mirror of
https://github.com/unicode-org/icu.git
synced 2025-04-05 21:45:37 +00:00
https://releases.llvm.org/17.0.1/tools/clang/tools/extra/docs/clang-tidy/checks/google/readability-casting.html
900 lines
29 KiB
C++
900 lines
29 KiB
C++
// © 2016 and later: Unicode, Inc. and others.
|
|
// License & terms of use: http://www.unicode.org/copyright.html
|
|
/************************************************************************
|
|
* Copyright (C) 1996-2012, International Business Machines Corporation
|
|
* and others. All Rights Reserved.
|
|
************************************************************************
|
|
* 2003-nov-07 srl Port from Java
|
|
*/
|
|
|
|
#include "astro.h"
|
|
|
|
#if !UCONFIG_NO_FORMATTING
|
|
|
|
#include "unicode/calendar.h"
|
|
#include <math.h>
|
|
#include <float.h>
|
|
#include "unicode/putil.h"
|
|
#include "uhash.h"
|
|
#include "umutex.h"
|
|
#include "ucln_in.h"
|
|
#include "putilimp.h"
|
|
#include <stdio.h> // for toString()
|
|
|
|
#if defined (PI)
|
|
#undef PI
|
|
#endif
|
|
|
|
#ifdef U_DEBUG_ASTRO
|
|
# include "uresimp.h" // for debugging
|
|
|
|
static void debug_astro_loc(const char *f, int32_t l)
|
|
{
|
|
fprintf(stderr, "%s:%d: ", f, l);
|
|
}
|
|
|
|
static void debug_astro_msg(const char *pat, ...)
|
|
{
|
|
va_list ap;
|
|
va_start(ap, pat);
|
|
vfprintf(stderr, pat, ap);
|
|
fflush(stderr);
|
|
}
|
|
#include "unicode/datefmt.h"
|
|
#include "unicode/ustring.h"
|
|
static const char * debug_astro_date(UDate d) {
|
|
static char gStrBuf[1024];
|
|
static DateFormat *df = nullptr;
|
|
if(df == nullptr) {
|
|
df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS());
|
|
df->adoptTimeZone(TimeZone::getGMT()->clone());
|
|
}
|
|
UnicodeString str;
|
|
df->format(d,str);
|
|
u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1);
|
|
return gStrBuf;
|
|
}
|
|
|
|
// must use double parens, i.e.: U_DEBUG_ASTRO_MSG(("four is: %d",4));
|
|
#define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;}
|
|
#else
|
|
#define U_DEBUG_ASTRO_MSG(x)
|
|
#endif
|
|
|
|
static inline UBool isINVALID(double d) {
|
|
return(uprv_isNaN(d));
|
|
}
|
|
|
|
static icu::UMutex ccLock;
|
|
|
|
U_CDECL_BEGIN
|
|
static UBool calendar_astro_cleanup() {
|
|
return true;
|
|
}
|
|
U_CDECL_END
|
|
|
|
U_NAMESPACE_BEGIN
|
|
|
|
/**
|
|
* The number of standard hours in one sidereal day.
|
|
* Approximately 24.93.
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
#define SIDEREAL_DAY (23.93446960027)
|
|
|
|
/**
|
|
* The number of sidereal hours in one mean solar day.
|
|
* Approximately 24.07.
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
#define SOLAR_DAY (24.065709816)
|
|
|
|
/**
|
|
* The average number of solar days from one new moon to the next. This is the time
|
|
* it takes for the moon to return the same ecliptic longitude as the sun.
|
|
* It is longer than the sidereal month because the sun's longitude increases
|
|
* during the year due to the revolution of the earth around the sun.
|
|
* Approximately 29.53.
|
|
*
|
|
* @see #SIDEREAL_MONTH
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
const double CalendarAstronomer::SYNODIC_MONTH = 29.530588853;
|
|
|
|
/**
|
|
* The average number of days it takes
|
|
* for the moon to return to the same ecliptic longitude relative to the
|
|
* stellar background. This is referred to as the sidereal month.
