12*HOUR_MS;
|
||||
|
||||
setTime(noon + (rise ? -6L : 6L) * HOUR_MS);
|
||||
|
||||
long t = riseOrSet(new CoordFunc() {
|
||||
@Override
|
||||
public Equatorial eval() { return getSunPosition(); }
|
||||
},
|
||||
rise,
|
||||
.533 * DEG_RAD, // Angular Diameter
|
||||
34 /60.0 * DEG_RAD, // Refraction correction
|
||||
MINUTE_MS / 12); // Desired accuracy
|
||||
|
||||
setTime(t0);
|
||||
return t;
|
||||
}
|
||||
|
||||
// Commented out - currently unused. ICU 2.6, Alan
|
||||
// //-------------------------------------------------------------------------
|
||||
// // Alternate Sun Rise/Set
|
||||
// // See Duffett-Smith p.93
|
||||
// //-------------------------------------------------------------------------
|
||||
//
|
||||
// // This yields worse results (as compared to USNO data) than getSunRiseSet().
|
||||
// /**
|
||||
// * TODO Make this public when the entire class is package-private.
|
||||
// */
|
||||
// /*public*/ long getSunRiseSet2(boolean rise) {
|
||||
// // 1. Calculate coordinates of the sun's center for midnight
|
||||
// double jd = Math.floor(getJulianDay() - 0.5) + 0.5;
|
||||
// double[] sl = getSunLongitude(jd);
|
||||
// double lambda1 = sl[0];
|
||||
// Equatorial pos1 = eclipticToEquatorial(lambda1, 0);
|
||||
//
|
||||
// // 2. Add ... to lambda to get position 24 hours later
|
||||
// double lambda2 = lambda1 + 0.985647*DEG_RAD;
|
||||
// Equatorial pos2 = eclipticToEquatorial(lambda2, 0);
|
||||
//
|
||||
// // 3. Calculate LSTs of rising and setting for these two positions
|
||||
// double tanL = Math.tan(fLatitude);
|
||||
// double H = Math.acos(-tanL * Math.tan(pos1.declination));
|
||||
// double lst1r = (PI2 + pos1.ascension - H) * 24 / PI2;
|
||||
// double lst1s = (pos1.ascension + H) * 24 / PI2;
|
||||
// H = Math.acos(-tanL * Math.tan(pos2.declination));
|
||||
// double lst2r = (PI2-H + pos2.ascension ) * 24 / PI2;
|
||||
// double lst2s = (H + pos2.ascension ) * 24 / PI2;
|
||||
// if (lst1r > 24) lst1r -= 24;
|
||||
// if (lst1s > 24) lst1s -= 24;
|
||||
// if (lst2r > 24) lst2r -= 24;
|
||||
// if (lst2s > 24) lst2s -= 24;
|
||||
//
|
||||
// // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2.
|
||||
// double gst1r = lstToGst(lst1r);
|
||||
// double gst1s = lstToGst(lst1s);
|
||||
// double gst2r = lstToGst(lst2r);
|
||||
// double gst2s = lstToGst(lst2s);
|
||||
// if (gst1r > gst2r) gst2r += 24;
|
||||
// if (gst1s > gst2s) gst2s += 24;
|
||||
//
|
||||
// // 5. Calculate GST at 0h UT of this date
|
||||
// double t00 = utToGst(0);
|
||||
//
|
||||
// // 6. Calculate GST at 0h on the observer's longitude
|
||||
// double offset = Math.round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.
|
||||
// double t00p = t00 - offset*1.002737909;
|
||||
// if (t00p < 0) t00p += 24; // do NOT normalize
|
||||
//
|
||||
// // 7. Adjust
|
||||
// if (gst1r < t00p) {
|
||||
// gst1r += 24;
|
||||
// gst2r += 24;
|
||||
// }
|
||||
// if (gst1s < t00p) {
|
||||
// gst1s += 24;
|
||||
// gst2s += 24;
|
||||
// }
|
||||
//
|
||||
// // 8.
|
||||
// double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r);
|
||||
// double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s);
|
||||
//
|
||||
// // 9. Correct for parallax, refraction, and sun's diameter
|
||||
// double dec = (pos1.declination + pos2.declination) / 2;
|
||||
// double psi = Math.acos(Math.sin(fLatitude) / Math.cos(dec));
|
||||
// double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter
|
||||
// double y = Math.asin(Math.sin(x) / Math.sin(psi)) * RAD_DEG;
|
||||
// double delta_t = 240 * y / Math.cos(dec) / 3600; // hours
|
||||
//
|
||||
// // 10. Add correction to GSTs, subtract from GSTr
|
||||
// gstr -= delta_t;
|
||||
// gsts += delta_t;
|
||||
//
|
||||
// // 11. Convert GST to UT and then to local civil time
|
||||
// double ut = gstToUt(rise ? gstr : gsts);
|
||||
// //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t);
|
||||
// long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day
|
||||
// return midnight + (long) (ut * 3600000);
|
||||
// }
|
||||
|
||||
// Commented out - currently unused. ICU 2.6, Alan
|
||||
// /**
|
||||
// * Convert local sidereal time to Greenwich sidereal time.
|
||||
// * Section 15. Duffett-Smith p.21
|
||||
// * @param lst in hours (0..24)
|
||||
// * @return GST in hours (0..24)
|
||||
// */
|
||||
// double lstToGst(double lst) {
|
||||
// double delta = fLongitude * 24 / PI2;
|
||||
// return normalize(lst - delta, 24);
|
||||
// }
|
||||
|
||||
// Commented out - currently unused. ICU 2.6, Alan
|
||||
// /**
|
||||
// * Convert UT to GST on this date.
|
||||
// * Section 12. Duffett-Smith p.17
|
||||
// * @param ut in hours
|
||||
// * @return GST in hours
|
||||
// */
|
||||
// double utToGst(double ut) {
|
||||
// return normalize(getT0() + ut*1.002737909, 24);
|
||||
// }
|
||||
|
||||
// Commented out - currently unused. ICU 2.6, Alan
|
||||
// /**
|
||||
// * Convert GST to UT on this date.