|
|
* It is shorter than the synodic month due to
|
|
* the revolution of the earth around the sun.
|
|
* Approximately 27.32.
|
|
*
|
|
* @see #SYNODIC_MONTH
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
#define SIDEREAL_MONTH 27.32166
|
|
|
|
/**
|
|
* The average number number of days between successive vernal equinoxes.
|
|
* Due to the precession of the earth's
|
|
* axis, this is not precisely the same as the sidereal year.
|
|
* Approximately 365.24
|
|
*
|
|
* @see #SIDEREAL_YEAR
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
#define TROPICAL_YEAR 365.242191
|
|
|
|
/**
|
|
* The average number of days it takes
|
|
* for the sun to return to the same position against the fixed stellar
|
|
* background. This is the duration of one orbit of the earth about the sun
|
|
* as it would appear to an outside observer.
|
|
* Due to the precession of the earth's
|
|
* axis, this is not precisely the same as the tropical year.
|
|
* Approximately 365.25.
|
|
*
|
|
* @see #TROPICAL_YEAR
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
#define SIDEREAL_YEAR 365.25636
|
|
|
|
//-------------------------------------------------------------------------
|
|
// Time-related constants
|
|
//-------------------------------------------------------------------------
|
|
|
|
/**
|
|
* The number of milliseconds in one second.
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
#define SECOND_MS U_MILLIS_PER_SECOND
|
|
|
|
/**
|
|
* The number of milliseconds in one minute.
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
#define MINUTE_MS U_MILLIS_PER_MINUTE
|
|
|
|
/**
|
|
* The number of milliseconds in one hour.
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
#define HOUR_MS U_MILLIS_PER_HOUR
|
|
|
|
/**
|
|
* The number of milliseconds in one day.
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
#define DAY_MS U_MILLIS_PER_DAY
|
|
|
|
/**
|
|
* The start of the julian day numbering scheme used by astronomers, which
|
|
* is 1/1/4713 BC (Julian), 12:00 GMT. This is given as the number of milliseconds
|
|
* since 1/1/1970 AD (Gregorian), a negative number.
|
|
* Note that julian day numbers and
|
|
* the Julian calendar are <em>not</em> the same thing. Also note that
|
|
* julian days start at <em>noon</em>, not midnight.
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
#define JULIAN_EPOCH_MS -210866760000000.0
|
|
|
|
|
|
/**
|
|
* Milliseconds value for 0.0 January 2000 AD.
|
|
*/
|
|
#define EPOCH_2000_MS 946598400000.0
|
|
|
|
//-------------------------------------------------------------------------
|
|
// Assorted private data used for conversions
|
|
//-------------------------------------------------------------------------
|
|
|
|
// My own copies of these so compilers are more likely to optimize them away
|
|
const double CalendarAstronomer::PI = 3.14159265358979323846;
|
|
|
|
#define CalendarAstronomer_PI2 (CalendarAstronomer::PI*2.0)
|
|
#define RAD_HOUR ( 12 / CalendarAstronomer::PI ) // radians -> hours
|
|
#define DEG_RAD ( CalendarAstronomer::PI / 180 ) // degrees -> radians
|
|
#define RAD_DEG ( 180 / CalendarAstronomer::PI ) // radians -> degrees
|
|
|
|
/***
|
|
* Given 'value', add or subtract 'range' until 0 <= 'value' < range.
|
|
* The modulus operator.
|
|
*/
|
|
inline static double normalize(double value, double range) {
|
|
return value - range * ClockMath::floorDivide(value, range);
|
|
}
|
|
|
|
/**
|
|
* Normalize an angle so that it's in the range 0 - 2pi.
|
|
* For positive angles this is just (angle % 2pi), but the Java
|
|
* mod operator doesn't work that way for negative numbers....
|
|
*/
|
|
inline static double norm2PI(double angle) {
|
|
return normalize(angle, CalendarAstronomer::PI * 2.0);
|
|
}
|
|
|
|
/**
|
|
* Normalize an angle into the range -PI - PI
|
|
*/
|
|
inline static double normPI(double angle) {
|
|
return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI;
|
|
}
|
|
|
|
//-------------------------------------------------------------------------
|
|
// Constructors
|
|
//-------------------------------------------------------------------------
|
|
|
|
/**
|
|
* Construct a new <code>CalendarAstronomer</code> object that is initialized to
|
|
* the current date and time.
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
CalendarAstronomer::CalendarAstronomer():
|
|
fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(false) {
|
|
clearCache();
|
|
}
|
|
|
|
/**
|
|
* Construct a new <code>CalendarAstronomer</code> object that is initialized to
|
|
* the specified date and time.
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), moonPosition(0,0), moonPositionSet(false) {
|
|
clearCache();
|
|
}
|
|
|
|
CalendarAstronomer::~CalendarAstronomer()
|
|
{
|
|
}
|
|
|
|
//-------------------------------------------------------------------------
|
|
// Time and date getters and setters
|
|
//-------------------------------------------------------------------------
|
|
|
|
/**
|
|
* Set the current date and time of this <code>CalendarAstronomer</code> object. All
|
|
* astronomical calculations are performed based on this time setting.
|
|
*
|
|
* @param aTime the date and time, expressed as the number of milliseconds since
|
|
* 1/1/1970 0:00 GMT (Gregorian).
|
|
*
|
|
* @see #setDate
|
|
* @see #getTime
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
void CalendarAstronomer::setTime(UDate aTime) {
|
|
fTime = aTime;
|
|
clearCache();
|
|
}
|
|
|
|
/**
|
|
* Get the current time of this <code>CalendarAstronomer</code> object,
|
|
* represented as the number of milliseconds since
|
|
* 1/1/1970 AD 0:00 GMT (Gregorian).
|
|
*
|
|
* @see #setTime
|
|
* @see #getDate
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
UDate CalendarAstronomer::getTime() {
|
|
return fTime;
|
|
}
|
|
|
|
/**
|
|
* Get the current time of this <code>CalendarAstronomer</code> object,
|
|
* expressed as a "julian day number", which is the number of elapsed
|
|
* days since 1/1/4713 BC (Julian), 12:00 GMT.
|
|
*
|
|
* @see #setJulianDay
|
|
* @see #JULIAN_EPOCH_MS
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
double CalendarAstronomer::getJulianDay() {
|
|
if (isINVALID(julianDay)) {
|
|
julianDay = (fTime - JULIAN_EPOCH_MS) / static_cast<double>(DAY_MS);
|
|
}
|
|
return julianDay;
|
|
}
|
|
|
|
//-------------------------------------------------------------------------
|
|
// Coordinate transformations, all based on the current time of this object
|
|
//-------------------------------------------------------------------------
|
|
|
|
/**
|
|
* Convert from ecliptic to equatorial coordinates.
|
|
*
|
|
* @param eclipLong The ecliptic longitude
|
|
* @param eclipLat The ecliptic latitude
|
|
*
|
|
* @return The corresponding point in equatorial coordinates.
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat)
|
|
{
|
|
// See page 42 of "Practical Astronomy with your Calculator",
|
|
// by Peter Duffet-Smith, for details on the algorithm.