|
||||
// * Section 13. Duffett-Smith p.18
|
||||
// * @param gst in hours
|
||||
// * @return UT in hours
|
||||
// */
|
||||
// double gstToUt(double gst) {
|
||||
// return normalize(gst - getT0(), 24) * 0.9972695663;
|
||||
// }
|
||||
|
||||
// Commented out - currently unused. ICU 2.6, Alan
|
||||
// double getT0() {
|
||||
// // Common computation for UT <=> GST
|
||||
//
|
||||
// // Find JD for 0h UT
|
||||
// double jd = Math.floor(getJulianDay() - 0.5) + 0.5;
|
||||
//
|
||||
// double s = jd - 2451545.0;
|
||||
// double t = s / 36525.0;
|
||||
// double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t;
|
||||
// return t0;
|
||||
// }
|
||||
|
||||
// Commented out - currently unused. ICU 2.6, Alan
|
||||
// //-------------------------------------------------------------------------
|
||||
// // Alternate Sun Rise/Set
|
||||
// // See sci.astro FAQ
|
||||
// // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html
|
||||
// //-------------------------------------------------------------------------
|
||||
//
|
||||
// // Note: This method appears to produce inferior accuracy as
|
||||
// // compared to getSunRiseSet().
|
||||
//
|
||||
// /**
|
||||
// * TODO Make this public when the entire class is package-private.
|
||||
// */
|
||||
// /*public*/ long getSunRiseSet3(boolean rise) {
|
||||
//
|
||||
// // Compute day number for 0.0 Jan 2000 epoch
|
||||
// double d = (double)(time - EPOCH_2000_MS) / DAY_MS;
|
||||
//
|
||||
// // Now compute the Local Sidereal Time, LST:
|
||||
// //
|
||||
// double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/
|
||||
// fLongitude*RAD_DEG;
|
||||
// //
|
||||
// // (east long. positive). Note that LST is here expressed in degrees,
|
||||
// // where 15 degrees corresponds to one hour. Since LST really is an angle,
|
||||
// // it's convenient to use one unit---degrees---throughout.
|
||||
//
|
||||
// // COMPUTING THE SUN'S POSITION
|
||||
// // ----------------------------
|
||||
// //
|
||||
// // To be able to compute the Sun's rise/set times, you need to be able to
|
||||
// // compute the Sun's position at any time. First compute the "day
|
||||
// // number" d as outlined above, for the desired moment. Next compute:
|
||||
// //
|
||||
// double oblecl = 23.4393 - 3.563E-7 * d;
|
||||
// //
|
||||
// double w = 282.9404 + 4.70935E-5 * d;
|
||||
// double M = 356.0470 + 0.9856002585 * d;
|
||||
// double e = 0.016709 - 1.151E-9 * d;
|
||||
// //
|
||||
// // This is the obliquity of the ecliptic, plus some of the elements of
|
||||
// // the Sun's apparent orbit (i.e., really the Earth's orbit): w =
|
||||
// // argument of perihelion, M = mean anomaly, e = eccentricity.
|
||||
// // Semi-major axis is here assumed to be exactly 1.0 (while not strictly
|
||||
// // true, this is still an accurate approximation). Next compute E, the
|
||||
// // eccentric anomaly:
|
||||
// //
|
||||
// double E = M + e*(180/PI) * Math.sin(M*DEG_RAD) * ( 1.0 + e*Math.cos(M*DEG_RAD) );
|
||||
// //
|
||||
// // where E and M are in degrees. This is it---no further iterations are
|
||||
// // needed because we know e has a sufficiently small value. Next compute
|
||||
// // the true anomaly, v, and the distance, r:
|
||||
// //
|
||||
// /* r * cos(v) = */ double A = Math.cos(E*DEG_RAD) - e;
|
||||
// /* r * sin(v) = */ double B = Math.sqrt(1 - e*e) * Math.sin(E*DEG_RAD);
|
||||
// //
|
||||
// // and
|
||||
// //
|
||||
// // r = sqrt( A*A + B*B )
|
||||
// double v = Math.atan2( B, A )*RAD_DEG;
|
||||
// //
|
||||
// // The Sun's true longitude, slon, can now be computed:
|
||||
// //
|
||||
// double slon = v + w;
|
||||
// //
|
||||
// // Since the Sun is always at the ecliptic (or at least very very close to
|
||||
// // it), we can use simplified formulae to convert slon (the Sun's ecliptic
|
||||
// // longitude) to sRA and sDec (the Sun's RA and Dec):
|
||||
// //
|
||||
// // sin(slon) * cos(oblecl)
|
||||
// // tan(sRA) = -------------------------
|
||||
// // cos(slon)
|
||||
// //
|
||||
// // sin(sDec) = sin(oblecl) * sin(slon)
|
||||
// //
|
||||
// // As was the case when computing az, the Azimuth, if possible use an
|
||||
// // atan2() function to compute sRA.
|
||||
//
|
||||
// double sRA = Math.atan2(Math.sin(slon*DEG_RAD) * Math.cos(oblecl*DEG_RAD), Math.cos(slon*DEG_RAD))*RAD_DEG;
|
||||
//
|
||||
// double sin_sDec = Math.sin(oblecl*DEG_RAD) * Math.sin(slon*DEG_RAD);
|
||||
// double sDec = Math.asin(sin_sDec)*RAD_DEG;
|
||||
//
|
||||
// // COMPUTING RISE AND SET TIMES
|
||||
// // ----------------------------
|
||||
// //
|
||||
// // To compute when an object rises or sets, you must compute when it
|
||||
// // passes the meridian and the HA of rise/set. Then the rise time is
|
||||
// // the meridian time minus HA for rise/set, and the set time is the
|
||||
// // meridian time plus the HA for rise/set.