|
|
|
|
double obliq = eclipticObliquity();
|
|
double sinE = ::sin(obliq);
|
|
double cosE = cos(obliq);
|
|
|
|
double sinL = ::sin(eclipLong);
|
|
double cosL = cos(eclipLong);
|
|
|
|
double sinB = ::sin(eclipLat);
|
|
double cosB = cos(eclipLat);
|
|
double tanB = tan(eclipLat);
|
|
|
|
result.set(atan2(sinL*cosE - tanB*sinE, cosL),
|
|
asin(sinB*cosE + cosB*sinE*sinL) );
|
|
return result;
|
|
}
|
|
|
|
//-------------------------------------------------------------------------
|
|
// The Sun
|
|
//-------------------------------------------------------------------------
|
|
|
|
//
|
|
// Parameters of the Sun's orbit as of the epoch Jan 0.0 1990
|
|
// Angles are in radians (after multiplying by CalendarAstronomer::PI/180)
|
|
//
|
|
#define JD_EPOCH 2447891.5 // Julian day of epoch
|
|
|
|
#define SUN_ETA_G (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch
|
|
#define SUN_OMEGA_G (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee
|
|
#define SUN_E 0.016713 // Eccentricity of orbit
|
|
//double sunR0 1.495585e8 // Semi-major axis in KM
|
|
//double sunTheta0 (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0
|
|
|
|
// The following three methods, which compute the sun parameters
|
|
// given above for an arbitrary epoch (whatever time the object is
|
|
// set to), make only a small difference as compared to using the
|
|
// above constants. E.g., Sunset times might differ by ~12
|
|
// seconds. Furthermore, the eta-g computation is befuddled by
|
|
// Duffet-Smith's incorrect coefficients (p.86). I've corrected
|
|
// the first-order coefficient but the others may be off too - no
|
|
// way of knowing without consulting another source.
|
|
|
|
// /**
|
|
// * Return the sun's ecliptic longitude at perigee for the current time.
|
|
// * See Duffett-Smith, p. 86.
|
|
// * @return radians
|
|
// */
|
|
// private double getSunOmegaG() {
|
|
// double T = getJulianCentury();
|
|
// return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD;
|
|
// }
|
|
|
|
// /**
|
|
// * Return the sun's ecliptic longitude for the current time.
|
|
// * See Duffett-Smith, p. 86.
|
|
// * @return radians
|
|
// */
|
|
// private double getSunEtaG() {
|
|
// double T = getJulianCentury();
|
|
// //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD;
|
|
// //
|
|
// // The above line is from Duffett-Smith, and yields manifestly wrong
|
|
// // results. The below constant is derived empirically to match the
|
|
// // constant he gives for the 1990 EPOCH.
|
|
// //
|
|
// return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD;
|
|
// }
|
|
|
|
// /**
|
|
// * Return the sun's eccentricity of orbit for the current time.
|
|
// * See Duffett-Smith, p. 86.
|
|
// * @return double
|
|
// */
|
|
// private double getSunE() {
|
|
// double T = getJulianCentury();
|
|
// return 0.01675104 - (0.0000418 + 0.000000126*T)*T;
|
|
// }
|
|
|
|
/**
|
|
* Find the "true anomaly" (longitude) of an object from
|
|
* its mean anomaly and the eccentricity of its orbit. This uses
|
|
* an iterative solution to Kepler's equation.
|
|
*
|
|
* @param meanAnomaly The object's longitude calculated as if it were in
|
|
* a regular, circular orbit, measured in radians
|
|
* from the point of perigee.
|
|
*
|
|
* @param eccentricity The eccentricity of the orbit
|
|
*
|
|
* @return The true anomaly (longitude) measured in radians
|
|
*/
|
|
static double trueAnomaly(double meanAnomaly, double eccentricity)
|
|
{
|
|
// First, solve Kepler's equation iteratively
|
|
// Duffett-Smith, p.90
|
|
double delta;
|
|
double E = meanAnomaly;
|
|
do {
|
|
delta = E - eccentricity * ::sin(E) - meanAnomaly;
|
|
E = E - delta / (1 - eccentricity * ::cos(E));
|
|
}
|
|
while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad
|
|
|
|
return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity)
|
|
/(1-eccentricity) ) );
|
|
}
|
|
|
|
/**
|
|
* The longitude of the sun at the time specified by this object.
|
|
* The longitude is measured in radians along the ecliptic
|
|
* from the "first point of Aries," the point at which the ecliptic
|
|
* crosses the earth's equatorial plane at the vernal equinox.
|
|
* <p>
|
|
* Currently, this method uses an approximation of the two-body Kepler's
|
|
* equation for the earth and the sun. It does not take into account the
|
|
* perturbations caused by the other planets, the moon, etc.