|
||||
// //
|
||||
// // To find the meridian time, compute the Local Sidereal Time at 0h local
|
||||
// // time (or 0h UT if you prefer to work in UT) as outlined above---name
|
||||
// // that quantity LST0. The Meridian Time, MT, will now be:
|
||||
// //
|
||||
// // MT = RA - LST0
|
||||
// double MT = normalize(sRA - LST, 360);
|
||||
// //
|
||||
// // where "RA" is the object's Right Ascension (in degrees!). If negative,
|
||||
// // add 360 deg to MT. If the object is the Sun, leave the time as it is,
|
||||
// // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from
|
||||
// // sidereal to solar time. Now, compute HA for rise/set, name that
|
||||
// // quantity HA0:
|
||||
// //
|
||||
// // sin(h0) - sin(lat) * sin(Dec)
|
||||
// // cos(HA0) = ---------------------------------
|
||||
// // cos(lat) * cos(Dec)
|
||||
// //
|
||||
// // where h0 is the altitude selected to represent rise/set. For a purely
|
||||
// // mathematical horizon, set h0 = 0 and simplify to:
|
||||
// //
|
||||
// // cos(HA0) = - tan(lat) * tan(Dec)
|
||||
// //
|
||||
// // If you want to account for refraction on the atmosphere, set h0 = -35/60
|
||||
// // degrees (-35 arc minutes), and if you want to compute the rise/set times
|
||||
// // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes).
|
||||
// //
|
||||
// double h0 = -50/60 * DEG_RAD;
|
||||
//
|
||||
// double HA0 = Math.acos(
|
||||
// (Math.sin(h0) - Math.sin(fLatitude) * sin_sDec) /
|
||||
// (Math.cos(fLatitude) * Math.cos(sDec*DEG_RAD)))*RAD_DEG;
|
||||
//
|
||||
// // When HA0 has been computed, leave it as it is for the Sun but multiply
|
||||
// // by 365.2422/366.2422 for stellar objects, to convert from sidereal to
|
||||
// // solar time. Finally compute:
|
||||
// //
|
||||
// // Rise time = MT - HA0
|
||||
// // Set time = MT + HA0
|
||||
// //
|
||||
// // convert the times from degrees to hours by dividing by 15.
|
||||
// //
|
||||
// // If you'd like to check that your calculations are accurate or just
|
||||
// // need a quick result, check the USNO's Sun or Moon Rise/Set Table,
|
||||
// // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>.
|
||||
//
|
||||
// double result = MT + (rise ? -HA0 : HA0); // in degrees
|
||||
//
|
||||
// // Find UT midnight on this day
|
||||
// long midnight = DAY_MS * (time / DAY_MS);
|
||||
//
|
||||
// return midnight + (long) (result * 3600000 / 15);
|
||||
// }
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// The Moon
|
||||
//-------------------------------------------------------------------------
|
||||
|
@ -1048,7 +545,7 @@ public class CalendarAstronomer {
|
|||
double a4 = 0.2140*PI/180 * Math.sin(2 * meanAnomalyMoon);
|
||||
|
||||
// Now find the moon's corrected longitude
|
||||
moonLongitude = meanLongitude + evection + center - annual + a4;
|
||||
double moonLongitude = meanLongitude + evection + center - annual + a4;
|
||||
|
||||
//
|
||||
// And finally, find the variation, caused by the fact that the sun's
|
||||
|
@ -1102,26 +599,6 @@ public class CalendarAstronomer {
|
|||
return norm2PI(moonEclipLong - sunLongitude);
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the phase of the moon at the time set in this object.
|
||||
* The returned phase is a <code>double</code> in the range
|
||||
* <code>0 <= phase < 1</code>, interpreted as follows:
|
||||
* <ul>
|
||||
* <li>0.00: New moon
|
||||
* <li>0.25: First quarter
|
||||
* <li>0.50: Full moon
|
||||
* <li>0.75: Last quarter
|
||||
* </ul>
|
||||
*
|
||||
* @see #getMoonAge
|
||||
* @internal
|
||||
*/
|
||||
public double getMoonPhase() {
|
||||
// See page 147 of "Practical Astronomy with your Calculator",
|
||||
// by Peter Duffet-Smith, for details on the algorithm.
|
||||
return 0.5 * (1 - Math.cos(getMoonAge()));
|
||||
}
|
||||
|
||||
private static class MoonAge {
|
||||
double value;
|
||||
MoonAge(double val) { value = val; }
|
||||
|
@ -1134,27 +611,6 @@ public class CalendarAstronomer {
|
|||
*/
|
||||
public static final MoonAge NEW_MOON = new MoonAge(0);
|
||||
|
||||
/**
|
||||
* Constant representing the moon's first quarter.
|
||||
* For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime}
|
||||
* @internal
|
||||
*/
|
||||
public static final MoonAge FIRST_QUARTER = new MoonAge(PI/2);
|
||||
|
||||
/**
|
||||
* Constant representing a full moon.
|
||||
* For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime}
|
||||
* @internal
|
||||
*/
|
||||
public static final MoonAge FULL_MOON = new MoonAge(PI);
|
||||
|
||||
/**
|
||||
* Constant representing the moon's last quarter.
|
||||
* For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime}
|
||||
* @internal
|
||||
*/
|
||||
public static final MoonAge LAST_QUARTER = new MoonAge((PI*3)/2);
|
||||
|
||||
/**
|
||||
* Find the next or previous time at which the Moon's ecliptic
|
||||
* longitude will have the desired value.
|
||||
|
@ -1188,23 +644,6 @@ public class CalendarAstronomer {
|
|||
return getMoonTime(desired.value, next);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the time (GMT) of sunrise or sunset on the local date to which
|
||||
* this calendar is currently set.
|
||||
* @internal
|
||||
*/
|
||||
public long getMoonRiseSet(boolean rise)
|
||||
{
|
||||
return riseOrSet(new CoordFunc() {
|
||||
@Override
|
||||
public Equatorial eval() { return getMoonPosition(); }
|
||||
},
|
||||
rise,
|
||||
.533 * DEG_RAD, // Angular Diameter
|
||||
34 /60.0 * DEG_RAD, // Refraction correction
|
||||
MINUTE_MS); // Desired accuracy
|
||||
}
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// Interpolation methods for finding the time at which a given event occurs
|
||||
//-------------------------------------------------------------------------
|
||||
|
@ -1281,48 +720,6 @@ public class CalendarAstronomer {
|
|||
return time;
|
||||
}
|
||||
|
||||
private interface CoordFunc {
|
||||
public Equatorial eval();
|
||||
}
|
||||
|
||||
private long riseOrSet(CoordFunc func, boolean rise,
|
||||
double diameter, double refraction,
|
||||
long epsilon)
|
||||
{
|
||||
Equatorial pos = null;
|
||||
double tanL = Math.tan(fLatitude);
|
||||
long deltaT = Long.MAX_VALUE;
|
||||
int count = 0;
|
||||
|
||||
//
|
||||
// Calculate the object's position at the current time, then use that
|
||||
// position to calculate the time of rising or setting. The position
|
||||
// will be different at that time, so iterate until the error is allowable.
|
||||
//
|
||||
do {
|
||||
// See "Practical Astronomy With Your Calculator, section 33.
|
||||
pos = func.eval();
|
||||
double angle = Math.acos(-tanL * Math.tan(pos.declination));
|
||||
double lst = ((rise ? PI2-angle : angle) + pos.ascension ) * 24 / PI2;
|
||||
|
||||
// Convert from LST to Universal Time.
|
||||
long newTime = lstToUT( lst );
|
||||
|
||||
deltaT = newTime - time;
|
||||
setTime(newTime);
|
||||
}
|
||||
while (++ count < 5 && Math.abs(deltaT) > epsilon);
|
||||
|
||||
// Calculate the correction due to refraction and the object's angular diameter
|
||||
double cosD = Math.cos(pos.declination);
|
||||
double psi = Math.acos(Math.sin(fLatitude) / cosD);
|
||||
double x = diameter / 2 + refraction;
|
||||
double y = Math.asin(Math.sin(x) / Math.sin(psi));
|
||||
long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS);
|
||||
|
||||
return time + (rise ? -delta : delta);
|
||||
}
|
||||
|
||||
//-------------------------------------------------------------------------
|
||||
// Other utility methods
|
||||
//-------------------------------------------------------------------------
|
||||
|
@ -1389,19 +786,16 @@ public class CalendarAstronomer {
|
|||
* measured in radians.
|
||||
*/
|
||||
private double eclipticObliquity() {
|
||||
if (eclipObliquity == INVALID) {
|
||||
final double epoch = 2451545.0; // 2000 AD, January 1.5
|
||||
final double epoch = 2451545.0; // 2000 AD, January 1.5
|
||||
|
||||
double T = (getJulianDay() - epoch) / 36525;
|
||||
double T = (getJulianDay() - epoch) / 36525;
|
||||
|
||||
eclipObliquity = 23.439292
|
||||
double eclipObliquity = 23.439292
|
||||
- 46.815/3600 * T
|
||||
- 0.0006/3600 * T*T
|
||||
+ 0.00181/3600 * T*T*T;
|
||||
|
||||
eclipObliquity *= DEG_RAD;
|
||||
}
|
||||
return eclipObliquity;
|
||||
return eclipObliquity * DEG_RAD;
|
||||
}
|
||||
|
||||
|
||||
|
@ -1415,13 +809,6 @@ public class CalendarAstronomer {
|
|||
*/
|
||||
private long time;
|
||||
|
||||
/* These aren't used yet, but they'll be needed for sunset calculations
|
||||
* and equatorial to horizon coordinate conversions
|
||||
*/
|
||||
private double fLongitude = 0.0;
|
||||
private double fLatitude = 0.0;
|
||||
private long fGmtOffset = 0;
|
||||
|
||||
//
|
||||
// The following fields are used to cache calculated results for improved
|
||||
// performance. These values all depend on the current time setting
|
||||
|
@ -1430,52 +817,20 @@ public class CalendarAstronomer {
|
|||
static final private double INVALID = Double.MIN_VALUE;
|
||||
|
||||
private transient double julianDay = INVALID;
|
||||
private transient double julianCentury = INVALID;
|
||||
private transient double sunLongitude = INVALID;
|
||||
private transient double meanAnomalySun = INVALID;
|
||||
private transient double moonLongitude = INVALID;
|
||||
private transient double moonEclipLong = INVALID;
|
||||
//private transient double meanAnomalyMoon = INVALID;
|
||||
private transient double eclipObliquity = INVALID;
|
||||
private transient double siderealT0 = INVALID;
|
||||
private transient double siderealTime = INVALID;
|
||||
|
||||
private transient Equatorial moonPosition = null;
|
||||
|
||||
private void clearCache() {
|
||||
julianDay = INVALID;
|
||||
julianCentury = INVALID;
|
||||
sunLongitude = INVALID;
|
||||
meanAnomalySun = INVALID;
|
||||
moonLongitude = INVALID;
|
||||
moonEclipLong = INVALID;
|
||||
//meanAnomalyMoon = INVALID;
|
||||
eclipObliquity = INVALID;
|
||||
siderealTime = INVALID;
|
||||
siderealT0 = INVALID;
|
||||
moonPosition = null;
|
||||
}
|
||||
|
||||
//private static void out(String s) {
|
||||
// System.out.println(s);
|
||||
//}
|
||||
|
||||
//private static String deg(double rad) {
|
||||
// return Double.toString(rad * RAD_DEG);
|
||||
//}
|
||||
|
||||
//private static String hours(long ms) {
|
||||
// return Double.toString((double)ms / HOUR_MS) + " hours";
|
||||
//}
|
||||
|
||||
/**
|
||||
* @internal
|
||||
*/
|
||||
public String local(long localMillis) {
|
||||
return new Date(localMillis - TimeZone.getDefault().getRawOffset()).toString();
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Represents the position of an object in the sky relative to the ecliptic,
|
||||
* the plane of the earth's orbit around the Sun.
|
||||
|
@ -1490,7 +845,6 @@ public class CalendarAstronomer {
|
|||
* value without worrying about whether other code will modify them.