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
double CalendarAstronomer::getSunLongitude()
|
|
{
|
|
// See page 86 of "Practical Astronomy with your Calculator",
|
|
// by Peter Duffet-Smith, for details on the algorithm.
|
|
|
|
if (isINVALID(sunLongitude)) {
|
|
getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun);
|
|
}
|
|
return sunLongitude;
|
|
}
|
|
|
|
/**
|
|
* TODO Make this public when the entire class is package-private.
|
|
*/
|
|
/*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly)
|
|
{
|
|
// See page 86 of "Practical Astronomy with your Calculator",
|
|
// by Peter Duffet-Smith, for details on the algorithm.
|
|
|
|
double day = jDay - JD_EPOCH; // Days since epoch
|
|
|
|
// Find the angular distance the sun in a fictitious
|
|
// circular orbit has travelled since the epoch.
|
|
double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day);
|
|
|
|
// The epoch wasn't at the sun's perigee; find the angular distance
|
|
// since perigee, which is called the "mean anomaly"
|
|
meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G);
|
|
|
|
// Now find the "true anomaly", e.g. the real solar longitude
|
|
// by solving Kepler's equation for an elliptical orbit
|
|
// NOTE: The 3rd ed. of the book lists omega_g and eta_g in different
|
|
// equations; omega_g is to be correct.
|
|
longitude = norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G);
|
|
}
|
|
|
|
/**
|
|
* Constant representing the winter solstice.
|
|
* For use with {@link #getSunTime getSunTime}.
|
|
* Note: In this case, "winter" refers to the northern hemisphere's seasons.
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
double CalendarAstronomer::WINTER_SOLSTICE() {
|
|
return ((CalendarAstronomer::PI*3)/2);
|
|
}
|
|
|
|
CalendarAstronomer::AngleFunc::~AngleFunc() {}
|
|
|
|
/**
|
|
* Find the next time at which the sun's ecliptic longitude will have
|
|
* the desired value.
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc {
|
|
public:
|
|
virtual ~SunTimeAngleFunc();
|
|
virtual double eval(CalendarAstronomer& a) override { return a.getSunLongitude(); }
|
|
};
|
|
|
|
SunTimeAngleFunc::~SunTimeAngleFunc() {}
|
|
|
|
UDate CalendarAstronomer::getSunTime(double desired, UBool next)
|
|
{
|
|
SunTimeAngleFunc func;
|
|
return timeOfAngle( func,
|
|
desired,
|
|
TROPICAL_YEAR,
|
|
MINUTE_MS,
|
|
next);
|
|
}
|
|
|
|
//-------------------------------------------------------------------------
|
|
// The Moon
|
|
//-------------------------------------------------------------------------
|
|
|
|
#define moonL0 (318.351648 * CalendarAstronomer::PI/180 ) // Mean long. at epoch
|
|
#define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 ) // Mean long. of perigee
|
|
#define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 ) // Mean long. of node
|
|
#define moonI ( 5.145366 * CalendarAstronomer::PI/180 ) // Inclination of orbit
|
|
#define moonE ( 0.054900 ) // Eccentricity of orbit
|
|
|
|
// These aren't used right now
|
|
#define moonA ( 3.84401e5 ) // semi-major axis (km)
|
|
#define moonT0 ( 0.5181 * CalendarAstronomer::PI/180 ) // Angular size at distance A
|
|
#define moonPi ( 0.9507 * CalendarAstronomer::PI/180 ) // Parallax at distance A
|
|
|
|
/**
|
|
* The position of the moon at the time set on this
|
|
* object, in equatorial coordinates.