|
||||
*
|
||||
* @see CalendarAstronomer.Equatorial
|
||||
* @see CalendarAstronomer.Horizon
|
||||
* @internal
|
||||
*/
|
||||
public static final class Ecliptic {
|
||||
|
@ -1550,7 +904,6 @@ public class CalendarAstronomer {
|
|||
* value without worrying about whether other code will modify them.
|
||||
*
|
||||
* @see CalendarAstronomer.Ecliptic
|
||||
* @see CalendarAstronomer.Horizon
|
||||
* @internal
|
||||
*/
|
||||
public static final class Equatorial {
|
||||
|
@ -1603,59 +956,6 @@ public class CalendarAstronomer {
|
|||
public final double declination;
|
||||
}
|
||||
|
||||
/**
|
||||
* Represents the position of an object in the sky relative to
|
||||
* the local horizon.
|
||||
* The <i>Altitude</i> represents the object's elevation above the horizon,
|
||||
* with objects below the horizon having a negative altitude.
|
||||
* The <i>Azimuth</i> is the geographic direction of the object from the
|
||||
* observer's position, with 0 representing north. The azimuth increases
|
||||
* clockwise from north.
|
||||
* <p>
|
||||
* Note that Horizon objects are immutable and cannot be modified
|
||||
* once they are constructed. This allows them to be passed and returned by
|
||||
* value without worrying about whether other code will modify them.
|
||||
*
|
||||
* @see CalendarAstronomer.Ecliptic
|
||||
* @see CalendarAstronomer.Equatorial
|
||||
* @internal
|
||||
*/
|
||||
public static final class Horizon {
|
||||
/**
|
||||
* Constructs a Horizon coordinate object.
|
||||
* <p>
|
||||
* @param alt The altitude, measured in radians above the horizon.
|
||||
* @param azim The azimuth, measured in radians clockwise from north.
|
||||
* @internal
|
||||
*/
|
||||
public Horizon(double alt, double azim) {
|
||||
altitude = alt;
|
||||
azimuth = azim;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return a string representation of this object, with the
|
||||
* angles measured in degrees.
|
||||
* @internal
|
||||
*/
|
||||
@Override
|
||||
public String toString() {
|
||||
return Double.toString(altitude*RAD_DEG) + "," + (azimuth*RAD_DEG);
|
||||
}
|
||||
|
||||
/**
|
||||
* The object's altitude above the horizon, in radians.
|
||||
* @internal
|
||||
*/
|
||||
public final double altitude;
|
||||
|
||||
/**
|
||||
* The object's direction, in radians clockwise from north.
|
||||
* @internal
|
||||
*/
|
||||
public final double azimuth;
|
||||
}
|
||||
|
||||
static private String radToHms(double angle) {
|
||||
int hrs = (int) (angle*RAD_HOUR);
|
||||
int min = (int)((angle*RAD_HOUR - hrs) * 60);
|
||||
|
|
|
@ -110,12 +110,6 @@ public class ChineseCalendar extends Calendar {
|
|||
*/
|
||||
private TimeZone zoneAstro;
|
||||
|
||||
/**
|
||||
* We have one instance per object, and we don't synchronize it because
|
||||
* Calendar doesn't support multithreaded execution in the first place.
|
||||
*/
|
||||
private transient CalendarAstronomer astro = new CalendarAstronomer();
|
||||
|
||||
/**
|
||||
* Cache that maps Gregorian year to local days of winter solstice.
|
||||
* @see #winterSolstice
|
||||
|
@ -709,10 +703,9 @@ public class ChineseCalendar extends Calendar {
|
|||
// PST 1298 with a final result of Dec 14 10:31:59 PST 1299.
|
||||
long ms = daysToMillis(computeGregorianMonthStart(gyear, DECEMBER) +
|
||||
1 - EPOCH_JULIAN_DAY);
|
||||
astro.setTime(ms);
|
||||
|
||||
// Winter solstice is 270 degrees solar longitude aka Dongzhi
|
||||
long solarLong = astro.getSunTime(CalendarAstronomer.WINTER_SOLSTICE,
|
||||
long solarLong = (new CalendarAstronomer(ms)).getSunTime(CalendarAstronomer.WINTER_SOLSTICE,
|
||||
true);
|
||||
cacheValue = millisToDays(solarLong);
|
||||
winterSolsticeCache.put(gyear, cacheValue);
|
||||
|
@ -730,9 +723,7 @@ public class ChineseCalendar extends Calendar {
|
|||
* new moon after or before <code>days</code>
|
||||
*/
|
||||
private int newMoonNear(int days, boolean after) {
|
||||
|
||||
astro.setTime(daysToMillis(days));
|
||||
long newMoon = astro.getMoonTime(CalendarAstronomer.NEW_MOON, after);
|
||||
long newMoon = (new CalendarAstronomer(daysToMillis(days))).getMoonTime(CalendarAstronomer.NEW_MOON, after);
|
||||
|
||||
return millisToDays(newMoon);
|
||||
}
|
||||
|
@ -755,11 +746,8 @@ public class ChineseCalendar extends Calendar {
|
|||
* @param days days after January 1, 1970 0:00 Asia/Shanghai
|
||||
*/
|
||||
private int majorSolarTerm(int days) {
|
||||
|
||||
astro.setTime(daysToMillis(days));
|
||||
|
||||
// Compute (floor(solarLongitude / (pi/6)) + 2) % 12
|
||||
int term = ((int) Math.floor(6 * astro.getSunLongitude() / Math.PI) + 2) % 12;
|
||||
int term = ((int) Math.floor(6 * (new CalendarAstronomer(daysToMillis(days))).getSunLongitude() / Math.PI) + 2) % 12;
|
||||
if (term < 1) {
|
||||
term += 12;
|
||||
}
|
||||
|
@ -1055,7 +1043,6 @@ public class ChineseCalendar extends Calendar {
|
|||
stream.defaultReadObject();
|
||||
|
||||
/* set up the transient caches... */
|
||||
astro = new CalendarAstronomer();
|
||||
winterSolsticeCache = new CalendarCache();
|
||||
newYearCache = new CalendarCache();
|
||||
}
|
||||
|
|
|
@ -938,12 +938,7 @@ public class IslamicCalendar extends Calendar {
|
|||
*/
|
||||
static final double moonAge(long time)
|
||||
{
|
||||
double age = 0;
|
||||
|
||||
synchronized(astro) {
|
||||
astro.setTime(time);
|
||||
age = astro.getMoonAge();
|
||||
}
|
||||
double age = (new CalendarAstronomer(time)).getMoonAge();
|
||||
// Convert to degrees and normalize...