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()
|
|
{
|
|
//
|
|
// See page 142 of "Practical Astronomy with your Calculator",
|
|
// by Peter Duffet-Smith, for details on the algorithm.
|
|
//
|
|
if (moonPositionSet == false) {
|
|
// Calculate the solar longitude. Has the side effect of
|
|
// filling in "meanAnomalySun" as well.
|
|
getSunLongitude();
|
|
|
|
//
|
|
// Find the # of days since the epoch of our orbital parameters.
|
|
// TODO: Convert the time of day portion into ephemeris time
|
|
//
|
|
double day = getJulianDay() - JD_EPOCH; // Days since epoch
|
|
|
|
// Calculate the mean longitude and anomaly of the moon, based on
|
|
// a circular orbit. Similar to the corresponding solar calculation.
|
|
double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0);
|
|
double meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);
|
|
|
|
//
|
|
// Calculate the following corrections:
|
|
// Evection: the sun's gravity affects the moon's eccentricity
|
|
// Annual Eqn: variation in the effect due to earth-sun distance
|
|
// A3: correction factor (for ???)
|
|
//
|
|
double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude)
|
|
- meanAnomalyMoon);
|
|
double annual = 0.1858*PI/180 * ::sin(meanAnomalySun);
|
|
double a3 = 0.3700*PI/180 * ::sin(meanAnomalySun);
|
|
|
|
meanAnomalyMoon += evection - annual - a3;
|
|
|
|
//
|
|
// More correction factors:
|
|
// center equation of the center correction
|
|
// a4 yet another error correction (???)
|
|
//
|
|
// TODO: Skip the equation of the center correction and solve Kepler's eqn?
|
|
//
|
|
double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon);
|
|
double a4 = 0.2140*PI/180 * ::sin(2 * meanAnomalyMoon);
|
|
|
|
// Now find the moon's corrected longitude
|
|
double moonLongitude = meanLongitude + evection + center - annual + a4;
|
|
|
|
//
|
|
// And finally, find the variation, caused by the fact that the sun's
|
|
// gravitational pull on the moon varies depending on which side of
|
|
// the earth the moon is on
|
|
//
|
|
double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude));
|
|
|
|
moonLongitude += variation;
|
|
|
|
//
|
|
// What we've calculated so far is the moon's longitude in the plane
|
|
// of its own orbit. Now map to the ecliptic to get the latitude
|
|
// and longitude. First we need to find the longitude of the ascending
|
|
// node, the position on the ecliptic where it is crossed by the moon's
|
|
// orbit as it crosses from the southern to the northern hemisphere.
|
|
//
|
|
double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day);
|
|
|
|
nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun);
|
|
|
|
double y = ::sin(moonLongitude - nodeLongitude);
|
|
double x = cos(moonLongitude - nodeLongitude);
|
|
|
|
moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude;
|
|
double moonEclipLat = ::asin(y * ::sin(moonI));
|
|
|
|
eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat);
|
|
moonPositionSet = true;
|
|
}
|
|
return moonPosition;
|
|
}
|
|
|
|
/**
|
|
* The "age" of the moon at the time specified in this object.
|
|
* This is really the angle between the
|
|
* current ecliptic longitudes of the sun and the moon,
|
|
* measured in radians.
|
|
*
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
double CalendarAstronomer::getMoonAge() {
|
|
// See page 147 of "Practical Astronomy with your Calculator",
|
|
// by Peter Duffet-Smith, for details on the algorithm.
|
|
//
|
|
// Force the moon's position to be calculated. We're going to use
|
|
// some the intermediate results cached during that calculation.
|
|
//
|
|
getMoonPosition();
|
|
|
|
return norm2PI(moonEclipLong - sunLongitude);
|
|
}
|
|
|
|
/**
|
|
* Constant representing a new moon.
|
|
* For use with {@link #getMoonTime getMoonTime}
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() {
|
|
return CalendarAstronomer::MoonAge(0);
|
|
}
|
|
|
|
/**
|
|
* Constant representing the moon's last quarter.