|
||||
age = age * 180 / Math.PI;
|
||||
if (age > 180) {
|
||||
|
@ -957,9 +952,6 @@ public class IslamicCalendar extends Calendar {
|
|||
// Internal data....
|
||||
//
|
||||
|
||||
// And an Astronomer object for the moon age calculations
|
||||
private static CalendarAstronomer astro = new CalendarAstronomer();
|
||||
|
||||
private static CalendarCache cache = new CalendarCache();
|
||||
|
||||
/**
|
||||
|
|
|
@ -36,7 +36,6 @@ public class AstroTest extends CoreTestFmwk {
|
|||
@Test
|
||||
public void TestSolarLongitude() {
|
||||
GregorianCalendar gc = new GregorianCalendar(new SimpleTimeZone(0, "UTC"));
|
||||
CalendarAstronomer astro = new CalendarAstronomer();
|
||||
// year, month, day, hour, minute, longitude (radians), ascension(radians), declination(radians)
|
||||
final double tests[][] = {
|
||||
{ 1980, 7, 27, 00, 00, 2.166442986535465, 2.2070499713207730, 0.3355704075759270 },
|
||||
|
@ -47,7 +46,7 @@ public class AstroTest extends CoreTestFmwk {
|
|||
gc.clear();
|
||||
gc.set((int)tests[i][0], (int)tests[i][1]-1, (int)tests[i][2], (int)tests[i][3], (int) tests[i][4]);
|
||||
|
||||
astro.setDate(gc.getTime());
|
||||
CalendarAstronomer astro = new CalendarAstronomer(gc.getTimeInMillis());
|
||||
|
||||
double longitude = astro.getSunLongitude();
|
||||
if (longitude != tests[i][5]) {
|
||||
|
@ -61,36 +60,12 @@ public class AstroTest extends CoreTestFmwk {
|
|||
") for test " + i);
|
||||
}
|
||||
}
|
||||
Equatorial result = astro.getSunPosition();
|
||||
if (result.ascension != tests[i][6]) {
|
||||
if ((float)result.ascension == (float)tests[i][6]) {
|
||||
logln("result.ascension(" + result.ascension +
|
||||
") != tests[i][6](" + tests[i][6] +
|
||||
") in double for test " + i);
|
||||
} else {
|
||||
errln("FAIL: result.ascension(" + result.ascension +
|
||||
") != tests[i][6](" + tests[i][6] +
|
||||
") for test " + i);
|
||||
}
|
||||
}
|
||||
if (result.declination != tests[i][7]) {
|
||||
if ((float)result.declination == (float)tests[i][7]) {
|
||||
logln("result.declination(" + result.declination +
|
||||
") != tests[i][7](" + tests[i][7] +
|
||||
") in double for test " + i);
|
||||
} else {
|
||||
errln("FAIL: result.declination(" + result.declination +
|
||||
") != tests[i][7](" + tests[i][7] +
|
||||
") for test " + i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Test
|
||||
public void TestLunarPosition() {
|
||||
GregorianCalendar gc = new GregorianCalendar(new SimpleTimeZone(0, "UTC"));
|
||||
CalendarAstronomer astro = new CalendarAstronomer();
|
||||
// year, month, day, hour, minute, ascension(radians), declination(radians)
|
||||
final double tests[][] = {
|
||||
{ 1979, 2, 26, 16, 00, -0.3778379118188744, -0.1399698825594198 },
|
||||
|
@ -100,7 +75,7 @@ public class AstroTest extends CoreTestFmwk {
|
|||
for (int i = 0; i < tests.length; i++) {
|
||||
gc.clear();
|
||||
gc.set((int)tests[i][0], (int)tests[i][1]-1, (int)tests[i][2], (int)tests[i][3], (int) tests[i][4]);
|
||||
astro.setDate(gc.getTime());
|
||||
CalendarAstronomer astro = new CalendarAstronomer(gc.getTimeInMillis());
|
||||
|
||||
Equatorial result = astro.getMoonPosition();
|
||||
if (result.ascension != tests[i][5]) {
|
||||
|
@ -138,24 +113,17 @@ public class AstroTest extends CoreTestFmwk {
|
|||
@Test
|
||||
public void TestCoverage() {
|
||||
GregorianCalendar cal = new GregorianCalendar(1958, Calendar.AUGUST, 15);
|
||||
Date then = cal.getTime();
|
||||
CalendarAstronomer myastro = new CalendarAstronomer(then);
|
||||
CalendarAstronomer myastro = new CalendarAstronomer(cal.getTimeInMillis());
|
||||
|
||||
//Latitude: 34 degrees 05' North
|
||||
//Longitude: 118 degrees 22' West
|
||||
double laLat = 34 + 5d/60, laLong = 360 - (118 + 22d/60);
|
||||
CalendarAstronomer myastro2 = new CalendarAstronomer(laLong, laLat);
|
||||
|
||||
double eclLat = laLat * Math.PI / 360;
|
||||
double eclLong = laLong * Math.PI / 360;
|
||||
Ecliptic ecl = new Ecliptic(eclLat, eclLong);
|
||||
logln("ecliptic: " + ecl);
|
||||
|
||||
CalendarAstronomer myastro3 = new CalendarAstronomer();
|
||||
myastro3.setJulianDay((4713 + 2000) * 365.25);
|
||||
|
||||
CalendarAstronomer[] astronomers = {
|
||||
myastro, myastro2, myastro3, myastro2 // check cache
|
||||
myastro, myastro, myastro // check cache
|
||||
|
||||
};
|
||||
|
||||
|
@ -165,176 +133,21 @@ public class AstroTest extends CoreTestFmwk {
|
|||
logln("astro: " + astro);
|
||||
logln(" time: " + astro.getTime());
|
||||
logln(" date: " + astro.getDate());
|
||||
logln(" cent: " + astro.getJulianCentury());
|
||||
logln(" gw sidereal: " + astro.getGreenwichSidereal());
|
||||
logln(" loc sidereal: " + astro.getLocalSidereal());
|
||||
logln(" equ ecl: " + astro.eclipticToEquatorial(ecl));
|
||||
logln(" equ long: " + astro.eclipticToEquatorial(eclLong));
|
||||
logln(" horiz: " + astro.eclipticToHorizon(eclLong));
|
||||
logln(" sunrise: " + new Date(astro.getSunRiseSet(true)));
|
||||
logln(" sunset: " + new Date(astro.getSunRiseSet(false)));
|
||||
logln(" moon phase: " + astro.getMoonPhase());
|
||||
logln(" moonrise: " + new Date(astro.getMoonRiseSet(true)));
|
||||
logln(" moonset: " + new Date(astro.getMoonRiseSet(false)));
|
||||
logln(" prev summer solstice: " + new Date(astro.getSunTime(CalendarAstronomer.SUMMER_SOLSTICE, false)));
|
||||
logln(" next summer solstice: " + new Date(astro.getSunTime(CalendarAstronomer.SUMMER_SOLSTICE, true)));
|
||||
logln(" prev full moon: " + new Date(astro.getMoonTime(CalendarAstronomer.FULL_MOON, false)));
|
||||
logln(" next full moon: " + new Date(astro.getMoonTime(CalendarAstronomer.FULL_MOON, true)));
|
||||
logln(" equ long: " + astro.eclipticToEquatorial(eclLat, eclLong));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
static final long DAY_MS = 24*60*60*1000L;
|
||||
|
||||
@Test
|
||||
public void TestSunriseTimes() {
|
||||
|
||||
// logln("Sunrise/Sunset times for San Jose, California, USA");
|
||||
// CalendarAstronomer astro = new CalendarAstronomer(-121.55, 37.20);
|
||||
// TimeZone tz = TimeZone.getTimeZone("America/Los_Angeles");
|
||||
|
||||
// We'll use a table generated by the UNSO website as our reference
|
||||
// From: http://aa.usno.navy.mil/
|
||||
//-Location: W079 25, N43 40
|
||||
//-Rise and Set for the Sun for 2001
|
||||
//-Zone: 4h West of Greenwich
|
||||
int[] USNO = {
|
||||
6,59, 19,45,
|
||||
6,57, 19,46,
|
||||
6,56, 19,47,
|
||||
6,54, 19,48,
|
||||
6,52, 19,49,
|
||||
6,50, 19,51,
|
||||
6,48, 19,52,
|
||||
6,47, 19,53,
|
||||
6,45, 19,54,
|
||||
6,43, 19,55,
|
||||
6,42, 19,57,
|
||||
6,40, 19,58,
|
||||
6,38, 19,59,
|
||||
6,36, 20, 0,
|
||||
6,35, 20, 1,
|
||||
6,33, 20, 3,
|
||||
6,31, 20, 4,
|
||||
6,30, 20, 5,
|
||||
6,28, 20, 6,
|
||||
6,27, 20, 7,
|
||||
6,25, 20, 8,
|
||||
6,23, 20,10,
|
||||
6,22, 20,11,
|
||||
6,20, 20,12,
|
||||
6,19, 20,13,
|
||||
6,17, 20,14,
|
||||
6,16, 20,16,
|
||||
6,14, 20,17,
|
||||
6,13, 20,18,
|
||||
6,11, 20,19,
|
||||
};
|
||||
|
||||
logln("Sunrise/Sunset times for Toronto, Canada");
|
||||
CalendarAstronomer astro = new CalendarAstronomer(-(79+25/60), 43+40/60);
|
||||
|
||||
// As of ICU4J 2.8 the ICU4J time zones implement pass-through
|
||||
// to the underlying JDK. Because of variation in the
|
||||
// underlying JDKs, we have to use a fixed-offset
|
||||
// SimpleTimeZone to get consistent behavior between JDKs.
|
||||
// The offset we want is [-18000000, 3600000] (raw, dst).
|
||||
// [aliu 10/15/03]
|
||||
|
||||
// TimeZone tz = TimeZone.getTimeZone("America/Montreal");
|
||||
TimeZone tz = new SimpleTimeZone(-18000000 + 3600000, "Montreal(FIXED)");
|
||||
|
||||
GregorianCalendar cal = new GregorianCalendar(tz, Locale.US);
|
||||
GregorianCalendar cal2 = new GregorianCalendar(tz, Locale.US);
|
||||
cal.clear();
|
||||
cal.set(Calendar.YEAR, 2001);
|
||||
cal.set(Calendar.MONTH, Calendar.APRIL);
|
||||
cal.set(Calendar.DAY_OF_MONTH, 1);
|
||||
cal.set(Calendar.HOUR_OF_DAY, 12); // must be near local noon for getSunRiseSet to work
|
||||
|
||||
DateFormat df = DateFormat.getTimeInstance(cal, DateFormat.MEDIUM, Locale.US);
|
||||
DateFormat df2 = DateFormat.getDateTimeInstance(cal, DateFormat.MEDIUM, DateFormat.MEDIUM, Locale.US);
|
||||
DateFormat day = DateFormat.getDateInstance(cal, DateFormat.MEDIUM, Locale.US);
|
||||
|
||||
for (int i=0; i < 30; i++) {
|
||||
astro.setDate(cal.getTime());
|
||||
|
||||
Date sunrise = new Date(astro.getSunRiseSet(true));
|
||||
Date sunset = new Date(astro.getSunRiseSet(false));
|
||||
|
||||
cal2.setTime(cal.getTime());
|
||||
cal2.set(Calendar.SECOND, 0);
|
||||
cal2.set(Calendar.MILLISECOND, 0);
|
||||
|
||||
cal2.set(Calendar.HOUR_OF_DAY, USNO[4*i+0]);
|
||||
cal2.set(Calendar.MINUTE, USNO[4*i+1]);
|
||||
Date exprise = cal2.getTime();
|
||||
cal2.set(Calendar.HOUR_OF_DAY, USNO[4*i+2]);
|
||||
cal2.set(Calendar.MINUTE, USNO[4*i+3]);
|
||||
Date expset = cal2.getTime();
|
||||
// Compute delta of what we got to the USNO data, in seconds
|
||||
int deltarise = Math.abs((int)(sunrise.getTime() - exprise.getTime()) / 1000);
|
||||
int deltaset = Math.abs((int)(sunset.getTime() - expset.getTime()) / 1000);
|
||||
|
||||
// Allow a deviation of 0..MAX_DEV seconds
|
||||
// It would be nice to get down to 60 seconds, but at this
|
||||
// point that appears to be impossible without a redo of the
|
||||
// algorithm using something more advanced than Duffett-Smith.