|
|
* For use with {@link #getMoonTime getMoonTime}
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
|
|
class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc {
|
|
public:
|
|
virtual ~MoonTimeAngleFunc();
|
|
virtual double eval(CalendarAstronomer& a) override { return a.getMoonAge(); }
|
|
};
|
|
|
|
MoonTimeAngleFunc::~MoonTimeAngleFunc() {}
|
|
|
|
/*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() {
|
|
return CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);
|
|
}*/
|
|
|
|
/**
|
|
* Find the next or previous time at which the moon will be in the
|
|
* desired phase.
|
|
* <p>
|
|
* @param desired The desired phase of the moon.
|
|
* @param next <tt>true</tt> if the next occurrence of the phase
|
|
* is desired, <tt>false</tt> for the previous occurrence.
|
|
* @internal
|
|
* @deprecated ICU 2.4. This class may be removed or modified.
|
|
*/
|
|
UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) {
|
|
MoonTimeAngleFunc func;
|
|
return timeOfAngle( func,
|
|
desired.value,
|
|
SYNODIC_MONTH,
|
|
MINUTE_MS,
|
|
next);
|
|
}
|
|
|
|
//-------------------------------------------------------------------------
|
|
// Interpolation methods for finding the time at which a given event occurs
|
|
//-------------------------------------------------------------------------
|
|
|
|
UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired,
|
|
double periodDays, double epsilon, UBool next)
|
|
{
|
|
// Find the value of the function at the current time
|
|
double lastAngle = func.eval(*this);
|
|
|
|
// Find out how far we are from the desired angle
|
|
double deltaAngle = norm2PI(desired - lastAngle) ;
|
|
|
|
// Using the average period, estimate the next (or previous) time at
|
|
// which the desired angle occurs.
|
|
double deltaT = (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2;
|
|
|
|
double lastDeltaT = deltaT; // Liu
|
|
UDate startTime = fTime; // Liu
|
|
|
|
setTime(fTime + uprv_ceil(deltaT));
|
|
|
|
// Now iterate until we get the error below epsilon. Throughout
|
|
// this loop we use normPI to get values in the range -Pi to Pi,
|
|
// since we're using them as correction factors rather than absolute angles.
|
|
do {
|
|
// Evaluate the function at the time we've estimated
|
|
double angle = func.eval(*this);
|
|
|
|
// Find the # of milliseconds per radian at this point on the curve
|
|
double factor = uprv_fabs(deltaT / normPI(angle-lastAngle));
|
|
|
|
// Correct the time estimate based on how far off the angle is
|
|
deltaT = normPI(desired - angle) * factor;
|
|
|
|
// HACK:
|
|
//
|
|
// If abs(deltaT) begins to diverge we need to quit this loop.
|
|
// This only appears to happen when attempting to locate, for
|
|
// example, a new moon on the day of the new moon. E.g.:
|
|
//
|
|
// This result is correct:
|
|
// newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))=
|
|
// Sun Jul 22 10:57:41 CST 1990
|
|
//
|
|
// But attempting to make the same call a day earlier causes deltaT
|
|
// to diverge:
|
|
// CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 ->
|
|
// 1.3649828540224032E9
|
|
// newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))=
|
|
// Sun Jul 08 13:56:15 CST 1990
|
|
//
|
|
// As a temporary solution, we catch this specific condition and
|
|
// adjust our start time by one eighth period days (either forward
|
|
// or backward) and try again.
|
|
// Liu 11/9/00
|
|
if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) {
|
|
double delta = uprv_ceil (periodDays * DAY_MS / 8.0);
|
|
setTime(startTime + (next ? delta : -delta));
|
|
return timeOfAngle(func, desired, periodDays, epsilon, next);
|
|
}
|
|
|
|
lastDeltaT = deltaT;
|
|
lastAngle = angle;
|
|
|
|
setTime(fTime + uprv_ceil(deltaT));
|
|
}
|
|
while (uprv_fabs(deltaT) > epsilon);
|
|
|
|
return fTime;
|
|
}
|
|
|
|
/**
|
|
* Return the obliquity of the ecliptic (the angle between the ecliptic
|
|
* and the earth's equator) at the current time. This varies due to
|
|
* the precession of the earth's axis.