|
||||
final int MAX_DEV = 180;
|
||||
if (deltarise > MAX_DEV || deltaset > MAX_DEV) {
|
||||
if (deltarise > MAX_DEV) {
|
||||
errln("FAIL: " + day.format(cal.getTime()) +
|
||||
", Sunrise: " + df2.format(sunrise) +
|
||||
" (USNO " + df.format(exprise) +
|
||||
" d=" + deltarise + "s)");
|
||||
} else {
|
||||
logln(day.format(cal.getTime()) +
|
||||
", Sunrise: " + df.format(sunrise) +
|
||||
" (USNO " + df.format(exprise) + ")");
|
||||
}
|
||||
if (deltaset > MAX_DEV) {
|
||||
errln("FAIL: " + day.format(cal.getTime()) +
|
||||
", Sunset: " + df2.format(sunset) +
|
||||
" (USNO " + df.format(expset) +
|
||||
" d=" + deltaset + "s)");
|
||||
} else {
|
||||
logln(day.format(cal.getTime()) +
|
||||
", Sunset: " + df.format(sunset) +
|
||||
" (USNO " + df.format(expset) + ")");
|
||||
}
|
||||
} else {
|
||||
logln(day.format(cal.getTime()) +
|
||||
", Sunrise: " + df.format(sunrise) +
|
||||
" (USNO " + df.format(exprise) + ")" +
|
||||
", Sunset: " + df.format(sunset) +
|
||||
" (USNO " + df.format(expset) + ")");
|
||||
}
|
||||
cal.add(Calendar.DATE, 1);
|
||||
}
|
||||
|
||||
// CalendarAstronomer a = new CalendarAstronomer(-(71+5/60), 42+37/60);
|
||||
// cal.clear();
|
||||
// cal.set(cal.YEAR, 1986);
|
||||
// cal.set(cal.MONTH, cal.MARCH);
|
||||
// cal.set(cal.DATE, 10);
|
||||
// cal.set(cal.YEAR, 1988);
|
||||
// cal.set(cal.MONTH, cal.JULY);
|
||||
// cal.set(cal.DATE, 27);
|
||||
// a.setDate(cal.getTime());
|
||||
// long r = a.getSunRiseSet2(true);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void TestBasics() {
|
||||
// Check that our JD computation is the same as the book's (p. 88)
|
||||
CalendarAstronomer astro = new CalendarAstronomer();
|
||||
GregorianCalendar cal3 = new GregorianCalendar(TimeZone.getTimeZone("GMT"), Locale.US);
|
||||
DateFormat d3 = DateFormat.getDateTimeInstance(cal3, DateFormat.MEDIUM,DateFormat.MEDIUM,Locale.US);
|
||||
cal3.clear();
|
||||
cal3.set(Calendar.YEAR, 1980);
|
||||
cal3.set(Calendar.MONTH, Calendar.JULY);
|
||||
cal3.set(Calendar.DATE, 27);
|
||||
astro.setDate(cal3.getTime());
|
||||
CalendarAstronomer astro = new CalendarAstronomer(cal3.getTimeInMillis());
|
||||
double jd = astro.getJulianDay() - 2447891.5;
|
||||
double exp = -3444;
|
||||
if (jd == exp) {
|
||||
|
@ -357,7 +170,6 @@ public class AstroTest extends CoreTestFmwk {
|
|||
@Test
|
||||
public void TestMoonAge(){
|
||||
GregorianCalendar gc = new GregorianCalendar(new SimpleTimeZone(0,"GMT"));
|
||||
CalendarAstronomer calastro = new CalendarAstronomer();
|
||||
// more testcases are around the date 05/20/2012
|
||||
//ticket#3785 UDate ud0 = 1337557623000.0;
|
||||
double testcase[][] = {{2012, 5, 20 , 16 , 48, 59},
|
||||
|
@ -380,7 +192,7 @@ public class AstroTest extends CoreTestFmwk {
|
|||
(int)testcase[i][2]+" Hour "+(int)testcase[i][3]+" Minutes "+(int)testcase[i][4]+
|
||||
" Seconds "+(int)testcase[i][5];
|
||||
gc.set((int)testcase[i][0],(int)testcase[i][1]-1,(int)testcase[i][2],(int)testcase[i][3],(int)testcase[i][4], (int)testcase[i][5]);
|
||||
calastro.setDate(gc.getTime());
|
||||
CalendarAstronomer calastro = new CalendarAstronomer(gc.getTimeInMillis());
|
||||
double expectedAge = (angle[i]*PI)/180;
|
||||
double got = calastro.getMoonAge();
|
||||
logln(testString);
|
||||
|
|
|
@ -975,7 +975,6 @@ public class IBMCalendarTest extends CalendarTestFmwk {
|
|||
// CalendarAstronomer
|
||||
// (This class should probably be made package-private.)
|
||||
CalendarAstronomer astro = new CalendarAstronomer();
|
||||
/*String s = */astro.local(0);
|
||||
|
||||
// ChineseCalendar
|
||||
ChineseCalendar ccal = new ChineseCalendar(TimeZone.getDefault(),
|
||||
|
|
Loading…
Add table
Reference in a new issue