|
|
*
|
|
* @return the obliquity of the ecliptic relative to the equator,
|
|
* measured in radians.
|
|
*/
|
|
double CalendarAstronomer::eclipticObliquity() {
|
|
const double epoch = 2451545.0; // 2000 AD, January 1.5
|
|
|
|
double T = (getJulianDay() - epoch) / 36525;
|
|
|
|
double eclipObliquity = 23.439292
|
|
- 46.815/3600 * T
|
|
- 0.0006/3600 * T*T
|
|
+ 0.00181/3600 * T*T*T;
|
|
|
|
return eclipObliquity * DEG_RAD;
|
|
}
|
|
|
|
|
|
//-------------------------------------------------------------------------
|
|
// Private data
|
|
//-------------------------------------------------------------------------
|
|
void CalendarAstronomer::clearCache() {
|
|
const double INVALID = uprv_getNaN();
|
|
|
|
julianDay = INVALID;
|
|
sunLongitude = INVALID;
|
|
meanAnomalySun = INVALID;
|
|
moonEclipLong = INVALID;
|
|
|
|
moonPositionSet = false;
|
|
}
|
|
|
|
// Debugging functions
|
|
UnicodeString CalendarAstronomer::Ecliptic::toString() const
|
|
{
|
|
#ifdef U_DEBUG_ASTRO
|
|
char tmp[800];
|
|
snprintf(tmp, sizeof(tmp), "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG);
|
|
return UnicodeString(tmp, "");
|
|
#else
|
|
return {};
|
|
#endif
|
|
}
|
|
|
|
UnicodeString CalendarAstronomer::Equatorial::toString() const
|
|
{
|
|
#ifdef U_DEBUG_ASTRO
|
|
char tmp[400];
|
|
snprintf(tmp, sizeof(tmp), "%f,%f",
|
|
(ascension*RAD_DEG), (declination*RAD_DEG));
|
|
return UnicodeString(tmp, "");
|
|
#else
|
|
return {};
|
|
#endif
|
|
}
|
|
|
|
|
|
// =============== Calendar Cache ================
|
|
|
|
void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) {
|
|
ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup);
|
|
if(cache == nullptr) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
} else {
|
|
*cache = new CalendarCache(32, status);
|
|
if(U_FAILURE(status)) {
|
|
delete *cache;
|
|
*cache = nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) {
|
|
int32_t res;
|
|
|
|
if(U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
umtx_lock(&ccLock);
|
|
|
|
if(*cache == nullptr) {
|
|
createCache(cache, status);
|
|
if(U_FAILURE(status)) {
|
|
umtx_unlock(&ccLock);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
res = uhash_igeti((*cache)->fTable, key);
|
|
U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res));
|
|
|
|
umtx_unlock(&ccLock);
|
|
return res;
|
|
}
|
|
|
|
void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) {
|
|
if(U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
umtx_lock(&ccLock);
|
|
|
|
if(*cache == nullptr) {
|
|
createCache(cache, status);
|
|
if(U_FAILURE(status)) {
|
|
umtx_unlock(&ccLock);
|
|
return;
|
|
}
|
|
}
|
|
|
|
uhash_iputi((*cache)->fTable, key, value, &status);
|
|
U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value));
|
|
|
|
umtx_unlock(&ccLock);
|
|
}
|
|
|
|
CalendarCache::CalendarCache(int32_t size, UErrorCode &status) {
|
|
fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, nullptr, size, &status);
|
|
U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable));
|
|
}
|
|
|
|
CalendarCache::~CalendarCache() {
|
|
if(fTable != nullptr) {
|
|
U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable));
|
|
uhash_close(fTable);
|
|
}
|
|
}
|
|
|
|
U_NAMESPACE_END
|
|
|
|
#endif // !UCONFIG_NO_FORMATTING
|